

University of Texas 5th Conference on Carbon Capture and Storage

Uniaxial Strain Unloading Compressibility of Frio Sand: Implications on Reservoir Pressure Management for CO₂ Storage

Xiaojin (Andy) Zheng, Zhuang Sun, D. Nicolas Espinoza

01/29/2020

The University of Texas at Austin Petroleum and Geosystems Engineering Cockrell School of Engineering

Reservoir pressure management

Uniaxial strain unloading compressibility

University of Texas 5th Conference on Carbon Capture and Storage, January 28–29, 2020

Compressibility for CO₂ injection:

- × Isotropic loading compressibility
- × Isotropic unloading compressibility
- × Uniaxial strain loading compressibility

Uniaxial strain unloading compressibility

Wrong and not conservative

Experimental cores

Sand rich intervals in Gulf of Mexico basin

(Emily Beckham, MS thesis, 2018)

• South Liberty oil field, a region of the Gulf Coast

Unconsolidated sand: courtesy of GCCC-BEG

Results of uniaxial strain compressibility test

 Uniaxial strain compressibility is nonlinearly stress-dependent (4 - 6 µsip at 25 MPa).

Results of uniaxial strain compressibility test

- Uniaxial strain compressibility is nonlinearly stress-dependent (4 - 6 µsip at 25 MPa).
- Cemented rock has lower compressibility.

(Unconsolidated arkosic sand, Sawabini, 1974; Berea sandstone, Andersen, 1985)

Results of uniaxial strain compressibility test

University of Texas 5th Conference on Carbon Capture and Storage, January 28–29, 2020

Isotropic vs uniaxial strain compressibility

Isotropic compressibility

Loading vs unloading compressibility

Unloading compressibility is about <u>1/3</u> of the loading compressibility at comparable mean effective stress.

Compressibility summary

=

Reservoir simulation

Conclusions

- <u>Uniaxial strain unloading compressibility</u> should be used in reservoir simulation of CO₂ injection.
- Uniaxial strain compressibility is <u>pressure-dependent</u>. Frio sand compressibility can be modeled with the porosity as a function of logarithm of mean stress.
- Uniaxial strain unloading compressibility is about <u>one third</u> of the uniaxial strain loading compressibility at comparable levels of effective mean stress.
- Uniaxial strain compressibility is about <u>one half</u> of the isotropic compressibility at comparable levels of effective mean stress.
- Incorrect compressibility input for CO₂ storage projects will result in nonconservative estimation of pore pressure increase, which may increase the risk of fault reactivation.

- Financial support for this research was provided by the UT-ExxonMobil CO₂ Sequestration Research Project.
- This work was supported by ExxonMobil through its membership in The University of Texas at Austin Energy Institute.
- The authors are thankful to Ganeswara R. Dasari and the ExxonMobil team for providing meaningful comments that helped guide this research.

Backup slides

TerraTek triaxial frame

PID control ٠

gauge

WINF

- Capable of applying up to ۲ 2,205 kN axial load and total radial stresses up to 138 MPa
- Temperature up to 150°C ۲ (300°F)

Stress path

University of Texas 5th Conference on Carbon Capture and Storage, January 28–29, 2020

Uniaxial strain compressibility and constrained modulus 15

University of Texas 5th Conference on Carbon Capture and Storage, January 28–29, 2020

Isotropic vs uniaxial strain compressibility

Fitting result: $C^{uni} = 0.51C^{iso}$

Linear elasticity prediction: $C^{uni} = \frac{(1+\nu)}{3(1-\nu)}C^{iso}$

Equivalent Poisson ratio: v = 0.211

University of Texas 5th Conference on Carbon Capture and Storage, January 28–29, 2020

Reservoir simulation

