Progress in the Gulf of Mexico

Ramón Treviño & Alex Bump UTCCS-5 Meeting, January, 2020 Austin, Texas

"Big Plan" Topic 2: Large Volume Injection (aka "BIGFOOT")

Demonstrate basin-scale characterization workflows (e.g., pressure's affects on capacity) Preparation for multiple sites @ maximum injection rates prolonged time periods in same region (e.g., GoM)

Benefit (society, industry, govt.): Increased Retention Assurance

Global continental margins - best near-term <u>Gigatonne-scale CCS</u> opportunity Gulf of Mexico geologically ideal

Offshore continental margins most promising (near-term Gigatonne-scale storage)

Ringrose & Meckel, 2019 (after Divins, 2003; Mann, et al. 2001; Whittaker, 2013)

Overview

History of GCCC's Offshore studies (including GoM)

Expanding scope

Geography

Research areas

Storage Play Fairways

Regional Seismic- & Well-based Mapping

Chandeleur Sound

Western GoM

Upper TX / Western LA Coast Middle TX Coast

Offshore CCS at GCCC

Offshore Studies: *most* in Gulf of Mexico

Student Theses -

- 1. Ruiz, I., 2019, Characterization of the High Island 24L Field for modeling and estimating CO₂ storage capacity in the offshore Texas State Waters, Gulf of Mexico, MS Thesis, UT-Austin, 220 p.
- 2. Garcia, O., 2019, Geologic characterization and modeling of the High Island 10-L field for CO₂ storage resource assessment in Texas State Waters, offshore Gulf of Mexico, MS Thesis, UT-Austin, 123 p.
- 3. Beckham, E., 2018, CO₂ storage in deltaic environments of deposition: Integration of 3D modeling, outcrop analysis and subsurface application, MS Thesis, UT-Austin, 220 p.
- 4. Maciel, R.S., 2017, Pre-injection reservoir characterization for CO₂ storage in the inner continental shelf of the Texas Gulf of Mexico, MS Thesis, The University of Texas at Austin, 90 p.
- 5. Osmond, J.L., 2016, Fault seal and containment failure analysis of a Lower Miocene structure in the San Luis Pass area, offshore Galveston Island, Texas Inner Shelf, MS Thesis, The University of Texas at Austin, 220 p.
- 6. Mulcahy, F.J., 2015, Use of High Resolution 3D Seismic Data to Evaluate Quaternary Valley Evolution History during Transgression, Offshore San Luis Pass, Gulf of Mexico, MS Thesis, The University of Texas at Austin, 122 p.
- 7. Wallace, K.J., 2013, Use of 3-Dimensional Dynamic Modeling of CO₂ Injection for Comparison to Regional Static Capacity Assessments of Miocene Sandstone Reservoirs in the Texas State Waters, Gulf of Mexico, MS Thesis, The University of Texas at Austin, 152 p.
- 8. Nicholson, A.J., 2012, Empirical Analysis of Fault Seal Capacity for CO₂ Sequestation, Lower Miocene, Texas Gulf Coast, MS Thesis, The University of Texas at Austin, 100 p.

GCCC Team

Alex Bump

- University of Arizona PhD, 2001 in structural geology and tectonics
- 16 years in BP Exploration
 - 6 years in Houston, 10 years in London
 - New ventures, drilling prospects, internal consulting
 - Extensive experience teaching and mentoring
 - Last role: Exploration Advisor; Head of Discipline for Structure and Tectonics
 - Global capability
 - Proactive identification and delivery of highvalue business
 - Develop and implement new science and tech
- 2018-19 gap year travelling the world
- Joined GCCC October 1, 2019

Storage Play Fairways

Finding the Greatest Emissions is Easy...

Data: NATCARB, 2019; Map: Bump, 2019

Defining the Best Storage is Not

Geologic Map (USGS) and Hydrocarbon Production (IHS)

Identifying Storage Plays

Geologic Interpretation

Identifying Storage Plays

Pressure window for injection and potential trap styles

Footprints Within the Storage Window

Geographic extent of CO₂ storage window by stratal age

Bump, 2019

Defining Storage Play Fairways

Example: Oligocene Frio reservoir and Anhuac seal

Bureau of Economic Geology Bump, 2019

Green

Defining Storage Play Fairways

Example: Oligocene Frio reservoir and Anhuac seal

Risk Maps

Composite Risk Map

Bump, 2019

The Prize

- Allows efficient screening
- Ensures focus on opportunities is well placed
- Creates a map for strategic storage investment
- Allows rigorous extrapolation of analog results
- Do the right thing in the right place

Composite Risk Map

Note: Storage is available in all areas, given enough wells and characterization effort. Red is not a "no go."

