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Millions of wells
worldwide (as of 2005)

High density in regions of
mature regions

Designed for petroleum
production and lifetime of
max 50 years

Many are still active

All will be eventually
abandoned

IPCC 2005 data, already
outdated because
thousands of wells are
drilled and abandoned
each year!

Global well infrastructure, 2005

Number of Wells Drilled per ~10,000 km2
[ ]1-100 [777/100-300 [WWN 300 -1,000 [N 1,000 -4,400 [N 4,400 - 23,400 MM 23,400 - 61,000 No Wells/Data

IPCC, 2005 — Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela
Loos and Leo Meyer (Eds.) Cambridge University Press, UK.
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Total Wells in the Alberta
Basin, Canada
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Wellbore Integrity /

Well Casing

Cement
Fill

* All wells are eventually plugged ——
Rock
and abandoned

* Integrity is dependent as much on
initial well completion as
abandonment procedure

* Neither is always perfect
* Plug can be cement or bridge

* Type and quality of the plug is
important

* Initial state is important before
added impact of chemical attack

. . ‘.-> =
or mechanical fatigue
Gasda et al. Env. Geol. 2004




Plugging & Abandonment in Canada
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Fig. 1—Typical well abandonments in Alberta, Canada: (a) drilled and abandoned open hole; (b) cased, completed, and

abandoned.

Watson and Bachu, SPE 106817, 2009



Legacy well leakage

* Field evidence that legacy wells can leak.

e Well documented cases in N. America

e Surface casing vent flow (SCVF) in Alberta;
monitoring required by regulations (Watson and

Bachu, SPE 106817)

e Sustained casing pressure (SC) in US (Lackey et al.
ES&T 2017)

® Measurement campaigns have documented
methane leaks from old wells in Pennsylvania

® 100 yr-old oil wells in USA in western PA
® Kang et al., Proc. Natl. Acad. Sci. 2014

Kang et al., Proc. Natl. Acad. Sci. 2014



Legacy well leakage

Data are important for evaluating
potential for leakage in CO, storage

Type of abandonment (regulations)
has a high impact on leakage

Cased holes are more likely to leak

Leakage is from shallower zones than
the original completion depth.

Minority of wells are problematic

Only 5% of well infrastructure have
recorded leaks in Alberta
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L. Vielstddte et al./Marine and Petroleum Geology 68 (2015 )



Central North Sea measurements
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From natural seeps to CO, storage Ni%RCE

Leakage is interesting, but tells only part of the story

Well properties (and not the leakage itself) are needed to predict impact
on CO, storage

Efforts to estimate hydraulic properties
Direct testing of legacy wells by down-hole intervention (VIT)

Indirect estimation from leakage rates at surface

Both methods give estimates that can be used to further to constrain
potential for leakage for CO, storage development



Integrity test of a CO, producer

Well History
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30-year well life
producing from a CO, reservoir

Field Survey

Evaluate barrier system

Mechanical integrity
(caliper)

Cement bond
log/ultrasonic scanner
tools

Vertical Interference Test

Detect signs alteration by
CO, migration.

Fluid/gas samples

Sidewall cores through
the casing

Crow et al., Wellbore integrity of a CO, producer, IJGGC, (2010)
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Integrity test of a CO, producer

Well History
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Crow et al., Wellbore integrity of a CO, producer, IJGGC, (2010)
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CO2 Production Well Cement Core Analysis
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CO2 Production Well Cement Core Analysis ,
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Field test summary: Ni%R CE
Effective permeability vs cement permeability

Estimated Wellbore Measured Cement )
Reported VIT data permeability permeability
CCP 1.7 mD 0.1 — 32 microD
TPX 170 mD 0.1 — 449 microD
CCl1 25 mD 0.001 —4.63 mD
Hypothetical VIT data VU
CCP upper bound 100 D - . | )
CCP lower bound 001 mD - R N c
Unreported VIT data ’ : ) :“ PEEERK
3 datasets 6mD-3D .- et

