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Abstract 

 

The Value of Stratigraphic Well Data for a Geological Carbon Storage 

Project 

 

Sawsan Almalki, M.S. 

The University of Texas at Austin, 2024 

 

Supervisors:  Seyyed Hosseini, Carlos Uroza, and Brahim Hamouche 

 

This study demonstrates the application of Value of Information (VOI) analysis 

during the pre-injection phase of a geological carbon storage (GCS) project in the Frio 

formation, South Texas. VOI analysis serves as a tool to calculate the dollar amount it 

should be paid for a test to reduce geological uncertainty given a test accuracy. This 

research integrates 3D seismic data, legacy well information, and geological insights from 

nearby fields. The workflow includes: (a) seismic interpretation for structural modeling, 

(b) well-log correlation to define stratigraphy, (c) petrophysical analysis to create a static 

model, and (d) dynamic simulations to predict CO₂ plume behavior, pressure front 

movement, storage capacity, and the area of review (AoR) definition. Geological 

uncertainties were identified to mitigate technical and financial risks, thereby reducing 

liability. The primary uncertainty in this analysis stems from data scarcity within the Area 

of Interest (AoI). To address this, multiple models with varying heterogeneity and porosity 

were developed for VOI assessment, storage capacity estimation, and business feasibility 

analysis for a Direct Air Capture (DAC) project. The research investigates the likelihood 

for the formation storing more than 1 MtCO₂ within the AoI and assesses the value of 



drilling a stratigraphic well to reduce geological uncertainties. Based on this analysis and 

assuming a test accuracy of 100%, $4.86 million is the maximum amount the operator 

should pay for drilling a stratigraphic well. Although assuming a 100% accuracy may be 

idealistic, it provides a clear benchmark for capping the maximum amount it should be paid 

for any given test. Additionally, the study examines the impact of test accuracy variations, 

concluding that tests with an accuracy higher than 80% add value to the decision-making 

process. This research fills a critical gap in the current understanding of VOI in GCS 

studies, particularly concerning stratigraphic well data. Although the VOI analysis is 

specific to the site and time frame studied, it establishes a VOI framework that can be 

applied to decision-making in other CO₂ storage projects. 
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Chapter 1:  Introduction  

1.1 PREVIOUS WORK 

Carbon capture and storage (CCS) technologies have advanced significantly, 

especially as the pressure to reduce carbon emissions intensifies. There is an increasing 

demand for effective and cost-efficient CO₂ sequestration solutions that enable companies 

to achieve their emission targets (DePaolo et al., 2013). However, challenges remain in 

identifying suitable and safe geologic sites, particularly concerning storage capacity and 

risk assessment. 

In the last years, considerable attention has been focused on the use of Value of 

Information (VOI) framework for reducing uncertainties and optimizing decision-making 

in geological and carbon storage projects (add references).  

Eidsvik et al. (2015) highlighted the integration of VOI analysis with spatial 

modeling, demonstrating its relevance in domains like geology and environmental systems. 

Similarly, Puerta-Ortega et al. (2013) applied VOI-based methodologies to evaluate the 

value of permeability data in a CCS project, illustrating how reduced uncertainty can 

improve subsurface characterization and project outcomes. Sato (2011) explored VOI 

applications for monitoring CO2 storage, emphasizing how advancements in information 

accuracy can directly influence decision quality.  

Elvaretta (2021) investigated VOI in CO2 sequestration projects by combining 

Monte Carlo simulations with regression techniques to assess decisions under reservoir 

uncertainties, focusing on maximizing storage efficiency and minimizing risks like 

leakage. Bratvold et al. (2009) and Bickel (2015) underscored the need to contextualize 

VOI within specific decision frameworks to ensure effective resource allocation.  

Additionally, Allen et al. (2018) examined the influence of geological uncertainties, 

such as porosity and fault transmissibility on CO2 storage capacities in saline aquifers.  



All in all, Geological Carbon Storage (GCS) projects involve significant 

uncertainties regarding subsurface characteristics and the behavior of CO2 once injected. 

VOI method has been a critical framework for decision analysis in complex projects 

mentioned above with significant uncertainties.  

1.2 CARBON CAPTURE AND STORAGE  

Carbon capture and sequestration is a “reliable and affordable” technology to 

mitigate climate change (IPCC et al., 2023). The Gulf Coast Carbon Center (GCCC) is a 

global leader in research that develops technologies for effectively monitoring CO2 in the 

subsurface, as well as understanding the ideal subsurface conditions for CO2 storage. Some 

of GCCC's studies have focused on estimating storage capacity and other critical factors to 

secure the injected CO2 and prevent its release into the atmosphere and oceans. 

CCS is an option to reduce emissions from large-scale fossil-fuels energy and other 

industry sources, provided geological storage is available. It involves capturing CO2 from 

industrial sources or directly from the atmosphere using DAC (IPCC et al., 2023). CO2 

capture and subsurface injection is a mature technology for gas processing and enhanced 

oil recovery. However, CCS is less mature in the power generation sector, as well as in 

cement and chemicals production, where it is a critical mitigation option (IPCC et al., 

2023). The technical geological storage capacity is estimated to be around 1000 GtCO2, 

which exceeds the CO2 storage requirements through 2100 to limit global warming to 

1.5°C (IPCC et al., 2023). Regional availability of geological storage could be a limiting 

factor. On the other hand, the US has significant geological storage capacity, estimated 

between 3,000 to 8,600 GtCO2, suggesting storage capacity is unlikely to be a limiting 

factor. However, economic potential might be lower (Dual Challenge, 2021). Properly 



selected and managed geological storage sites are estimated to permanently isolate CO2 

from the atmosphere (IPCC et al., 2023).  

