Prediction of CO₂ footprint: A hybrid porescale simulation and analytical modeling

Sahar Bakhshian UTCCS-5 Meeting, January, 2020 Austin, Texas

CO₂ plume stabilization

- Storage of carbon dioxide in geological formations is a promising tool for reducing global atmospheric CO₂ emissions.
- To evaluate the storage efficiency and assess leakage risks: An accurate understanding of the subsurface spreading and migration of the plume of mobile CO₂ during and after injection, including its shape, size and the extent.
- Our **objective**: how far will the CO₂ plume travel (that is, what is the footprint of the plume), and for how long does the CO₂ remain mobile?
- Our **approach**: Combining a large-scale analytical solution with embedded pore-scale simulations to capture sub-scale phenomena in predicting the CO₂ migration during injection and post-injection periods.
- Our study **benefits**: help us in risk assessment and capacity estimation at the basin scale.
- Out **outcome**: an analytical expression for prediction of ultimate footprint of CO₂ and timescale required for its complete trapping.

Theoretical model for prediction of CO2 plume shape

CO2 injection into a horizontal saline aquifer.

✓ Assumptions in the model:

- A sharp-interface approximation: the medium is either filled with CO2 or brine.
- · Horizontal and homogenous aquifer
- The dimension of aquifer is much larger horizontally than vertically (1D problem)
- · Constant density and viscosities fro fluids

✓ Distinctive features of the model:

- · Considering capillary trapping during post-injection period
- Considering the effect of regional groundwater flow in the evolution of the plume after injection stops.
- Considering the effect of plume shape at the end of injection on its migration during the post-injection (Accounting for the tongued shape of the plume at the end of injection)

CO2 injection

Residual (capillary) trapping of CO2.

We model:

- **Injection period**: CO₂ is injection with a high flow rate, displacing brine (drainage), forming a gravity tongue.
- **Post-injection period**: CO₂ plume continues to migrate due to its buoyancy and the background hydraulic gradient (imbibition)
- CO₂ capillary trapping: at the tailing edge of the plume, CO₂ is trapped in residual form.
- Predicting the migration of CO2 under buoyancy and capillary trapping

Mathematical model

Injection period:

➤ Two separate regions:

(1)Mobile gas (Sg) and connate (immobile) brine (Swc)(2)Fully-saturated mobile brine and no gas (CO2)

> Horizontal volumetric flux of ach fluid is calculated by the extension of Darcy's law for multiphase flow:

 \succ Mass balance for the CO₂ phase results in the governing equations for the plume thickness during injection:

$$\emptyset(1-S_{wc})\partial_t h_g + \partial_x \big(f_g Q - K \Delta \rho g H \bar{\gamma}_g \big(1-f_g\big) \partial_x h_g\big) = 0, \qquad f_g = \frac{\bar{\gamma}_g}{\bar{\gamma}_g + \bar{\gamma}_w}, \qquad \bar{\gamma}_g = \frac{k_{rg}^* h_g}{\mu_g H}, \qquad \bar{\gamma}_w = \frac{1}{\mu_w} \frac{H - h_g}{H}$$

Ø: Porosity K: Permeability Swc: Connate water saturation fg: gas fractional flow Relative permeability curves

Mathematical model

Post-injection period:

- The "initial condition" for this period is the shape of the plume at the end of injection.
- Three separate regions:

```
(1) Mobile gas (Sg) and connate water (Sw=Swc)
(2) Mobile water and trapped gas (Sgr)
```

```
(3) Mobile water and no gas (S_w=1)
```


> Application of Darcy's law to the sharp-interface model (Gas and water Darcy's velocities):

$$u_{g} = \begin{cases} -\kappa \frac{k_{rg}^{*}}{\mu_{g}} \left(\partial_{x} p_{l} - \rho g \partial_{x} h_{g}\right) & \text{if } 0 < z < h_{g} \\ 0 & \text{if } h_{g} < z < h_{g,max} \\ 0 & \text{if } h_{g,max} < z < H \end{cases} \qquad u_{w} = \begin{cases} 0 & \text{if } 0 < z < h_{g} \\ -\kappa \frac{k_{rw}^{*}}{\mu_{w}} \left(\partial_{x} p_{l} - (\rho + \Delta \rho) g \partial_{x} h_{g}\right) & \text{if } h_{g} < z < h_{g,max} \\ -\kappa \frac{1}{\mu_{w}} \left(\partial_{x} p_{l} - (\rho + \Delta \rho) g \partial_{x} h_{g}\right) & \text{if } h_{g,max} < z < H \end{cases}$$

> Mass balance for the CO₂ phase: The governing equation for the plume thickness during the post-injection period:

$$\partial_t (\emptyset(1 - S_{wc})h_g) + \partial_t (\emptyset S_{gr}(h_{g,max} - h_g)) + \partial_x (Q_g) = 0$$

Solution to the model: Injection period

- > Make assumption to simplify the model (mobility ratio (M) <<1): Hyperbolic model
- > Plume evolution equation during injection (dimensionless form):

$$(1 - S_{wc})\partial_{\tau}h + \partial_{\xi}f = 0$$
, $f(h) = \frac{h}{h + M(1 - h)}$, $M = \frac{1/\mu_w}{k_{rg}^*/\mu_g} = mobility ratio$
 $M = \frac{1/\mu_w}{k_{rg}^*/\mu_g} = mobility ratio$
 $k_{rg}^* = end-point relative permeability$

- Dimensionless variables:
- $h = \frac{h_g}{H}, \quad \tau = \frac{t}{T}, \quad \xi = \frac{x}{L}.$

T: Injection time $L = \frac{QT}{H\phi}$

- > This is the Riemann problem with solution of **rarefaction wave**.
- > Solution to this problem determines the drainage front in the injection period.

