MAY 18, 2022

CARBON STORAGE POTENTIAL IN THE GOM

Geological Characterization of the Chandeleur Island 3D Seismic Survey Area, Offshore Louisiana

MARCIE PURKEY PHILLIPS

Research Scientist specialized in biostratigraphy, The University of Texas at Austin Institute for Geophysics

GCCC in collaboration with GBDS

- GBDS within UT Institute for Geophysics (UTIG)
- Gulf Basin Depositional Synthesis (GBDS) project is an industry-supported, comprehensive regional synthesis of Cenozoic and Mesozoic depositional evolution in the GoM.
- GBDS is contributing resources from its database to
 accomplish GoMCarb project objectives in Chandeleur Sound
- https://ig.utexas.edu/energy/gbds

Executive Summary

- Geological characterization built from scratch
- Highly iterative process
- Dynamic paleogeography and paleogeographic facies
- Upper Miocene and Middle Miocene have CCS potential
- Newly discovered Canyon in MM

GoMCarb Study Area Chandeleur Seismic Survey Area

Location – Chandeleur Seismic Survey Area

Difficulty with Data

- No previous research/characterization in this survey area
- Vintage Data (1970's 1990's)
- State vs. Federal data archiving standards
 - Organization & Submission requirements
- Data not spatially comprehensive
- Seismic volume in time, not depth
- Geological characterization built from scratch

Well Distribution

- Blue & yellow = Drilled
- Yellow = Wells with Biostrat
- 170 total wells

*No Commercial Production *Currently regarded as an openboundary reservoir

Velocity Model v.1

- Done in-house at GBDS
- Insufficient log data available to create a precise VM
- Utilized interval velocity data from 3 ION GulfSPAN lines intersecting survey area & cross-referenced with (very limited) biostrat
- Distortions in VM across ION lines

Velocity Model Distortions

Interpretation is that of the University of Texas. Data owned or controlled by Seismic Exchange, Inc

Velocity Model v.2

- Increased precision based on
 - Calibrated biostratigraphy & stratigraphic interpretation
 - 122 Digitized logs
 - Log surface picks & well correlation
 - In progress...So close!

Velocity Model v.2 *to date

Top of Overpressure

- Top of Overpressure = 0.70 psi/ft - $P = MW/c_2$ (Burke et al., 2012)
- 170 total wells
 - 48 wells w/o logs
 - 122 wells w/ logs
 - 12 total wells reached overpressure

Top of Overpressure

- Top of Overpressure = 0.70 psi/ft - $P = MW/c_2$ (Burke et al., 2012)
- 170 total wells
 - 48 wells w/o logs
 - 122 wells w/ logs
 - 12 total wells reached overpressure

Regional distribution of depth contours of the 0.70 psi/ft pressure gradient surface in the Chandeleur region (Burke et al., 2012)

Working Stratigraphic Interpretation w/ faults

Basic Cenozoic Paleogeography of AOI's

• L	Jpper Miocene	alt. sand/silt/shale; channelization
• N	Aiddle Miocene Shelf	alt. sand/silt/shale; channelization
•	Aid Miocene Canyon	sand/silt, highly heterogeneous
• L	_ower Miocene	condensed carbonate-to sand on shelf; truncated in basin by canyon
• (Oligocene	muddy-to-carbonate
• F	Paleocene-Eocene	condensed muddy shelf, starved basin
• 7	Fop Cretaceous	carbonate shelf

Basic Cenozoic Paleogeography of AOI's

•	Upper Miocene	alt. sand/silt/shale; channelization
•	Middle Miocene Shelf	alt. sand/silt/shale; channelization
•	Mid Miocene Canyon	sand/silt, highly heterogeneous
•	Lower Miocene	condensed carbonate to sand on shelf; truncated in basin by canyon
•	Oligocene	muddy-to-carbonate
•	Paleocene-Eocene	condensed muddy shelf; starved basin
•	Top Cretaceous	carbonate shelf

MM & UM Paleogeography

Storage Opportunities: UM & MM

Storage Opportunities: Middle Miocene Canyon

Storage Opportunities: Middle Miocene Canyon

Potential Traps & Storage Opportunities

10 000 meters

Storage Opportunities: Fluvial Channelization

Top of

over-pressure

Top Miocene

Top Mid-Miocene

Base Miocene

Paleoscan spectral frequency stratal slices

Channelization

Debris flow and fan deposits

-5000 ft

-20000 ft

Marcie Purkey, UTIG Dallas Dunlap, BEG

Storage Opportunities: Canyon Fill

Top of

over-pressure

Top Miocene

Top Mid-Miocene

Base Miocene

Paleoscan spectral frequency stratal slices

Marcie Purkey, UTIG

-20000 ft

Mass-wasting on shelf edge

Incised valley

Storage Opportunities: Fluvial Channelization

45 hz

Paleoscan spectral frequency stratal

slices

Extensive Fluvial Channelization

Top Miocene **Top Mid-Miocene Base Miocene** Top of -5000 ft over-pressure -20000 ft Marcie Purkey, UTIG

Dallas Dunlap, BEG

012345

Progradation of shelf edge

Well Control through AOI's

Upper Miocene wells 19 ٠ Middle Miocene Shelf 6 ulletMid Miocene Canyon 99 • Lower Mio/Oligocene 11 ullet**Top Cretaceous** 10 •

Student Research

- Build Chandeleur reservoir model
 - Analyze existing data to determine main sand fairways w/in reservoir section
 - Stratal slicing to estimate %section of sand-rich vs. mud-rich in MM & UM
 - Calculate porosity & permeability
- Simulate CO₂ flow in Chandeleur reservoir model

Summary & Next steps

- Biostratigraphy is the foundation of Cenozoic geological interpretation in Chandeleur Sound
- Storage potential in UM & MM
- Refine & apply new velocity model & QC interpretation
- Apply new calculations, estimations & modeling of AOI's to enhance our understanding of the Chandeleur 3D SA and its CCS potential

Acknowledgements

- The University of Texas at Austin, Bureau of Economic Geology, acknowledges support of this research project by Landmark Graphics Corporation via the Landmark University Grant Program.
- Thanks to SEI for permission to use and share interpretations of seismic data.

Thank you.