Generally, effective CO2 storage requires robust regulatory frameworks, public support, 

and technological advancements to address challenges like induced seismicity, injectivity, 

and long-term monitoring.  

1.3 VALUE OF INFORMATION  

1.3.1 Value of Information (VOI) 

The concept of Value of Information (VOI) in decision analysis evaluates the 

benefits of acquiring additional information before making a decision. It helps to 

distinguish between useful and necessary information gathering by assessing whether the 

new information will likely change the decision that would be made without it (Bratvold 

et al., 2009). VOI assigns values based on how much information improves decision 

making, rather than simply reducing uncertainty or boosting confidence (Bratvold et al., 

2009). VOI analysis involves specifying potential information-gathering activities, 

quantifying the accuracy of this information, modeling decisions influenced by the 

information, and finally determining whether the improvement in decision-making justifies 

the cost of obtaining the information (Bickel, 2015).  

For an information-gathering activity to add value, it must meet these four criteria (Howard 

& Matheson, 2005): 

• Observable: The results must be measurable 

• Relevant: The results must influence the understanding of the decision at hand 

• Material: The information must have the potential to change decisions 

• Economic: The value gained must exceed the cost of obtaining the information 



The VOI for a specific uncertainty x and a decision a is defined as the amount at 

which a decision maker is equally satisfied with either obtaining the information or making 

the decision based on the current information alone (Eidsvik, 2015). In other words, VOI 

represents the maximum price the decision maker is willing to pay for the information, 

reflecting their personal preferences (Eidsvik, 2015) . At this price, the decision maker does 

not prefer having the information over not having it, and vice versa. Consequently, any 

price below this threshold would be acceptable, making VOI the highest amount the 

decision maker should consider investing in acquiring the information (Eidsvik, 2015) 

1.3.2 Value of Perfect Information (VOPI) 

 Now suppose the decision maker can know for certain the information is always 

correct. Assuming the decision maker is risk-neutral, the VOI is computed as the difference 

between expected value with additional information and expected value without 

information (Bratvold et al., 2009) or: 

 

𝑉𝑂𝐼 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ 𝑎𝑑𝑑𝑖𝑡𝑜𝑛𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

− 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  

 

1.3.3 Value of Imperfect information (VOII) 

In real world situations, the information obtained is imperfect but still helps the 

decision maker to know how valuable the information gathering is. Assume that the 

decision maker can conduct a test to observe the uncertainty with an accuracy less than 

100%. Now, the probability of each of the outcomes can be updated based on the test results 

using Bayes’ theorem  

𝑝(𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥)  



Also, the posterior probabilities for each outcome (x) given the different test result of (y) 

are calculated.  

𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
 

1.4 GEOLOGIC SETTING 

The Oligocene Frio Formation, a significant oil and gas reservoir in the South Texas 

Gulf Coast, has produced an estimated 70 trillion cubic feet of gas and 8 billion barrels of 

oil (Bonnaffé et al., 2008). Understanding the Oligocene Frio Formation, its sequence 

stratigraphy framework, structural setting, depositional environments, and reservoir quality 

is essential for efficient CO2 storage site evaluation and management. 

 

1.4.1 Regional understanding of the Frio Formation  

The Frio deposode constitutes one of the important episodes in the depositional 

history of the Gulf of Mexico (Snedden & Galloway, 2019). An important sediment influx 

and margin accretion occurred during the Frio deposode (Figure 1). Structurally, 

contemporaneous growth faults developed parallel to the shelf margin and syndepositional 

movement resulted in sediment thickening on the downthrown side of the faults (Figure 2). 

The Oligocene Frio structure along the Texas Gulf Coast developed in response to third-

order sea-level falls where coarser-grained sediments were shed from the exposed shelf 

and differentially loaded the slope, thus triggering down to the basin growth-faults (Brown 

et al., 2004).    

Extensive Frio research has been done in the Corpus Christi area (South Texas), 

which is about 130 km away from our storage site(Bonnaffé et al., 2008; Brown et al., 

2004; Hammes et al., 2006). For instance, Bonnaffé et al. (2008), divided the Frio 

Formation in Corpus Christi area into six third-order sequences, each comprising basin-



floor and slope-fan deposits, along with a prograding wedge deposited during third-order 

sea-level lowstands (Bonnaffé et al., 2008). Growth faulting was important in the area and 

significantly influenced sediment distribution and stratigraphy (i.e., Figure 3).  

 

 

Figure 1: Northern Gulf (US) margin deposodes, sediment influx, calculated as total grain 

volume, and continental margin accretion rates 

 

Figure 2: NW-SE cross section of Texas Gulf Coast basin, showing basin-margin faults 

(modified from Ewing, 1991) 



 

Figure 3: Diagrammatic dip cross section showing formation of successive growth-

faulted subbasins (Corpus Christi, Texas). Each subbasin is filled with 

genetically similar but diachronous depositional systems (from Brown et al, 

2004) 

1.4.2 Depositional setting 

During the Oligocene, massive sediment influx from sources in Mexico and the 

southwestern United States occurred as a result of uplift and erosion that started in Mexico 

and migrated along the western margin of the Gulf Coast basin (Galloway and others, 1982, 

2000). Explosive volcanism and caldera formation in Mexico combined with regional 

uplift to create an influx of recycled sedimentary rocks, volcaniclastics, and reworked ash 

into the western and central Gulf of Mexico (Galloway, 1977). 

