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Millions of wells
worldwide (as of 2005)

High density in regions of
mature regions

Designed for petroleum
production and lifetime of
max 50 years

Many are still active

All will be eventually
abandoned

IPCC 2005 data, already
outdated because
thousands of wells are
drilled and abandoned
each year!

Global well infrastructure, 2005

Number of Wells Drilled per ~10,000 km2
[ ]1-100 []100-300 300 - 1,000 WM 1,000 - 4,400 [N 4,400 - 23,400 [ 23,400 - 61,000 | | No Wells/Data

IPCC, 2005 — Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela
Loos and Leo Meyer (Eds.) Cambridge University Press, UK.
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Total Wells in the Alberta
Basin, Canada
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Number of Wells = 194,543
Area = 436,470 km?
Avg. Well Density = 0.45 wells/km?2

Max. Well Density > 6 wells/km?

Existing Wells in a Mature Sedimentary Basin
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Wellbore Integrity /

Well Casing

Cement
Fill

* All wells are eventually plugged Formaton
and abandoned

* Integrity is dependent as much on
initial well completion as
abandonment procedure

* Neither is always perfect

* Plug can be cement or bridge

* Type and quality of the plug is
important

* Initial state is important before
added impact of chemical attack

or mechanical fatigue
Gasda et al. Env. Geol. 2004




Plugging & Abandonment in Canada
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Fig. 1—Typical well abandonments in Alberta, Canada: (a) drilled and abandoned open hole; (b) cased, completed, and

abandoned.

Watson and Bachu, SPE 106817, 2009



Legacy well leakage

* Field evidence that legacy wells can leak.

e Well documented cases in N. America

e Surface casing vent flow (SCVF) in Alberta;
monitoring required by regulations (Watson and

Bachu, SPE 106817)

e Sustained casing pressure (SC) in US (Lackey et al.
ES&T 2017)

¢ Measurement campaigns have documented
methane leaks from old wells in Pennsylvania

e 100 yr-old oil wells in USA in western PA
e Kang et al., Proc. Natl. Acad. Sci. 2014

Kang et al., Proc. Natl. Acad. Sci. 2014



Legacy well leakage

Data are important for evaluating
potential for leakage in CO, storage

Type of abandonment (regulations)
has a high impact on leakage

Cased holes are more likely to leak

Leakage is from shallower zones than
the original completion depth.

Minority of wells are problematic

Only 5% of well infrastructure have
recorded leaks in Alberta
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2 km 2 km

Central North Sea measurements

Utsira High

1158.5°N

Measurement campaign at 3 wells in 2015

First public study to quantify methane leaks
Max rate 0.15 L/min

Geochemical, bubble sampling, video

L. Vielstddte et al./Marine and Petroleum Geology 68 (2015 )



Central North Sea measurements
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From natural seeps to CO, storage Ni %R CE

Leakage is interesting, but tells only part of the story

Well properties (and not the leakage itself) are needed to predict impact
on CO, storage

Efforts to estimate hydraulic properties
Direct testing of legacy wells by down-hole intervention (VIT)

Indirect estimation from leakage rates at surface

Both methods give estimates that can be used to further to constrain
potential for leakage for CO, storage development



Integrity test of a CO, producer

Well History
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30-year well life
producing from a CO, reservoir

Field Survey

Evaluate barrier system

Mechanical integrity
(caliper)

Cement bond
log/ultrasonic scanner

tools

Vertical Interference Test

Detect signs alteration by
CO, migration.

Fluid/gas samples

Sidewall cores through
the casing

Crow et al., Wellbore integrity of a CO, producer, IJGGC, (2010)
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Integrity test of a CO, producer

Well History
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Crow et al., Wellbore integrity of a CO, producer, IJGGC, (2010)
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CO2 Production Well Cement Core Analysis

Core Permeability ~ Porosity ~ Young's Mod  In-Situ [Fluid|Press (psi)
GR Raw Depth(ft)  (ud) - (%) 106 psi) Perm (ud) | pH [ Temp (F) |
. Curve Ac. Imp. [<1| o0+ |<15] [30+] [>2] k1.5
Integrity test results (7
x 137
A : |Cement Sample @ |
Igneous Laccolith ,/ \
. . Sad 1334
No visual signs of cement < 4458 138
. . G h (=
degradation from sidewall cores. Limestone/Shale || |
j T
* CO, has altered cement barrier o > Limited CO, alteration
system along the caprock to . 4318 ofigores
varying degrees. o R e» _—Tos] N~
N D 16 .
Higher amounts of calcium fEsaercnd o | £ M
carbonate near CO, reservoir. % % =
Carbonation effect is evident in }’
S

fluid/gas analyses.

L]
: e CO, alteration
of cores
/4 P~V R > R = o
Dakota Sandstone |+ 4713
CO, Reservoir |/
j:’ 4722 5.3]_451
{ 141
Perforations }‘S - ?Z:
. . {
Crow et al., Wellbore integrity of a CO2 producer, JGGC, (2010) {4 4775 ST




Integrity test results

Permeability measurements
indicate that interfaces are primary
flow pathway.

