100 years of living science

CO₂ Storage in Aquifers and Oilfields

Ran Qi, Lorena Lazaro, Aaron Goater, Lorraine SobersTara C LaForce, Martin J BluntDec 7, 2009

Spread of CO₂ is an inherently multi-scale process

Pore scale: Model flow through pores directly (m-mm

Laboratory scale: Model flow using continuum approximation

cm-m

Field scale: Model flow using continuum approximation m-km

CO₂ trapping

As CO₂ migrates through the rocks, it is trapped in pore-scale bubbles that can not move further

Dong, 2007

Aquifer storage

http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlas/index.html

Design of carbon dioxide storage in aquifers

A case study on a highly heterogeneous field:

Use chase water to trap
 CO₂ during injection

 1D results are used to design a stable displacement

Simulations are used to optimize trapping

Qi et al., JGGC, 2008

3D results for aquifer storage

20 years of water and CO_2 injection followed by 2 years of water injection in realistic geology 95% of CO_2 trapped after 4 years of water injection

Trapped CO₂ saturation

Mobile CO₂ saturation

Qi et al., JGGC, 2008

General injection strategy

To maximize CO_2 storage in an aquifer:

Inject maximum fraction of CO₂ possible with a stable displacement

Inject chase brine that is 25% of the CO₂ mass
90-95% of the CO₂ is trapped for most realistic case
As little as 65% may be trapped for worst case
It all rests on how much is trapped as a function of initial saturation.

Storage in oil and gas reservoirs

http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlas/index.html

3D results for reservoir storage

Simulation results for reservoir storage

Qi et al., SPE 115663

Conclusions

• Our study showed that brine + CO_2 injection can trap

- Up to 95% of the CO_2 in aquifers
- Up to 75% of the CO_2 in producing oil fields

Results are very sensitive to trapping model, we need to gather more experimental data

A few open questions

When is leakage most likely to occur in aquifers?

How realistic are storage capacity estimates?

Incremental oil has a CO₂ footprint when burned: Should these emissions be accounted for, and if so how?

Current work:

Shell Grand Challenge on Clean Fossil Fuels

Phase 2 has just been funded

Grantham Institute for Climate Change

Near-well precipitation/dissolution problems in CO₂ injection EPSRC

Move to fully compositional three-phase model

Switch to higher-order numerical methods to guarantee convergence

Test codes on CO₂ storage demonstration project

Imperial College Centre for Carbon Capture and Storage

Industrial Consortium IC⁴S IC

An on-campus focal point for CCS research

Imperial College London Qatar Carbonates and Carbon Storage Research Centre (Shell/QP)

Project 1: carbonate geology: fracturing and diagenesis

Project 2: pore/fracture-scale physics and chemistry.

Project 3: Integrated Simulator for Carbonate Reservoirs.

Thanks To:

All of you for listening!

British Consulate-General