Multiple large, bedload-rich rivers delivered sediment to the northwest and central 

Gulf, focusing into four major fluvial–deltaic axes (Figure 4). These include the 

Mississippi, Houston, Rio Grande, and Rio Bravo. Together, these rivers constructed a 

robust, highly progradational continental margin that buried the basal Oligocene Vicksburg 

fault zone and advanced the shelf edge 95–145 km (60–90 miles) basinward of its Eocene 

position. Rapid accumulation triggered a succession of arcuate growth faults (the Frio 

growth fault belt) that advanced basinward in tandem with shelf edge progradation, greatly 

expanding upper slope and shelf-margin delta facies(Snedden & Galloway, 2019). The Rio 



Grande and Rio Bravo converged to supply a single composite depocenter. Downdip, the 

deltas of the Rio Bravo and Rio Grande fluvial systems merged to form the composite, 

sand-rich, wave-dominated Reynosa–Norias system, which bridges the Burgos basin in 

Tamaulipas and Rio Grande Embayment of south Texas (Figure 5). Our storage site sits 

within the Rio Grande embayment. 

More details on the stratigraphy and depositional setting of the storage site are 

provided in Chapter 2 of this thesis.  



 

Figure 4: Paleogeographic map of the Oligocene Frio deposode. Depositional system 

outlines and shelf edge reflect their positions at maximum progradation. 

Arrows point to the four major fluvial–deltaic axes: Mississippi, Houston, 

Rio Grande, and Rio Bravo.  (GBDS, 2019) 



 

Figure 5: Main sediment sources, basins and uplift, and depositional systems in the 

northern Gulf of Mexico during the late Oligocene (modified from 

Galloway and others, 2000). The Rio Grande embayment includes the area 

of interest. 

1.4.3 Reservoir Quality 

The reservoir quality of the Frio Formation in the Texas Gulf Coast varies 

significantly due to several regional factors, including mineral composition, geothermal 

gradient, and diagenetic processes. These factors contribute to the variability in porosity 

and permeability, which are crucial for determining the reservoir's ability to store CO2.  

Frio sandstones are mineralogically diverse (Galloway 1977; Loucks et al. 1984). 

A strong west-to-east decrease in abundance of volcanic grains and plagioclase feldspar 

(and commensurate increase in quartz) parallels the increasing distance between river 

drainage axes and the Oligocene volcanic uplands. 

Frio sandstones are poorly sorted, fine-grained, feldspathic litharenites to lithic 

arkoses along the lower Texas Gulf Coast (South Texas) to poorly sorted, fine-grained, 



quartzose lithic arkoses to subarkoses along the upper Texas Gulf Coast. Volcanic and 

carbonate rock fragments are common in the lower Texas Gulf Coast and decrease in 

abundance up the coast (Loucks et al. 1984). Volcanic and carbonate rock fragments are 

common in the lower Texas Gulf Coast and decrease in abundance up the coast. Frio 

sandstones show a systematic improvement in reservoir quality from the lower to the upper 

Texas Gulf Coast that is related to grain composition and geothermal gradient (Figure 6) 

(Loucks et al. 1984). 



 

Figure 6: Map displaying potential for high-quality, deep reservoirs (>3350 m, 11,000 ft) 

in Lower Tertiary strata along the Texas Gulf Coast. Good indicates 

permeability values commonly greater than 20 mD. Marginal indicates 

permeability values generally less than a md (from Loucks et al. 1984) 

1.5 STUDY AREA AND DATASET  

We chose this area in a field in South Texas to study the potential of a GCS site. 

The dataset consists of existing 14 wells with logs such as gamma ray, spontaneous 



potential, density and sonic, (Table 1). These wells are located in the periphery of the area 

of interest. In addition, the dataset consists of 3D seismic cube where seismic horizons and 

faults were interpreted. The details will be explained in the next chapters. Most of these 

wells are wildcats and plugged and abandoned (P&A). These wells are more than 3000 and 

up to 50,000 ft apart from each other in the N-S direction. 

 

Table 1: Dataset of the study area 

 

 

1.6 RESEARCH RELEVANCE 

Geological carbon storage (GCS) projects in the United States are regulated by the 

Environmental Protection Agency (EPA) under the Safe Drinking Water Act, which sets 

standards to protect Underground Sources of Drinking Water (USDW). The EPA's 

"Geologic Sequestration of Carbon Dioxide: Underground Injection Control (UIC) 

Program Class VI Well Site Characterization Guidance" (2013) emphasizes the importance 

of comprehensive site characterization for Class VI wells, typically involving drilling 

stratigraphic wells within the project area. However, the decision to drill such wells is site-

specific and left to the discretion of the permit applicant. Consequently, uncertainties 

persist regarding the value of investing in stratigraphic wells or other data acquisition 

methods to mitigate storage capacity risks. 

Conceptual Input Data 

Area of Interest 3D Seismic cube

Structure position Legacy wells

Geometry Well Tops

Lithology Seismic horizons 

Faults

Well logs (GR, SP, DT, RHOB, RD..)



Significant research has been conducted on carbon capture and storage (CCS) 

operations, including models that inform decision-making for GCS projects (Hosseini et 

al., 2024). While previous studies on the VOI primarily focus on monitoring technologies, 

there is a gap in understanding the value of stratigraphic well data in addressing geological 

uncertainties such as reservoir quality and sand continuity. This research aims to fill that 

gap by applying VOI analysis to stratigraphic well data during the pre-injection stage of a 

GCS project. 

Our study examines a potential GCS site in South Texas, USA, characterized by 

limited data and low reservoir quality. Available information comes from legacy wells 

located on the periphery of the area of interest (AoI). The primary challenges include 

faulting, low reservoir quality, and the absence of wells at the preferred site location. The 

most significant geological risk is reservoir quality, which affects injectivity and, 

consequently, total storage capacity. 

Determining whether to drill stratigraphic wells based on current information is a 

critical decision, especially considering the site's low reservoir quality that may limit CO₂ 

storage volumes. Although this site may primarily interest a Direct Air Capture (DAC) 

project due to lower volume requirements. However, even a DAC operator needs assurance 

that the formation can store the captured volume within a given timeframe. 

