CO₂ Migration and Trapping in Heterogeneous Porous Media

- Prasanna G. Krishnamurthy
- Tip Meckel
- David DiCarlo
- UTCCS-5 29th January 2020

The University of Texas at Austin Hildebrand Department of Petroleum and Geosystems Engineering Cockrell School of Engineering

Problem Conceptualization

Ringrose 2020

Sub-meter scale barriers can determine migration pathways and speed of plume movement

WHAT SATURATIONS? Implications for: capacity, monitoring, imaging.

Cowton et al. 2018

Ringrose 2020

Expected Outcomes

Trapping Capacity Prediction

Visualizing Flow through Heterogeneous Media

Shi et al. 2011

Flow Visualization and Saturation Prediction at Intermediate scales (sub meter)

Can we use sedimentological descriptors to predict saturations?

High Resolution Realistic Geological Models

SCIENTIFIC REPORTS

T. A. Meckel¹, L. Trevisan¹ & P. G. Krishnamurthy²

8 fluvial sedimentary models

Based on Rubin & Carter, 2006

# 27	# 36
ALC: NO	
# 42a	# 63
0.1 m	scale

IP

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Impact of 3D capillary heterogeneity and bedform architecture at the sub-meter scale on CO₂ saturation for buoyant flow in clastic aquifers

L. Trevisan^{a,*}, P.G. Krishnamurthy^b, T.A. Meckel^a

^a Gulf Coast Carbon Center, Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA ^b Petroleum and Geosystems Engineering Department, The University of Texas at Austin, Austin, TX, USA

CAN WE TRUST THESE PREDICTIONS?

Fabric control, D

Engineering Heterogeneity: Geologic fabrics

Glass Cell and Automated Sand filler System

Engineering Heterogeneity : Geologic fabrics

Water Resources Research

RESEARCH ARTICLE

10.1029/2019WR025664

Mimicking Geologic Depositional Fabrics for Multiphase Flow Experiments

Key Points:

 We present a methodology to reproducibly generate beadpacks Prasanna G. Krishnamurthy¹, Tip A. Meckel², and David DiCarlo¹

Insets show images of actual outcrops for comparison

Engineering Heterogeneity

The automated filling system allows us to conduct experiments analogous to our simulations

Engineering Heterogeneity: Grain Sizes

Coarse fraction size remains constant while the fine varies

Multiphase Flow Experiments

Experimental Setup

Fluid Properties

	Viscosity (cP)	Denslty (kg/m3)
Heptane (Non wetting)	0.41	684
Glycerol+ Ultrapure Water (Wetting) (50:50 w/w)	6.25	1115
Viscosity Ratio M (بلا//þكا)		0.065
∆rho kg/m3		431
IFT mN/m		36

Reservoir Conditions

	Cold shallow	Cold deep	Warm shallow	Warm deep
Temperature (°C)	35	85	65	155
Pressure (MPa)	10.5	31.5	10.5	31.5
Density of CO ₂ (kg/m ³)	714	733	266	479
Density of brine (kg/m ³)	1121	1099	1104	1045
Viscosity of CO_2 (mPa.s)	0.0577	0.0611	0.0395	0.0395
Viscosity of brine (mPa.s)	1.19	0.511	0.687	0.254
Density difference (kg/m ³)	407	366	838	566
Viscosity ratio	0.0485	0.1196	0.0575	0.1555

Nordbotten et.al 2005

Buoyant Flow Dynamics

Heterogeneity effects on invasion patterns

Capillary entry pressure contrast varies from 50 to 350 Pa

Orientation of the laminae dictates vertical flow direction

How much of the CO_2 eventually escapes?

S_{NWP}= 0.2%%

S_{NWP}= **3.34**%

S_{NWP}= **28**%

S_{NWP}= **39**.8%

NWP displaced during gravityod ibrain age istribution (Imbibition)

With increasing heterogeneity contrast and initial saturation, more CO_2 leaves the system

But what is the fraction that is left behind?

Trapping Efficiency

The efficiency of trapping (final: initial saturation) increases with increasing grain size contrast

Local Capillary Trapping

Majority of the trapping potential is derived from capillary heterogeneities rather than residual trapping

Correlating Heterogeneity with Trapped Saturation

The non-linear behavior persists in the experimental results.

But not enough data to verify decoupling

Takeaways

- First ever visualization and quantification of flow through meter-scale complex/heterogeneous/porous/ media
- Heterogeneity (grain size contrast) has a strong influence on migration pathways and trapping behavior
- Small perturbations in the capillary heterogeneity contrast (<1kPa) lead to drastic (non-linear) effects
- Capillary heterogeneities major contributor to overall trapped capacities
- Predictive model from simulations (partially) verified using experiments

Future Directions

Acoustic Sensing In Tank Experiments

Courtesy: Dr. Nicola Tisato & PhD student Ricardo de Bragança

- Nanoparticles to alter sweep efficiencies
- Simulating fault leakage
- CO₂ Dissolution in heterogeneous porous media

Q2: How much does trapping depend on Ca

Simulating a reverse capillary-desaturation curve like scenario

Capillary Number Vs Invasion Pathways

Capillary barriers stabilize the front and greatly increase sweep efficiency

Yet again the question of how much of the NWP is immobilized?

Capillary Number Vs Trapping Potential

NWP displaced at the end of natural imbibition

End of Drainage

NWP displaced during gravity driven re-distribution (Imbibition)

Increased sweep along with backfilling also leads to more connected pathways

Quantifying the effects

High capillary number flows lead to increased invaded saturation and trapped saturations. However the efficiency of trapping reduces simultaneously