Use of existing infrastructure and knowledge: **Examples from Northern Lights project**

Philip Ringrose Equinor Research and Technology

4th International Workshop on Offshore Geologic Storage & STEMM-CCS Open Science Meeting Bergen - 11-12 February 2020

Using material from Northern Lights project team and Equinor R&T Storage scale-up team

Northern Lights Overview

Setting:

- The Northern Lights project is focused on CO₂ captured from industrial sites
- The project will use saline aquifer storage
- However, the project benefits from technology and insights acquired though oil and gas activities

Question?

How can the CCS industry benefit from the oil and gas industry

So what are we learning for CCS and how does it save on costs?

Technology arena	What benefits?	What cost savings?
Surface infrastructure	Huge leanings from oil and gas operations	Very substantial
Wells	Slightly modified standard well technology	Substantial
Exploration	Use of exploration well databases, 3D seismic and geological knowledge	Nearly priceless!
Reservoir technology	Modified reservoir modelling tools and approaches	Substantial

Northern Lights Infrastructure

4 | Northern Lights Project

CO₂ storage exploration 'piggy-backed' on HC exploration

- exploration
- ullet

• Equinor and license partners drilled exploration well 32/4-2 in PL921 in August 2019

The main target was petroleum

A CO₂ data acquisition programme was added with agreement of partners

No hydrocarbons were found

The well confirmed good saline aquifer storage potential

Quantifying storage risks

In support of the Northern Lights project and for future storage scale up, Equinor and many partners are working on:

- Fault mapping from seismic
- Fault Seal and fault permeability
- Pressure communication
- 3D geological modelling
- Geomechanics and strain
- Micro-seismic monitoring
- Flow simulation

Uses seismic datasets and wells to develop a $\rm CO_2$ storage play alongside an historic hydrocarbon play

Long Wu et al (2019), EAGE Fault & Top Seal Conference

Reservoir modelling and simulation

Future storage prospects at Smeaheia being quantified using detailed reservoir models:

• simulation of different injection well concepts and effects of pressure communication across faults

Cross section of property model – Gladsheim prospect

Taking the challenge to the global scale

Global distribution and thickness of sediment accumulations on continental margins, with largest oilfields and main river systems (Ringrose & Meckel, 2019, Scientific Reports)

ΔP basin pressure model for global storage development

 \succ Initial and final pressure per well can be used to estimate capacity

Mean capacity is ~17Mt per well

Integration of the injectivity equation over the

$$-p_{init} + \int_{i}^{f} A p_D(t_D) \Big] + F_b$$

= characteristic pressure function

= volume flux boundary condition

Ringrose & Meckel (2019)

Application of ΔP method to basin-scale developments

- Projected growth of CO₂ injection wells based on historical hydrocarbon well developments.
- Concept captures industrial maturation phases for global CO₂ storage
- Uncertainty range based on bounds (P10 - P90) from empirical injection rates

Main finding:

We will need ~12,000 CO_2 injection wells by 2050 to achieve 2DS goal

Summary

- CCS projects already making good use of experience and knowledge from hydrocarbon activities:
 - ≻Infrastructure

≻ Wells

➤ Exploration

➤ Reservoir technology

- We can use this foundation to rapidly and cost-effectively scale up CCS (especially storage)
- Number of wells needed for climate goals (2DS) is small compared to historic oil and gas industry

Northern Lights is an important next step in building out the infrastructure for future CCS

Norwegian full-scale CCS project

Use of existing infrastructure and knowledge: Examples from Northern Lights project Philip Ringrose

© Equinor ASA

This presentation, including the contents and arrangement of the contents of each individual page or the collection of the pages, is owned by Equinor. Copyright to all material including, but not limited to, written material, photographs, drawings, images, tables and data remains the property of Equinor. All rights reserved. Any other use, reproduction, translation, adaption, arrangement, alteration, distribution or storage of this presentation, in whole or in part, without the prior written permission of Equinor is prohibited. The information contained in this presentation may not be accurate, up to date or applicable to the circumstances of any particular case, despite our efforts. Equinor cannot accept any liability for any inaccuracies or omissions.