1.7 RESEARCH GOALS 

The goal of this study is to develop a strategic framework for CO₂ sequestration 

that assists operators in making informed, cost-effective decisions during pre-injection 

planning. By utilizing the VOI framework, we aim to quantify the financial value of 

reducing storage capacity uncertainty through additional data acquisition, specifically by 

drilling stratigraphic wells. 



We will apply the VOI methodology to determine the "buying price" (Bratvold et 

al., 2009) for drilling stratigraphic wells—the maximum amount a DAC operator should 

be willing to invest. Any cost exceeding this value would not justify the investment, as it 

would not provide sufficient value relative to the incurred expenses. 

This research involves evaluating CO₂ plume migration and pressure build-up in a 

complex structural setting with high depositional facies variability. By simulating injection 

in an area with low structural gradient and complex depositional facies, we can assess the 

impact of geological uncertainties on storage capacity. 

By extending VOI analysis to include stratigraphic well data and focusing on 

geological uncertainties, this study contributes to improved decision-making in GCS 

projects, particularly during the pre-injection stage. 

1.8 PROJECT WORKFLOW  

The research is structure as follows: it begins with an overview of the potential 

storage site and an assessment of available datasets (Chapter 2: Reservoir 

Characterization). Geological and geophysical data from a site in South Texas, including 

raw data and previous interpretations, were cleaned and quality-checked before static 

model building. 

In Chapter 3: 3D Geocellular Modeling for the Upper Frio Zone, using well logs, 

seismic horizons, and faults within the zone of interest was conducted. Structural 

interpretation in time was followed by time-depth conversion. Facies analysis identified 

sand trends based on well logs and seismic facies. A 3D geological model (static model) 

was built to generate porosity and permeability models, with petrophysical analysis 

determining key reservoir parameters. 



The static model served as the foundation for simulation studies in Chapter 4: CO₂ 

Storage Capacity Analysis. CO₂ plume simulations modeled plume behavior and pressure 

front extent to delineate the Area of Review (AoR), assessing storage capacity and the 

reservoir's dynamic response to CO₂ injection. 

In Chapter 5: Value of Information, economic modeling and VOI analysis 

evaluated the benefits of drilling stratigraphic wells to reduce pre-injection uncertainties. 

This analysis determined the maximum justified investment in additional data acquisition 

methods to mitigate geological risks. 

The study concludes with a discussion of findings and future work in Chapter 6, 

followed by conclusions and recommendations in Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Reservoir Characterization of the Storage Site  

2.1 INTRODUCTION  

The storage site is located in South Texas, USA, within the paleo Rio Grande 

embayment. Due to a confidentiality agreement with the landowner, the exact location of 

the site cannot be released. However, the evaluation with real data is provided in this thesis 

report. The storage site sits within a total area of 10 miles (52,435 ft) by 9 miles (42,700 

ft) as shown in Figure 7. The subsurface characterization was performed on the Frio 

formation, which poses a challenging reservoir quality due to its volcanic content’s nature.  

The initial plan was to characterize the full-storage window (about 3000 to 4200 ft) 

including running amplitude analysis in Paleoscan on several seismic horizons in the 

model. However, this analysis is still not conclusive due to the amount of noise in the 

seismic. The full storage section (Figure 8) was originally considered to provide an 

overview of the total storage capacity of the site. Due to time constraints, only one zone 

was targeted for detailed evaluation, that is the interval between Frio Top and Frio FS1 

marker (called Upper Frio zone) (see Figure 8). This research focuses on the Upper Frio 

zone, so a feasibility study for a GCS site would have some limitations since it does not 

consider the total section for storage. The project may not be economic for the Upper Frio 

zone itself, but it could be economic if we consider the full stratigraphy available for CO2 

storage. This will be discussed in the VOI section of the thesis. 



 

Figure 7: Size of the area in USft (~56,000 ft by 50,670 ft) about an area of 232 km2 

 



 

Figure 8: Well-log correlation in the AOI, showing the total storage section (Frio Top-

Frio FS7 marker) and the targeted section (Frio Top-Frio FS1 marker). The 

correlation line shown on the map 

2.1.1 Data cleaning and readiness 

We received actual data for the research study. A lot of data cleaning was needed 

to pursue the research workflow. A project in Petrel was received with field data (logs, 

seismic interpretations, and a structure model- all in time domain). I managed along with 

my supervisors and a geophysicist from the land owner to narrow and tailor the project 

area to our needs. In the case of the well log data, the spontaneous potential (SP) and 

Gamma Ray (GR) logs were quality checked by plotting all GR logs and SP from the 

interest zone (Upper Frio) in a histogram window (Figure 9). Since all wells with the 

specific GR or SP are laying on top of each other, then these logs are fairly consistent and 



good to go for stratigraphy and petrophysics analysis. Only one well was set for 

normalization, adding a calibration of 40 mV. 
 

 

Figure 9: The SP and GR logs of the wells show normalization within the zone of interest 

(Upper Frio Zone). The SP logs are denser due to the higher number of 

wells with SP than the GR log. We ignore the outliers in the SP log, limiting 

the scale between 0 to -1 

 

Basic well-log analysis is crucial to build a robust model. Later in this chapter, a framework 

of which petrophysical well-log curves were calculated to feed into the model would be 

discussed. There are 14 wells with limited well log data; twelve out of them have SP log, 

four with GR; three with sonic (DT), and two wells with bulk density log (RHOB) (see 

Table 2). The SP is scaled from 0 to -100 mV, and GR from 0 to 150 API, following the 

standard practice. There are three key wells with SP, GR, RHOB, and DT logs.  

 

 

 



Table 2: Available well logs 

 

For standardization purposes, wells were grouped with my own naming convention, 

which is the reason for a “_SM” suffix attached to each log (see Table 2). Despite the 

availability of multiple log curves, the ones used in the petrophysical analysis were the SP, 

GR, sonic and bulk density.  