The Future

- Next Steps
 - Define Lower and Middle Miocene play fairways
 - Identify structural closures and add storage leads to the maps
 - Use more detailed prospect work and hydrocarbon analogs to validate interpretation and calibrate expected storage costs, efforts and risks
- Research Needs
 - Role of dissolution in subsurface storage
 - Pressure implications of Gigatonne-scale storage
- Learning by doing: Real-world storage experience is key

Prospect Maturation Flow

Star PRACTICAS In Starcening, Sile Selection, Sol Gologic Storage Projects Control Bearce

Geology

Site Screening

Texas Coast Seismic Mapping

Bureau of Economic

Geology

- Near complete 3D seismic coverage of TX state waters
- MFS09 mapped over ~10,000 km² on 3D
- 709 interpreted fault polygons.
- TxLA_Merge has 9
 surfaces interpreted
 (mfs4,5,7,8,9,10,12,
 sb_m8, sb_m9)
- Next step will be to interpret mfs10 or mfs12 throughout the 3D seismic volumes

22

Texas Coast Seismic Mapping

Geology

Offshore GoM (Gulf of Mexico) Studies Chandeleur Area, Offshore Louisiana

- Storage potential in LA waters
- Partnership with UT-GBDS
- Miocene Interval

Offshore GoM (Gulf of Mexico) Studies

Offshore GoM (Gulf of Mexico) Studies

Offshore GoM (Gulf of Mexico) Studies

Log Correlations

Bureau of Economic

Geology

- Adding lithologic detail to seismic mapping
- >5,000 correlated wells (upper coast)
- >1,000 wells correlated (mid-coast)
- Current focus on midcoast

28

Log Correlations

Miocene Log Correlations

Louisiana Land & Explor. 1 Oxy 1 SL M-79272 Oxy 1 SL M-79459 Oxy 1 SL M-80399 Oxy 1 SL M-79457 ST TR 00718-S Exxon 1 ST TR 00713-S Union 1 SL 73379

Prospect Description: High Island 24L Field

24L

24L Structure

Age (Ma)	Series	Litho	Significant Units	Well Picks	Type Log
- 16	Miocene	MM		Top Amph B Shale	
			Amph B Shale	Bot Amph B Shale MFS 9	
- 17 - 18		LM2	Storage Interval of Interest (SIOI)	Bot SIOI	๚๛๛ฦ๛๛๚๛๚๛๚๛๚
			Underlying Shale	MFS 10	
- 19				MFS 11 Top HC Sand	
		\mathbf{II}	HC Sand	Bottom HC Sand	<u> </u>
		T			Sand Shale

24L Volumetrics

	P10	P50	P90
E _{saline} = E _v E _d	7.4%	14%	24%
SIOI: NETL CO2 Screen (Mt)	63	120	206
SIOI: 3-D Eff. Porosity Model (Mt)	57	108	185
HC Sand: 3-D Constant Avg. Eff. Porosity Model (Mt)	6	12	20

- Exciting prospect
- Near multiple CO₂ sources and existing infrastructure
- One in a growing portfolio of storage prospects

Summary

Are there CCS Super Basins, analogous to hydrocarbon basins? Method to reliably identify and characterize the best opportunities

Global continental margins: Best near-term Gigatonne-scale CCS opportunity Gulf of Mexico ideally suited to lead the way

Research needs:

- Understand Gigatonne-scale pressure perturbation impact
- Understand the roles of dissolution in storage
- Real-world pilot projects: Learning by doing

SPE Storage Resources Management System (SRMS)

- Bookable storage
- Uniformity, clarity, familiarity
- Similar to PRMS
 - SRMS exists
 - <u>https://www.spe.org/industry</u> /<u>CO2-storage-resources-</u> management-system.php
 - Recommendations Generated

Defining Storage Play Fairways

Example: Oligocene Frio reservoir and Anhuac seal

Geologic Data

<u>Risk Maps</u>

Reservoir quality

Composite Risk Map

Shows likelihood of **large capacity**, **low cost storage** Green = High; Yellow = Moderate; Red = Low Note: Storage is available in all areas, given enough wells and characterization effort. Map highlights

Input Layers	Composite
Red on any layer	Red
Yellow on any layer but no red	Yellow
Green on all layers	Green

Figure 1. Map of the study area showing wells and primary 3D seismic dataset The state - federal waters boundary is demarcated by the blue line subparallel to the coast. Subsurface control consisted of about 1000 wells with SP curve; dip and strike cross-sections (AA', BB') shown in red. NW

Figure 2. Regional well log cross-sections showing the Miocene succession of the upper Texas and westernmost Louisiana coastal and offshore areas. The interval between MFS 10 (Robulus L) and MFS 9 has been subdividided into five 4th order genetic stratigraphic cycles based on flooding surfaces MFS 9_1 to MFS9_4 to provide finer scale stratigraphic detail. A cutoff value of -20 Mv was used to separa from shale in each well. A. Dip-oriented structural cross-section. Multiple normal faults offset the stratigraphy. B. Strike-oriented stratigraphic (flattened at MFS 9) cross-section.

Green

Defining Storage Play Fairways

Example: Oligocene Frio reservoir and Anhuac seal

Risk Maps

Composite Risk Map

Note: Storage is available in all areas, given enough wells and characterization effort. Red is not a "no go."

24L

24L Structure

EST PRACTICES Ite Screening, Site Selection, nd Site Characterization for ieologic Storage Projects