Lab analysis of cement perm are in
the microD range.

Lowest VIT estimate of effective
perm is 0.1 milliD.
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Field test summary: Ni%RCE
Effective permeability vs cement permeability

Estimated Wellbore Measured Cement
Reported VIT data permeability permeability
CCP 1.7 mD 0.1 — 32 microD
TPX 170 mD 0.1 — 449 microD
CCl1 25 mD 0.001 —4.63 mD
Hypothetical VIT data
CCP upper bound 100 D =
CCP lower bound 001 mD -
Unreported VIT data
3 datasets 6 mD-3D =

Source: Gasda, et al., Energy Procedia 37 (2013); Crow et al., IJGGC, (2010); Duguid et al., Greenhouse Gases: Science and Jechnology (2017)



Surface leakage measurements and °
o] e . 102 L 8088
wellbore permeability estimates
5 10° .
. . . E o 8 o ° 330.8
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o e° o:ogoo
be used to estimate permeability o . oo
10 | oOOO.O b
. * Plugged
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Number of wells Wellbore permeability
British Columbia? 736 10 uD-10mD Cement
Pennsylvania? 42 1 nD -- 100 mD sheath
Central North Sea** 1 100mbD-1D
Cement
® Cubic law for annular aperture plug
® 5um (1mD)to 0.2 mm (100 Darcy)
Tao, Q.; Bryant, S. L. Well permeability estimation and CO2 leakage rates. Int. J. Greenhouse Gas Control 2014, 22, 77-87 Annular spaces Of cased weII

**30proximation by S. Gasda



From parameters to prediction

e Simulation technology can be used to
understand the potential for leakage in
prospective CO, storage regions

e Advances in modeling gives very accurate
simulation of wellbore flow over many wells in
real geological system with multiple strata

e "Elevator effect” with CO2 flow into thief zones
dampens eventual leakage to surface

leakage value [%]

0 200 400 600 800 1000
time [days]

Class et al., Comp Geosci, 2009
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c Wells and Stratigraphy: East-West Cross Section
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Fig. 1. (a) Location of major CO, sources in central Alberta, Canada. (b) Areal view of the Wabamun Lake study area showing all of the 1146 existing wells in the system.
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c Wells and Stratigraphy: East-West Cross Section

Pika

Fika

3000 —<—Basal Sandstone

25 20 15 -10 0 5 10 15
Domaln cross section [km]




U c Wells and Stratigraphy: East-West Cross Section
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Future of P&A offshore

® Preparing for a wave of plug and
abandonment as many platforms are
heading towards decommissioning

e “Restoring the caprock” (rock-to-rock)
® Bring down costs (rigless plugging)

® |Improve plug integrity, examine bridge
plugs and plug length

e Section milling
¢ Shale barriers

® Cut-and-pull operation

Wellhead and

X-mas tree removal
Seabed
7 - Iié
/
Surface plug
o é = - ("environmental barrier")

A
L
%

Primary and secondary
barriers towards potential
flow zones in overburden

Primary and secondary
barriers towards reservoir

Before P&A After P&A

Vrdlstad et al., Plug & abandonment of offshore wells: Ensuring long-term well integrity and cost-efficiency, J. Pet Sci Eng, 2018



Fluid migration modelling & treatment
KPN project in PETROMAKS?2 program 2019

10-m portions of a 30-yr Valhalla well recovered for testing of barrier quality

Cemented sandwich sections, generally good cement bond that agrees with
logs and low gas migration by direct physical testing

Liquid permeabilities in microDarcies. Gas permeability in milliDarcies
Unique opportunity to develop new treatment technologies

Improved understanding of migration paths can guide the choice of remedial
action to establish well integrity, improve SCP management and support the
selection of the right P&A design solution

* Project objectives:
e Realistic micro-annuli and crack geometries

* Fluid migration analysis and placement of treatment materials

* Full-scale test assemblies for qualification of treatment technologies

P&A Innovation Program: Guillermo et al., SPE-199609-MS (2020); Skadsem et al. SPE-199662-MS (2020)



The future for P&A and CO, storage Ni %R CE

Wells will most likely leak, many wells already do.

Leakage from legacy wells may not be problematic from a climate or
environmental perspective

Monitoring requirements will require assurance that all leakage is detected

Need for clear regulations for P&A requirements within context of large-scale
CO2 storage deployment



The future for P&A and CO, storage Ni%

® Discussion points

How to ensure Plug and Abandonment is good enough for long-term CO, storage?

Should all leaks be stopped? Or even can a leak be stopped?

Is it good enough to monitor for crediting or offsetting the leaked CO, another way?

Can we build confidence by demonstrating successful remediation on leaky wells (biogehic

gas)?



Thank you for your attention!

SARAH GASDA

® sarah.gasda@norce.research.no
&8 https://www.norceresearch.no/en/research-theme/ccus
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