2.2 STRUCTURAL FRAMEWORK  

2.2.1 3D Seismic Interpretation: Horizon mapping  

The targeted seismic horizons are Top Frio and Frio FS1, which are the top and 

base of the Upper Frio zone. The average thickness of the zone is 500 ft. In the initial stage 

of the study, the base of the storage section (Frio FS7 marker) was reinterpreted from a 

seismic horizon provided by the data owner. The base of the Frio storage section (Frio 

FS7), in the area of interest, is about 2900 to 4200 ft from the Frio Top as shown in Figure 

10. The Frio formation in the area of interest is thick but we chose to limit the interval of 

interest to the Upper Frio zone, for the purpose of this thesis project, since it would require 

more structural interpretation and modeling that is beyond the timeline and scope of this 

research. Figure 10 shows a seismic line and a well with a check-shot that was used for 

calibration of seismic horizons vs. well picks. Figure 11 shows the seismic surfaces of 

Well log Total Number Log name

SP_SM 12 Spontaneous potential

RD_SM 12 Deep Resisitivity

RS_SM 12 Shallow resistivity

GR_SM 4 Gamma Ray

DT_SM 3 Sonic

CALI_SM 3 Caliper

RHOB_SM 2 Bulk Density

RM_SM 1 Medium Resisitivity

NPHI_SM 1 Neutron Porosity

DRHO_SM 1 Density



interest for this research, on a Inline and Xline intersection with the depth grids intersecting 

wells A and B. The depth grids were used as inputs for 3D modeling.  

 

 

 

Figure 10: Seismic interpretation of Top Frio to base of Frio storage section (i.e., FS7) 



 
 

Figure 11: QC visualization - The displayed surfaces on the Inline and Xline seismic are 

the depth grids intersecting the well tops at wells A and B.  

2.2.2 Main Faults and Faults that intercept the Upper Frio zone 

There is a total of 37 faults cutting both horizons, the Top Frio and Frio FS1. A number of 

faults were received from the data owner and others were interpreted at GCCC, as part of 

the data readiness and quality check process. These faults were picked on the 3D seismic 

volume (Figure 12). After cleaning and adjusting the faults, the new total number came 

down to 35 (Figure 13). The 3D fault modeling was an important process as the faults are 

all included in the AOI for geomodelling with Petrel software. It is crucial to account for 

the major and minor faults, especially when modeling the extent of the CO2 plume and 



pressure build up, and the leakage potential of these faults in the AOI. The faults could 

either act as sealing features or leakage pathways. In this research we ignore the conditions 

of these fault pathways and we considered the faults in the model as volume modifier (refer 

to Chapter 4 for the details of CO2 plume modeling and pressure build up).



 

Figure 12: Seismic Inline with some of the faults in AOI. The target zone between pink and green horizons (Top Frio – FS1), 

the red arrow indicates the total storage section.  



 

 

Figure 13: Map view of the faults with the wells' location 

 

 

 

 

 

 



2.2.3 Time-Depth Conversion 

The inherited original project was in the time domain. For a standard 3D 

geomodelling workflow, the domain must be in depth.  

There are multiple velocity methods and models in Petrel for the Advanced Velocity 

Models. For this project, the velocity method used for defining the velocity input is 

dependent upon the velocity model that has been used. The surfaces (Top Frio and FS1) 

cover the whole area of the velocity zone. The value is estimated using the time-depth 

relationship (TDR) through the zone for each well and interpolated to give a surface 

describing the variation of the value across the model (see Appendix A). Then the data in 

the correction column, which are the Top Frio and Frio FS1 depth surfaces, are used to 

define the value. Figure 14 is displaying one of the surfaces, i.e. Top Frio depth surface 

(the well picks are tied to the surface). Petrel finds the value at the location of each of the 

correction points so that the resulting conversion will match the correction point. The 

values are interpolated to give a surface describing the variation of the value across the 

model. Now, the zone in the velocity model must have a definition of the velocities within 

that zone. The velocity model used is V=Vo=Vint, the value of Vo is a surface defining the 

value at each XY location.  



 

Figure 14: Frio Top structure map tied with its correspondent well pick as the input data 

in the correction column to define the value in the velocity model  

Both resulted depth surfaces (Top Frio and FS1) are very similar and consistent to the time 

surfaces (Figure 15), so the velocity model created is acceptable for converting more time 

surfaces to depth. Any input in the time domain can be depth converted in the software. 



 

Figure 15: Map in time vs depth of the Top Frio, showing consistency following time-

depth conversion process
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2.3 STRATIGRAPHIC AND DEPOSITIONAL FRAMEWORK  

2.3.1 Well Log Correlation 

A key well was used to pick the Top Frio horizon on 3D seismic due to the 

availability of the Paleo data. We did not receive a synthetic seismogram for an appropriate 

seismic-well tie. The seismic horizons were previously interpreted from migrated 2D and 

3D seismic surveys along with check shots in the area. The target injection interval is the 

Upper Frio zone, the stratigraphic uppermost interval of the Frio storage section (Figure 

16). The reservoir units were picked based on well log correlation. The total 2900 to 4200 

ft Frio storage section is defined from the Frio Top to the Frio FS7 marker (Figure 17). But 

we limited the detailed evaluation to the 500ft from Frio Top to Frio FS1. 
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Figure 16: Well cross-section showing the main three key wells - the highlighted zone is the Upper Frio Zone, the target 

injection interval. The datum is the Anahuac shale. 
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Figure 17: Stratigraphic cross-section of the Frio formation in the AOI, showing the multiple reservoir units. We are only 

focusing on the Upper Frio interval as the target injection interval for this study. Wells in cross-section contain 

the most complete suite of log curves
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2.4 RESERVOIR QUALITY ANALYSIS 

For the petrophysical analysis of this section, a workflow involving three main 

cases with a total of 21 realizations, was performed. Each case examines how porosity and 

variogram ranges affect storage estimates to account for the VOI analysis. Variogram 

estimates due to the scarcity of the data in the area, particularly the nugget and sill, 

determine spatial correlation and model variance The vertical variogram was based on the 

well log trend, and the horizonal (lateral spatial correlation) variogram ranges were 

estimated theoretically based on the current knowledge of the formation and nearby filed. 

