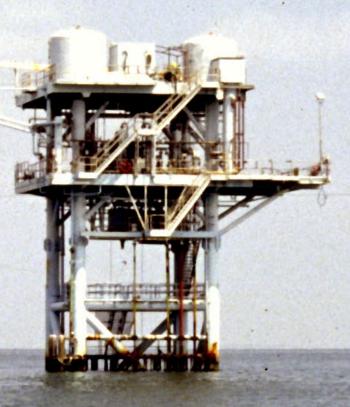
SECARB Offshore Gulf of Mexico Available and Leading Practices

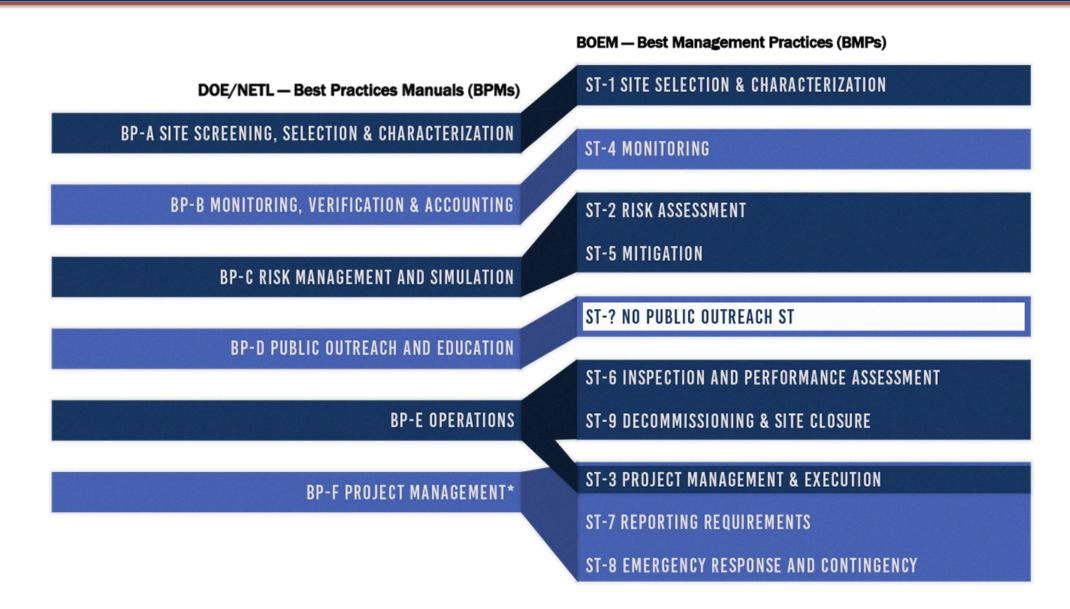


Presented by: Brian Hill, CrescentRI – SSEB Finance & Commercialization Consultant

U.S. Department of Energy | National Energy Technology Laboratory | DE-FOA-0001734 February 11-12, 2020

Disclaimer

This presentation is based upon work supported by the Department of Energy and was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


Best Practices: Recent Activities

- Offshore Best Practices for CO₂ Storage & Transportation
 - SSEB and the Interstate Oil and Gas Compact Commission
 (IOGCC) convened an Offshore Task Force that reviewed laws
 and regulations for CO₂ capture and storage (2012)
 - Texas BEG prepared a report for BOEM on best management practices for offshore transportation and sub-seabed geologic storage of CO₂ (2017)
 - SSEB prepared a SOSRA T6.1 report that compared DOE/NETL onshore best practices with the BOEM best management practices for offshore CO₂ transportation and storage (2019)
 - SSEB prepared SOSRA T6.2.a report formalizing Available and Leading Practices (2019) instead of Best Practices

DOE/NETL and BOEM Best Practices Comparison

*Project Management BPM not part of DOE/NETL 2017 update; Under review at SSEB (2020)

- SECARB Offshore (BP1) Action Plan to Expand Available and Leading Practices Explicitly Applicable to the Gulf of Mexico (Mar 2020)
 - Create an action plan to advance offshore practices, based upon SOSRA 6.2 and BOEM work completed
 - Include existing infrastructure, logistical & regulatory obstacles, and decommissioning requirements
- SECARB Offshore (BP2) Final Report (Mar 2023)
 - Incorporate available and leading practices into a final report on "Assessment of Legal and Regulatory Frameworks"

INVENTORY OF AVAILABLE PRACTICES: CONCEPTUAL DESIGN

INFRASTRUCTURE	CHARACTERIZATION		
		INITIAL SITE	D
COMPONENTS	SITE SELECTION	EVALUATION	E
Landside			
Connections	C1	C2	
CO2 Transport &			
Corridors	C4	C5	
Platforms & Sea			
Floor Connections	C7	C8	
Well Bores & Wells	C10	C11	
Geological Seals &			
Barriers	C13	C14	
CO2 Storage &			
Utilization			
Formations	C16	C17	