®

Source: Gasda, et al., Energy Procedia 37 (2013); Crow et al., IJGGC, (2010); Duguid et al., Greenhouse Gases: Scievbce and Jechnology (2017)



Surface leakage measurements and
wellbore permeability estimates

® Direct measurements of leaked volumes in time can
be used to estimate permeability

® Uncertainty of source depth and other parameters

* No wells greater than 1 Darcy permeability

Number of wells Wellbore permeability

British Columbia? 736 10 uD-10mD
Pennsylvania? 42 1 nD -- 100 mD
Central North Sea** 1 100mD-1D

® Cubic law for annular aperture
® 5um (1mD)to 0.2 mm (100 Darcy)

Tao, Q.; Bryant, S. L. Well permeability estimation and CO2 leakage rates. Int. J. Greenhouse Gas Control 2014, 22, 77-87
**3nproximation by S. Gasda
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From parameters to prediction

e Simulation technology can be used to
understand the potential for leakage in
prospective CO, storage regions

leakage value [%)]

0.05 |
° ° . I‘
e Advances in modeling gives very accurate & e s R e,
. . . time [days]
simulation of wellbore flow over many wells in
real geological system with multiple strata

Class et al., Comp Geosci, 2009
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e "Elevator effect” with CO2 flow into thief zones
dampens eventual leakage to surface
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c Wells and Stratigraphy: East-West Cross Section

Case study: Well leakage in Alberta =
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c Wells and Stratigraphy: East-West Cross Section
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Future of P&A offshore

® Preparing for a wave of plug and
abandonment as many platforms are
heading towards decommissioning

e “Restoring the caprock” (rock-to-rock)
® Bring down costs (rigless plugging)

® |Improve plug integrity, examine bridge
plugs and plug length

e Section milling
e Shale barriers

® Cut-and-pull operation

Wellhead and

X-mas tree removal
Seabed
Surface
é (" envnronmental barner )

Primary and secondary
barriers towards potential
flow zones in overburden

Primary and secondary
barriers towards reservoir

Before P&A After P&A

N

I_\ S !\ § k\m%/
K
=

Vrdlstad et al., Plug & abandonment of offshore wells: Ensuring long-term well integrity and cost-efficiency, J. Pet Sci Eng, 2018



Fluid migration modelling & treatment
KPN project in PETROMAKS?2 program 2019

10-m portions of a 30-yr Valhalla well recovered for testing of barrier quality

Cemented sandwich sections, generally good cement bond that agrees with
logs and low gas migration by direct physical testing

Liquid permeabilities in microDarcies. Gas permeability in milliDarcies
Unique opportunity to develop new treatment technologies

Improved understanding of migration paths can guide the choice of remedial
action to establish well integrity, improve SCP management and support the
selection of the right P&A design solution

* Project objectives:
e Realistic micro-annuli and crack geometries

* Fluid migration analysis and placement of treatment materials

* Full-scale test assemblies for qualification of treatment technologies

P&A Innovation Program: Guillermo et al., SPE-199609-MS (2020); Skadsem et al. SPE-199662-MS (2020)



The future for P&A and CO, storage Ni R CE

Wells will most likely leak, many wells already do.

Leakage from legacy wells may not be problematic from a climate or
environmental perspective

Monitoring requirements will require assurance that all leakage is detected

Need for clear regulations for P&A requirements within context of Iafge-sca‘le
CO2 storage deployment u



The future for P&A and CO, storage Ni%

® Discussion points

How to ensure Plug and Abandonment is good enough for long-term CO, storage?

[ ]

Should all leaks be stopped? Or even can a leak be stopped?

Is it good enough to monitor for crediting or offsetting the leaked CO, another way?

Can we build confidence by demonstrating successful remediation on leaky wells (biogehic

gas)?
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