The process is a blind testing method to have a base case by removing two wells out of the 

three key wells. Then building a second-generation model by adding the second well out 

of the 3 key reference wells; then building a third-generation model by adding the third 

well from the group of key wells. The objective is to evaluate and study the uncertainty 

ranges by evaluating and documenting any changes in the storage capacity estimations 

when running the dynamic simulations in chapter 4. The analysis is as follows:  

Definitions: 

1. Key wells  

There are only three wells out of the fourteen available legacy wells with computed 

porosity log from sonic or density curves  

2. Base case 

Model with 12 existing wells only.  

3. Bplus (B+) 

Adding one well to the base case model totaling 13 wells with a new porosity 

relationship 

4. Bplus plus (B++) 
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Adding one more well to the B+ model totaling 14 wells with a new porosity 

relationship  

 

2.4.1 Petrophysical Interpretation  

In petrophysics, volume of clay (Vclay) is the fraction of a rock volume occupied 

by clay minerals. It is an important parameter used to determine the amount of clay present 

in the formation, which directly impact porosity, permeability, and fluid saturation (Moore 

et al., 2011).  Knowing that not all wells have the measured log density (RHOB) and sonic 

(DT) logs to compute porosity from, and due to lack of core data, I used the measured logs 

GR and SP to calculate the Vclay (1)&(2) at each well suggesting well-log curves (Vclay 

and PHIE) (Satti et al., 2024). I set the Vclay based on the low (minimum) and high 

(maximum) readings of the logs at each well to set a cutoff for reservoir and non-reservoir.  

 

𝑉𝑐𝑙𝑎𝑦 =  
𝑆𝑃𝑐𝑙𝑒𝑎𝑛− 𝑆𝑃𝑙𝑜𝑔

𝑆𝑃𝑐𝑙𝑒𝑎𝑛− 𝑆𝑃𝑠ℎ𝑎𝑙𝑒
                (1) 

Where; 𝑉𝑐𝑙𝑎𝑦 is the volume of clay, 𝑆𝑃𝑐𝑙𝑒𝑎𝑛 is the SP reading in a clean sand (maximum 

deflection), 𝑆𝑃𝑙𝑜𝑔 is the SP reading at the depth of interest, and 𝑆𝑃𝑠ℎ𝑎𝑙𝑒 is the SP reading 

in a pure shale (SP log baseline)  

Estimating Vclay using the SP log has several limitations; the SP log is less sensitive to 

clay content than the gamma ray log, potentially leading to less accurate 𝑉𝑐𝑙𝑎𝑦 estimates 

(Rider, 1996).  

  

𝑉𝑐𝑙𝑎𝑦 = 𝐺𝑅𝐼 =  
𝐺𝑅𝑙𝑜𝑔− 𝐺𝑅𝑚𝑖𝑛

𝐺𝑅𝑚𝑎𝑥− 𝐺𝑅𝑚𝑖𝑛
              (2) 

Where; 𝐺𝑅𝐼 is the Gamma Ray Index, 𝐺𝑅𝑙𝑜𝑔 is the GR reading at the depth of interest, 

𝐺𝑅𝑚𝑖𝑛 is the GR reading in clean sand (minimum value), and 𝐺𝑅𝑚𝑎𝑥 is the GR reading in 

pure shale (maximum value) (Kukal & Hill, 1986) 
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This method of 𝑉𝑐𝑙𝑎𝑦 is the simplest approach and could potentially overestimate the clay 

content in the reservoir. For the purpose of this study, Equations (1) and (2) were used due 

to limitations mentioned earlier (lack of core data to calibrate, scarcity of the datapoints). 

The GR log may not always clearly differentiate between sands and shales, especially if 

there are radioactive minerals present in clean sands (Piava et al., 2019). Many assumptions 

fall under using 𝐺𝑅𝐼 directly as 𝑉𝑐𝑙𝑎𝑦, it assumes a linear relationship between GR 

readings and clay content. This assumption is often an oversimplification of the actual 

relationship (Bhuyan & Passey, 1994; Piava et al., 2019). In this reservoir, we are 

considering non-reservoir as both silt and shale potentially resulting in a higher clay 

content, and sand as reservoir. In addition, GR does not account for the presence of non-

clay minerals in shales. Shales typically contain only 50-70% clay minerals, with the rest 

being silt-seized quartz, feldspars, and other minerals (Bhuyan & Passey, 1994).  

I calculated the petrophysical log curve PHIE from total porosity (PHIT), as PHIT 

represents the total amount of pore space within a rock, including all voids, both connected 

and nonconnected that do not contribute to flow. Therefore, PHIE is more relevant and 

representative as it represents only “the interconnected pore space” (Bear, 1979) that 

contribute to fluid flow through the formation. I then computed 𝑃𝐻𝐼𝐸  using Equation (5) 

at well level and applied to all unsampled wells that will be discussed in the following 

segment.  

