Gulf Coast Carbon Center Graduate Student Research Upper Texas Coast

John Franey — Stratigraphic Framework of Intraslope Growth-Faulted Subbasins

Harry Hull — Geologic Characterization of Shoreface successions for CCS—Field Scale Heterogeneity

Stratigraphic Framework of Intraslope Growth-Faulted Subbains

John Franey (M.S. '21) Gulf Coast Carbon Center

Can high order stratigraphic interpretation aid in risking seal quality of CO_2 injection sites?

Seismic data controlled by SEI. Inc. Interpretation is that of the University of Texas at Austin

- Suite of strike-parallel intra-slope, growth faulted subbasins (*Brown, 2004*)
- High Quality Sands
- Meets depth requirements
- Near Existing CO₂ production sites

Geophysical Processing

(B)

- Dip-Steering Seismic Volume
- HorizonCube: Generate set of dense, 3D auto-tracked horizons
- Dip-steering vectors used as weighting parameters

Shale Thickness Analysis

Seismic data owned or controlled by SEI. Inc. Interpretation is that of the University of Texas at Austin

Interval 1

Uniform thickness across the subbasin

Interval 2

5

0 ft

700 ft

Key Takeaways

- High Order analysis provides insight to thickness variations of sealing intervals
- Dip-Steering interpretation aids in high resolution interpretation
- Improve risk assessment for CO₂ injections sites

Geologic Characterization of Shoreface successions for CCS—Field Scale Heterogeneity

Harry Hull (M.S. '21) Gulf Coast Carbon Center

Can we demonstrate the controls that geologic processes have over CO₂ storage capacity and reservoir heterogeneity?

Play Scale Characterization

- Well-based interpretation
- Stratigraphic Framework—HST, LST, TST
- Net Sand Maps

Geologic Characterization—HRRS Scale

- Well and Seismic based
 Interpretation
- Stratigraphic Framework—16 parasequences
- Seismic Stratal Slices

3D Geocellular Modeling

Bureau of Economic

Geology

Results

Key Takeaways

- Storage capacity tracts with the observed foreshore and shoreface facies of the strandplain/barrier bar system
- The mapped shore zones at the play scale can store gigatons of CO₂ (4-5 Gt per Lower Miocene 2 systems tract)
- The LST within the HRRS AOI can store as much as 350 Mt enough to store all CO_2 produced at point sources in Matagorda, Victoria, Calhoun, and Jackson counties for 35+ years

Obtaining Additional CO₂ Storage and Predicting Plume Stabilization by Utilizing Oil Migration Concepts

Melianna Ulfah (M.S. '21)

Can CO₂ injection simulations aid in risk assessment and well optimization?

Simulation Comparison

Injection near anticline

<u>Insights</u>

- Residual Trapping
- Plume Migration
- Changes in Reservoir Pressure
- Storage Efficiency (MT/acre)

15

Case	Time of pressure to 2410 psi	Maximum up-dip migration distance	Maximum area contacted by CO ₂	Storage/Acreage ratio (million tons/km²)
Syncline scenario – 60 MT	58 years	10.74 km	67.73 km ²	0.88
Syncline scenario – 30 MT	20 years	8.69 km	44.84 km ²	0.67
Base scenario – 60 MT	77 years	8.23 km	50.27 km ²	1.19
Base scenario – 30 MT	25 years	5.94 km	26.81 km ²	1.12

- Injection simulations aid risk assessment for top seal failure from injection pressure
- Aid in policy recommendations for acerage leasing timelines
- Optimize injection well placement