CO₂ drainage front at the end of injection

period (τ =1) for M=0.1

Swc=0.4.

Effect of mobility ratio (M) on the shape of CO₂ plume at the end of injection.

Solution to the model: Early post-injection period

Plume evolution equation during post-injection ($\tau > 1$) : \geq

$$R\partial_{\tau}h + \partial_{\xi}f = 0, \qquad R = \begin{cases} 1 - S_{wc} & \text{if } \partial_{\tau}h > 0 \ (drainage) \\ 1 - S_{wc} - S_{gr} & \text{if } \partial_{\tau}h < 0 \ (imbibition) \end{cases} \qquad f = \begin{cases} \frac{h}{h + M(1 - h)} & \text{if } \partial_{\tau}h > 0 \ (drainage) \\ \frac{h}{h + k_{rw}^*M(h_{max} - h) + M(1 - h_{max})} & \text{if } \partial_{\tau}h < 0 \ (imbibition) \end{cases}$$

- The solution to the drainage front continues to be a divergent **rarefaction wave**. \geq
- The solution to the imbibition front is a **shock wave**.

10

12

Solution to the model: Late post-injection period

- Late post-injection period (sweep stage):
- Once the mobile plume detaches from the bottom of the aquifer.
- The solution comprises the continuous interaction of a progressively faster shock with a rarefaction wave.

Footprint of the CO₂ plume and trapping efficiency factor

- The mobility ratio (M) and the capillary trapping coefficient (Γ) emerge as the key parameters in the assessment of CO₂ storage in saline aquifers.
- Larger values of Γ result in more effective trapping of the CO₂ plume; it increases with increasing residual gas saturation.
- The ultimate footprint of the plume is proportional to the mobility ratio.
- The maximum migration distance is also strongly dependent on the shape of the plume at the end of the injection period.

> Storage efficiency factor due to capillary trapping:

• Efficiency factor: the ratio of the volume of CO₂ injected and the pore volume of the aquifer ($V_{CO2} = E_{capil}V_{pore}$)

$$E_{capil} = \frac{2}{\xi_{inj} + \xi_{max}} = 2(1 - S_{wc})M \frac{\Gamma^2}{\Gamma^2 + (2 - \Gamma)(1 - M(1 - \Gamma))}$$

Calculation for a case scenario

- Aquifer properties: $k = 100 md = 10^{-13}m^2$, $\phi = 0.2$, H = 100 m
- Injection conditions: P=100 bar ,T=40°C $\rho \approx 400 \ kgm^{-3}$, $\Delta \rho \approx 600 \ kgm^{-3}$, $\mu_g \approx 0.05 \times 10^{-3} kg/ms$, $\mu_w \approx 0.8 \times 10^{-3} kg/ms$
- Rock-fluid properties: $S_{wc} = 0.4$, $S_{gr} = 0.3$ and $k_{rg}^* = 0.6$ $\Gamma = 0.3$, $M \approx 0.1$
- A sequestration project: 100 megatons of CO₂ injection per year, for a period of T=50 years
- Injection at 100 wells, with interval spacing of 1km $Q = 1250 m^2/yr$, Q/H = 12.5 m/ry
- Background groundwater flow: U = 0.1 m/yr
- The expected footprint of the plume and time scale for complete trapping (in dimensionless quantities):

$$\boldsymbol{\xi}_{max}=95$$
 , $\boldsymbol{ au}_{max}=5.7$

Dimensional values:

$$x_{max} = \frac{QT}{H\phi} \boldsymbol{\xi}_{max} \approx 300 \ km \quad , \qquad t_{max} = T(1 + \frac{Q}{UH})(\tau_{max} - 1) \approx 30,000 \ years$$

• Capillary trapping efficiency factor: $E_{capil} \approx 1.8\%$ (1-4% by suggested by the DOE Regional Carbon Sequestration Partnerships)

Integrating the model with pore-scale simulations

- The mobility ratio (M) and the capillary trapping coefficient (Γ) emerge as the key parameters in the assessment of the ultimate extent of CO₂ plume.
- The mobility ratio (M) and the capillary trapping coefficient (Γ) depend on the residual saturation and end-point relative permeability.
- These parameters depend on the rock heterogeneity, fluid-rock properties such as wettability and viscosity of fluids.
- Integrating the model with pore-scale simulations to account for the effect of pore-scale properties.

Bureau of Economic

Geology

Integrating the model with pore-scale simulations

Key takeaways

- We developed a model of CO₂ migration in saline aquifers, that accounts for gravity override and capillary trapping.
- The main outcome of the model is an algebraic expression that can be used to evaluate quickly the ultimate footprint of CO₂ and the time scale required for its complete trapping.
- The model reflects dependencies on the mobility ratio and the capillary trapping coefficient, which depend on the pore-scale properties such as wettability.
- Integration of the model with the pore-scale simulation provides the link between sub-scale properties and prediction of CO₂ migration.

Prospective directions

- Prediction of CO₂ migration in a dipping aquifer: some aquifers might be weakly slopped
- Accounting for dissolution trapping in the model:

CO₂ from the buoyant plume dissolves into the ambient brine. Solubility can greatly slow the speed at which the plume advances

Evolution of CO₂ concentration during drainage in a 2D porous medium.

Evolution of CO₂/brine phase distribution during drainage in a 2D porous medium.

Thank you!

Questions?

- "A model should be as simple as possible, but no simpler."
- Albert Einstein (c. 1940)