2.4.2 Porosity Analysis  

Three main (key) wells have either sonic or density logs that we could compute 

porosity from. No neutron porosity curves were available from any of these wells. These 

three key wells are located in the periphery of the AOI (Figure 18). Although all three key 

wells have sonic log, the sonic is not as precise as the density. The sonic is a signal that 

travels through the different matrixes without differentiating them. Density log measures 
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the bulk density of the rock, which directly correlates to porosity. Density porosity has a 

more direct relationship to the rock matrix and pore fluid densities, leading to higher 

confidence in its result when matrix density is well known. Sonic porosity is highly 

sensitive to the type of fluids present in the formation, such as gas, oil, or water. Gas, in 

particular, causes significant drop in acoustic velocity. Often leading to an overestimated 

porosity. To account for this, we applied uncertainty to the porosity with a margin of error. 

The density log, however, is generally less sensitive to the type of pore fluid. Sonic logs 

are affected by the degree of compaction and cementation of the formation. The velocity 

of sound through rock can be influenced by rock compaction, particularly in deeper 

formation leading to inaccuracy in porosity estimates. Density logs are less influenced by 

these factors, resulting in more realistic and confident reflection of the porosity. 

Acknowledging the differences, I still had to compute the petrophysical porosity log curve 

using sonic porosity for the well that only had sonic log lacking density. I used the 

relationship between PHIT and Vclay of the key wells to get PHIE_base, PHIE_B+, and 

PHIE_B++ curves 

From sonic porosity (PHIS): 

 

𝑃𝐻𝐼𝑆 =  
∆𝑡𝑙𝑜𝑔− ∆𝑡𝑚𝑎𝑡

∆𝑡𝑓𝑙− ∆𝑡𝑚𝑎
               (3) 

Where 𝑃𝐻𝐼𝑆 is the sonic porosity, ∆𝑡𝑙𝑜𝑔  is the interval transit time of the formation (from 

the sonic log in (µs/ft), ∆𝑡𝑚𝑎𝑡  is the matrix interval transit time, ∆𝑡𝑓𝑙 is the fluid transit 

time, typically ~189 µs/ft. (Wyllie et al., 1956) 

From the density porosity (PHID):    

 

𝑃𝐻𝐼𝐷 =  
𝑅𝐻𝑂𝑀−𝑅𝐻𝑂𝐵

𝑅𝐻𝑂𝑀−𝑅𝐻𝑂𝐹𝐿
                                    (4)  
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Where 𝑃𝐻𝐼𝐷 is the density porosity, 𝑅𝐻𝑂𝑀  is the matrix density of the rock (g/cm3), 

𝑅𝐻𝑂𝐵  is the bulk density from the density log (g/cm3), 𝑅𝐻𝑂𝐹𝐿  is the fluid density (g/cm3) 

typically 1.0 g/cm3 in water (Peters, 2012) 

 

𝑃𝐻𝐼𝐸 = 𝑃𝐻𝐼𝑇 − 𝑃𝐻𝐼𝑇 × 𝑉𝐶𝑙𝑎𝑦                                                                        (5) 

for all key wells with RHOB or DT log 

Figure 18: Highlighting the three key wells in the AOI where property modeling and VOI 

analysis was focused on 

Since the remaining wells in the project do not have density or sonic logs, we 

computed the porosity from key well-1 by getting the linear relationship between 𝑃𝐻𝐼𝐸 

and 𝑉𝐶𝑙𝑎𝑦 (Figure 19), and applied to the remaining wells. To study the VOI based on the 

current field knowledge. We computed 𝑃𝐻𝐼𝐸𝐵𝑎𝑠𝑒 from the well with sonic porosity only 

(i.e., well-1) and excluded the two other key wells.  

 

1. PHIE Base case Petrophysical Workflow: 

I. Compute key well1 with sonic porosity Equation (3) → 𝑃𝐻𝐼𝑇 

II. Compute 𝑃𝐻𝐼𝐸 at key well-1 

III. Plot 𝑃𝐻𝐼𝐸 vs 𝑉𝐶𝑙𝑎𝑦 

IV. Linear relationship to apply to remaining wells 
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Figure 19: PHIE vs Vclay from key well no.1 to get the linear relationship for PHIE_base 

 In this case, I chose the linear relationship instead of the plots with polynomial 

degree 2 because these will result in negative PHIE if used otherwise. In addition, before 

deciding on using sonic porosity (PHIS) as the petrophysical log for key well-1, I compared 

the density porosity from the two other key wells (PHID) and plot them against their sonic 

log to get a relationship for porosity that can be used at key well-1. The petrophysical log 

response is shown in Figure 20. The PHIS (in blue) when compared to PHID_sonic (in 

blue), it gave a significantly higher porosity by over 100%.  
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Figure 20: Key well-1 displaying sonic porosity (PHIS) compared to PHID_SONIC 

(regression relationship between density porosity and sonic). PHIS was used 

instead for better results 

Again, for VOI analysis, the following workflow was applied for the B+ model by adding 

key well-2 to the base case to evaluate any significant changes in the porosity modeling. 

 

2. PHIE (B+) Petrophysical Workflow: 

V. Compute density porosity for key well-2 with Equation (4) → 𝑃𝐻𝐼𝑇 
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VI. Compute 𝑃𝐻𝐼𝐸 at key well-2 

VII. Plot 𝑃𝐻𝐼𝐸 vs 𝑉𝐶𝑙𝑎𝑦 (Figure 21) 

VIII. Polynomial 2nd deg relationship to apply to remaining wells  

 

 