017/10/10/10/10				
	INITIAL SITE	_		
SITE SELECTION	EVALUATION	EVALUATION		
C1	C2	C3		
C4	C5	C6		
C7	C8	C9		
C10	C11	C12		
C13	C14	C15		
C16	C17	C18		

DEVELOPMENT	OPERATIONS	CLOSURE	POST CLOSURE
R1	R2	R3	R4
R5	R6	R7	R8
R9	R10	R11	R12
R13	R14	R15	R16
R17	R18	R19	R20
D24	D 22	D22	D24
R21	R22	R23	R24

OUTREACH

RISK

	DEVELOPMENT	OPERATIONS	CLOSURE	POST CLOSURE
	M1	M2	M3	M4
	M5	M6	M7	M8
	M9	M10	M11	M12
	M13	M14	M15	M16
	M17	M18	M19	M20
J	M21	M22	M23	M24

MONITORING (Atmospheric, Aqueous,

Integrate Public Outreach with Project Management **Conduct and Apply Social Characterization Develop Outreach Materials Tailored to the Audiences** **Identify Outreach Goals with Project Manangement Establish an Outreach Program** Implement and Manage the Outreach Program Needed

Identify Key Stakeholders Develop Key Messages Asses the Performance of the Outreach Program

<u>Inventory Of Available Practices – C16 CO₂ Storage and Utilization Formations</u>

Phase	Onshore Action	Available Practices	Comparison to Offshore
Site selection	Subsurface Geological Data Analysis	Identify storage reservoirs and injection zones within Selected Areas.	No difference
	Storage Reservoir	Develop stratigraphic and structural framework diagrams that	
		illustrate suitable storage reservoirs and injection zones of interest,	
		using all available well and outcrop data.	
Site selection	Subsurface Geological Data Analysis	Analyze confining zones in Selected Areas. Create stratigraphic and	No difference
	Confining Zone	structural framework diagrams to illustrate areal extent, thickness,	
		lithology, porosity, permeability, capillary pressure, and structural	
		complexity of suitable confining zones, based on existing data.	
Site selection	Subsurface Geological Data Analysis	Establish baseline geomechanical characteristics of targeted injection	No difference
	Trapping	and confining zones.	
Site selection	Subsurface Geological Data Analysis	Evaluate trapping mechanisms for Selected Areas using available well,	No difference
	Mechanism	outcrop, and seismic data.	
Site selection	Subsurface Geological Data Analysis	Establish hydrogeological characteristics of injection and confining	No difference
	Potential	zones to assure reliable containment of injected CO2.	
Site selection	Subsurface Geological Data Analysis	Perform initial estimate of injectivity of candidate injection zones in	No difference
	Injectivity	Selected Areas, using available production history data, hydrologic test	
		data, and analyses of core plugs.	
Site selection	Model development - Modeling	Identify types of models and modeling parameters needed to	No difference
	parameters	characterize the storage reservoir, confining zone, and fluid properties	
		for Selected Areas.	
Site selection	Model development - Data	Identify data requirements to optimize modeling results; conduct cost	Data acquisition costs offshore tend to be significantly higher;
	Requirements and cost	vs. benefit analysis to determine value of acquiring new data.	data tends to be lower density due to higher cost
Site selection	Model development - Boundary	Identify and characterize uncertainties in modeling results; select	No difference
	conditions/uncertainty	boundary conditions which minimize uncertainties in modeling	
		results.	
Site selection	Model development - Existing	If available, integrate existing seismic data in development of static	Offshore seismic data tends to be easier to work with due to
	seismic data	and dynamic models for Selected Areas.	no need for topographic corrections and easier avoidance of
			obstacles.

MATRIX OF LEADING PRACTICES: CONCEPTUAL DESIGN

Project Management

COMPONENTS

Landside Connections

Platforms & Sea Floor

Utilization Formations

CO2 Transport & Corridors

Connections
Well Bores & Wells
Geological Seals &

Barriers
CO2 Storage &

SITE SELECTION	EVALUATION	EVALUATION			
C1	C2	С3			
C4	C5	C6			
C7	C8	C9			
C10	C11	C12			
C13	C14	C15			
C16	C17	C18			

CHARACTERIZATION

INITIAL SITE

DETAILED SITE

DEVELOPMENT	OPERATIONS	CLOSURE	POST-CLOSURE
R1	R2	R3	R4
R5	R6	R7	R8
R9	R10	R11	R12
R13	R14	R15	R16
R17	R18	R19	R20
R21	R22	R23	R24

RISK

DEVELOPMENT	OPERATIONS	CLOSURE	POST-CLOSURE
M1	M2	M3	M4
M5	M6	M7	M8
M9	M10	M11	M12
M13	M14	M15	M16
M17	M18	M19	M20
M21	M22	M23	M24

MONITORING

Outreach and Education

Onshore to Offshore Relationship

Very little to no difference

Onshore to Offshore Relationship

Small differences

Onshore to Offshore Relationship

Major differences

Onshore to Offshore Relationship

Not contemplated in Onshore

THANK YOU!

