Pore-Scale Migration and Trapping Using Micromodel Experiments

Richard Larson

Research Scientist/Engineering Associate

University of Texas at Austin

Bureau of Economic Geology

Gulf Coast Carbon Center

Subsurface reservoirs: A multiscale system

- Geological structures in reservoirs occur at a range of length scales.
- > Multiscale characteristic have a profound impact on fluid flow.

Multiphase Flow at the Pore Scale

- Pore Scale: Controlled experiments and simulations that can isolate variables and visualize supercritical drainage and imbibition focusing on capillary dominated flow regime
 - Capillary Pressure
 - Capillary Trapping
 - Residual Saturations
 - □ Flow Patterns and Relative Permeability

Grain Size Distribution and Pattern Generation

Pore sizes and Pore throats

Average Pore Radius = $\sim 82 \,\mu m$

Average Pore Radius = \sim 130 µm

Computational Fluid Dynamics Simulations in OpenFOAM

NATIONAL ENERGY TECHNOLOGY LABORATORY

Water

 CO_2

Experimental Solution: Microfluidics

- Experimental approach to understanding pore scale behavior of carbon dioxide injection for carbon sequestration
- Utilize microfluidics and microscale experiments to visualize pore scale flow

Photomask Pattern

Take generated pattern geometry and input them into devices structures

This is then patterned into a physical binary transparency mask

The etched silicon is then bonded to glass using anodic bonding

Microfluidic fabrication

Bureau of Economic

Geology

Various stages of the microfabrication

NATIONAL

TECHNOLOGY LABORATORY

Completed Microfluidic devices with penny for scale

10

Micromodel lab and Microfluidic Setup

CO2 Drainage in Different Contrasts at 0.005 mL/min

Experimental Results: Observed Snap-Off

Snap off During Drainage in a Constricted Capillary Tube, Sahar Bakhshian

Experimental Results - Saturations

Experimental Results - Saturations

Summary and Next Steps

- Experimental Results: show observed phenomenon and quantitative outputs
- Recreate reservoir P&T conditions
- Varying fluid parameters
- Devices with varied surface properties and roughness (wettability)
- Support and resolve aspects of numerical simulations (CFD)
- Apply pore scale variations to carbon sequestration fluid flow models

Thank you! Questions?

