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Key Questions — Set A
How to model and predict CO, plume propagation?

1. What is the relationship between architecture, stratigraphy,
and fluid migration pathways?

2. What is the best practice for incorporating the key
stratigraphic features in compositional simulation models?

3. What are the costs and benefits of high-resolution models?

4. What is the controlling force: gravity or pressure?



Identification of key architectural surfaces
using different injection points
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Key Questions — Set B

How much CO, can we store?

1. What are the storage mechanisms?
2. What is the fate of CO, over the years?

3. What are the geomechanical effects of storage?
4. What is the maximum sustainable injection pressure?

5. What are the worst case scenarios?
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Leakage in Wellbore Cement
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pH Triggered Gelling Mechanism

1. The reactive polymer solution enters the cement fracture
flushing the alkaline brine that was originally in the fracture.

Flow ' Low pH o%ii)o Microgel dispersion
_} Diffusion ®
_} @@ Swollen microgel

Swollen gel deposition

Cement Wall 3. The pH increase
initiates the swelling

of microgel resulting
in the viscosification
of the gel

2. Neutralization reaction between polymer solution
and cement surface causing the pH to increase.
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No Stage Chemicals Details Value Duration
- - 12 wt% or
Chelating agent  _ Sodium .4\ ated solution  454-549 1-3 Fv*
1 preflush Triphosphate e
(pretreatment) (NaP,0,) (water solubility glgal. (3 FV recommended)
P sTs%0) 2145 g/100 mL)
Soaking
(pretreatment) - - 24 hr
Aqueous solution 114 g/gal. Until steady-state
®
3 Polymer flood  Carbopol® 934 1-3 wt% (3 wt% soln.) reached
4 Shut in _ _ _ 24 hr

(gelation)
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Pilot Test of Polymer Gelant

* Objective: to mitigate CO, leakage along wellbores used for injection
of CO, below the minimum stress of the caprock (Opalinus Clay).
* Opalinus Clay:
O Incompetent, silty, sandy shales, acts as a geological barrier
O Can be used for underground deposition of fluids and a long-term
containment of CO.,,.
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The Chronological Order of the Chemical Injection

* Chelating agent was injected into test interval (#5) for pretreatment
* Interval 5 was soaked with the chelating agent for 24 hr

* Polymer solution was mixed for 24 hr during injection and soaking
time of pretreatment

* Polymer was injected into interval 5

* The first performance test with Pearson water (synthetic formation
brine) was done 18 hr after polymer injection

* The second performance test with Pearson water was done 24 hr
after the first performance test

* Additional short- and long-term performance tests with CO, were
conducted subsequently.
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Results — Performance Test

Recorded flow rates

* The flow rates during constant head vs. applied pressures

injection (HI) tests were measured after

) _ Before sealant injection: BefOI’e
T 404 HI_step1 =
4 min for each pressure step. : EE;FF’%Z sealant
= step3_: .. .
. : § - injection
* The injection tests HI were performed  § ¥ memmme / -
. . £ - Histep4
before the sealant injection and showed £ x::gtegﬁ
high flow rates up to 45 ml/min at 35 £ 3 s 10x I
bar. 2 o] [0, | drop sealant L
. : ¢ . ction
* The injection tests after the sealant o . — |
. . . | |
injections yielded much lower flow rates 0 2 % %

Pressure [bar]

with a maximum of 4.2 mil/min at 35 bar.

* The long-term injection tests also show
low flow rates (0.11-3.8) ml/min at 30-35
bar.
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Thank You!

Contact: s.tavassoli@utexas.edu
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