De-risking Top Seal for CCS

Alexander P. Bump, Gulf Coast Carbon Center, BEG Gillian M. Apps, Applied Geodynamics Laboratory, BEG Frank J. Peel, Applied Geodynamics Laboratory, BEG

Offshore

Data: US EPA FLIGHT database and IHS Enerdeq (2022)

- Offshore GoM is highly prospective for CO2 storage
 - Close to major coastal emissions
 - Abundant subsurface data
 - Proven reservoirs and seals
 - Potentially re-usable infrastructure
- Advantages over onshore
 - Single landowner
 - Relatively few wells
 - Relatively few competing uses
 - Relatively modern infrastructure

Upper Texas Coast

Producing Hydrocarbon Fields

IHS Enerdeq, 2022

A Worrying Number of Dry Holes

IHS Enerdeq, 2022

Implications for Seal Risk

A CO₂ prospect that does not contain hydrocarbons remains at risk for seal and maybe trap. The absence of hydrocarbons could be:

- evidence that the trap &/or seal failed
- evidence it never received a hydrocarbon charge

Unless you can show it should not have received a charge, the absence of charge increases the trap &/or seal risk (Bayesian update)

Therefore, if we can show the trap never received a hydrocarbon charge, we can eliminate this Bayesian update and reduce the trap &/or seal risk

Offshore Texas Miocene Stratigraphy

Olariu et al, 2019

Lower Miocene Structure, All Wells

Wells Targeting Miocene Reservoirs

Miocene Dry Holes

Exploration Success and Failure

All elements need to work to create a producible hydrocarbon accumulation

Amphistegina B Seal

Geology

Figure 3.4a. Mercury-intrusion curves showing capillary entry pressure. Sample at 10,604 ft shows highest capillary entry pressure (2,146 psi), whereas sample at 10,607 ft shows lowest capillary entry pressure (137 psi).

Figure 3.4b. Carbon dioxide (CO₂) column height calculated from mercury intrusion capillary entry pressure at 70°C and 20 MPa. Samples from well OCS-G-4708 #1 (well 2, fig. 3.1).

Miocene Seal with contours

Seismic interpretation courtesy of Mike DeAngelo

No Structural Trap

Dry Holes with Valid Trap

Coastal Texas Miocene Reservoirs

Charge Focus

Significant Areas of Disharmonic Structure

Multiple Phases of Salt Withdrawal

More Complexity

Early thrusts cut by later extensional faults

Oligocene Structure

Oligocene Focus with Miocene dry holes

Circles show defocused charge

Dry Holes with Valid Trap but No Charge Focus

Mixed Production and Dry Holes

- Production intermixed with dry holes
- Clearly charge and trap are working
- Patchy seal would result in all wells failing
- Interpretation: Channelized reservoirs some wells miss the charged intervals

- Down-dip wells are dry
- Crestal production
- Interpretation: Limited seal capacity, most likely in the bounding fault

Implications for seal risk

For the upper Texas Coast, we can show that most of the dry holes resulted from either:

- no valid trap
- no charge

For the remaining dry holes, the locations of adjacent production wells suggest failure from either:

- missing channelized reservoirs
- drilling down-dip of a small column, most likely limited by fault seal

Elimination of the Bayesian update allows us to discount the dry holes in our assessment of top seal for CCS

Next Steps

- Build a local basin model to more accurately model charge access
- Refine subdivision of dry holes by target interval where possible
- Add column height data where possible
- Look for evidence of leakage to calibrate top seal capacity
- Look more closely at fault seal

