Developing Offshore Storage for Texas

Dr. Tip Meckel Ramon Trevino Dr. Susan Hovorka

Gulf Coast Carbon Center Bureau of Economic Geology The University of Texas at Austin

> Texas-UK CCS Workshop Monday, December 7 Houston, TX

Texas Carbon Repository

- Texas is well-positioned to store billions of tons of CO₂ in offshore geologic formations
- Texas controls the surface and subsurface rights
- Texas could provide:
 - leases for CO₂ pipelines and injection
 - liability release for proper injection operations
 - streamlined regulatory and permitting
 - long-term Stewardship & MMV

Texas Carbon Repository

- Partners could include:
 - Oil operators in onshore and offshore waters
 - Major stationery source CO₂ emitters (electricity, refining, petrochemicals)
 - CO₂ transporting companies
 - State agencies (TCEQ, RRC, GLO)
 - Industries and governments needing carbon credits
- Benefits could include:
 - Level playing field for variety of industrial sources
 - A global leadership position in cleaner energy
 - A new carbon industry and associated jobs
 - Major revenues from sold carbon credits
 - Major revenues from enhanced oil recovery and associated increased oil production

International offshore CCS examples

NETLATLASII NatCarb SECARB Deep Saline Formations With CO2 Storage Potential

		CO ₂ Storage Capacity			
		Trillion Cubic Feet		Billion Metric Tons	
Saline Formations	State	High Estimate	Low Estimate	High Estimate	Low Estimate
Gulf Coast Basins (Pliocene)	Multiple states*	25,705	6,426	1,360	340
Gulf Coast Basins (Miocene)	Multiple states*	75,824	18,956	4,012	1,003
Gulf Coast Basins (Oligocene)	Multiple states*	24,884	6,22	1,317	329
Gulf Coast Basins (Eocene)	Multiple states*	29,588	7,397	1,565	391
Gulf Coast Basins (Tertiary Undivided)	Multiple states	3,225	806	171	43

Significant offshore potential

Texas State Offshore Lands

- HB 1796 GLO: \$1.2M
- DOE/NETL: (\$4.8M awarded, starts Dec 2009)
- GLO lands: Revenues to Permanent School Fund (lower taxes) - \$11B since 1854
- Single land owner avoids NUMBY, pore space ownership, trespass, and liability issues
- Reduced risk to USDW (groundwater)
- Monitoring simplified?
- <u>GOALS</u>: Refine capacity estimates; Characterize and rank target reservoirs and seals; Collect data to reduce barriers to nearterm utilization.

CO₂ Sequestration in Texas

CO₂ Brine Storage Capacity

CO₂ Brine Storage Capacity

Geologic Characterization & Geophysical Monitoring Essential

Offshore CCS monitoring design in infancy

- 4D-MCS +/- Ocean Bottom Cables
- Shallow seismic for long-term risks
- Microgravity (Sleipner)
- Surface/water column detection of seeps
- Performance of faults

 Long-term pressure impact
- Environmental concerns
 - Marine pH

- •Texas offshore carbon repository talking points
- •Initial capacity estimates for offshore State lands are extremely high, but need further refinement which may reduce those estimates.
- •GLO management avoids lengthy unitization agreements and legal issues that onshore projects will face.
- •The State offshore option provides a repository for the diversity of affected industries Statewide, and distributes benefits Statewide in well defined procedures.
- •Reduced potential impact to USDWs (underground sources of drinking water) in offshore environments. (eliminated where USDWs do not exist)
- •Native industry experience with existing monitoring techniques, such as 3D seismic, that has demonstrated performance for monitoring CO2 injections (e.g. at Sleipner in the North Sea).
- •Texas has a diverse and strong educational and industrial background in the geoscience and engineering disciplines needed in the field of CCS. Increased CCS activity may eventually provide for an expansion of (dare I say, stimulate) that educational capacity and workforce.
- Australia and UK, as well as other EU members, are aggressively pursuing offshore storage.
 Potential for Enhanced Oil Recovery (EOR) with CO2 can be considered.
- •Potential to provide carbon offset mechanism allowing Texas industries to earn credits sought by industries in states that are less prospective for CCS or in need of carbon reductions.
- •State acquires CO2 ownership at specified (but currently undetermined) time in the life-cycle of the project. This creates need for long term monitoring program and perhaps a restitution fund/bond (you can probably think of a better mechanism or term).

Current CO₂ Infrastructure EOR dominant