Figure 21: PHIE_B+ case: PHIE vs Vclay plot from key well no.2 to get the linear 

relationship for PHIE_B+ 

3. PHIE (B++) Petrophysical Workflow: 

IX. Compute density porosity for key well-3 with Equation (4) → 𝑃𝐻𝐼𝑇 

X. Compute 𝑃𝐻𝐼𝐸  at key well-3 

XI. Plot 𝑃𝐻𝐼𝐸 vs 𝑉𝐶𝑙𝑎𝑦 (Figure 22) 

XII. Polynomial 2nd deg relationship to apply to remaining wells  
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Figure 22 – PHIE_B++ case: PHIE vs Vclay from key well- 3 to get the linear 

relationship for PHIE_B++ 

2.4.3 Challenges 

The reservoir quality is the main challenge in this potential GCS site as shown in 

the plots where the porosity is relatively decreasing with new wells added. There are two 

existing wells with neutron porosity (one of them in sandstone matrix); however, I did not 

work on the correction for density porosity (PHID) and neutron porosity (NPHI). This 

correction is generally related to gas effect correction. By applying the correction this 

would affect the porosity even negatively. The porosity (Ø) is equal to the square root of 

the average of the squared values of NPHI (∅𝑁) and density porosity (∅𝐷) (Bhuyan & 

Passey, 1994) (Equation 6) that could result in lower porosity value than density porosity. 

  

∅ =  √∅𝑁
2 + ∅𝐷

2

2
                     (6) 

 



 58 

2.4.4 Permeability Analysis 

The permeability was calculated from a porosity-permeability transform from a 

nearby field in the Frio Formation that we believe represent a similar geological 

characteristics (Equation 7). Other permeability transform functions were tested using a 

different from literature review (McRae et al., 1995) explaining the different rock types 

with their poro-perm relationship as a comparison (see Appendix B). In addition, the 

closest transform is from sidewall core plug from two wells around the AOI but the data 

was highly scattered and uncertain with a coefficient of determination (R2) of 0.27 as seen 

in Figure 23(b), whereas the applied poro-perm for the project is honoring three wells with 

an R2 of 0.41 (Figure 23(a)), therefore it was more realistic to use the transform in Equation 

(7) from the nearby field. 

 

𝑘 = 0.0689𝑒0.2355Ø                      (7) 
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(a) 

 

(b) 

 

 

 

Figure 23: (a) Poro-Perm transform from a nearby field applied in the study (b) Two 

wells outside the AOI with core plug Poro-Perm with a lower R2 (scattered 

and uncertain) that was not used 
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 Chapter 3: 3D Geocellular Modeling for Upper Frio Zone  

3.1 RESERVOIR 3D GEOMODELING 

The static model was built in Petrel software. The structural framework was done 

using Corner Point Gridding workflow to model and QC the faults. The extend of the AOI 

for geomodelling is shown in Figure 24.  

 

 

Figure 24: Boundary polygon indicating the extend of the AOI used for modeling 

Prior to implementing corner point gridding, structural gridding was performed 

using the Structural Framework in Petrel. However, the resulting 50 layers in the Upper 

Frio zone (Top Frio - Frio FS1) within the 3D geomodel consistently exhibited 

discrepancies that prevented the structural model from being effectively utilized for 

property modeling in Petrel. Consequently, the workflow was shifted to corner point 

gridding. Additionally, the Petrel version was updated to the newer version 2023.6 to run 

a Pillar gridding framework for creating the final structural grid. 
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3.1.1 3D Grid and Structural Modeling 

Table 3 summarizes the input for the 3D modeling framework. The 14 available legacy 

wells, the two horizons that were seismically interpreted, and the 35 faults also interpreted 

seismically. Finally, the main input is the measured porosity curves to run simulations for 

the CO2 plume and pressure build up.  

 

Table 3: Summary of input data available for constructing 3D geologic modeling 

 

 

The Upper Frio zone’s average thickness is 500ft. In order to capture 5ft per cell 

the model would have require 100 layers. With these grid parameters and resolution, the 

dynamic model would not be able to handle the data processing. Therefore, it was 

necessary to reduce the number of layers to 50, capturing 10ft thickness per cell instead 

and thereby making the grid coarser. The new grid resolution is shown in Table 4, where 

the new grid cell size is 3,568,000. If we had used the finer grid, the simulation runs would 

take longer than anticipated, and this was beyond the project scope. Also, Figure 25 

displays the faults in one of the surfaces (Top Frio) that were included for 3D 

geomodelling. Figure 26 shows the resulting horizons of the Top Frio and Frio FS1. In 

Data Number of Data Available Data Origin

Horizons 2 Seismic interpretation

Faults 35

Seismic interpretation (All 

interpretted by Carlos and 

Karen)

Wells 14

Lithotype Curve (Vclay) 14 Well log interpretation 

Porosity Curve 14 Well log interpretation 
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these horizon maps, the green to red color range represents shallow depths, and the blue to 

purple range represents deeper depths.  

Table 4: 3D Grid resolution parameters 

 

 

 

Figure 25: Top Frio depth map, showing the 35 faults included in the geologic modeling 

Grid cells (nI x nJ x nK) 320 x 223 x 50

Grid nodes (nI x nJ x nK) 321 x 224 x 51

Total number of grid cells: 3568000

Total number of grid nodes: 3667104

Number of geological horizons: 51

Number of geological layers: 50

Total number of 2D cells: 71360

Total number of 2D nodes: 71904

Total number of defined 2D nodes: 50940

Average Xinc: 200.5390201

Average Yinc: 249.5243029

Average Zinc (along pillar) 11.29844128
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Figure 26: Frio top (above) and FS1 (below) horizons in 3D structure model. The blue 

represents deeper depth and the green up to red color represent shallower 

depth
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3.1.2 Fault modeling  

Fault modeling was crucial for accurately characterizing the subsurface structure, 

which directly impacts the feasibility and safety of geological carbon storage (Dommisse, 

2024). The fault modeling framework applied incorporated key elements including the use 

of 3D seismic data to model the faults and reference horizons. This approach provided a 

reliable basis for fault editing, ensuring that the structural model captured the essential 

elements necessary for evaluating the geological integrity of the storage site.  

A significant amount of quality control (QC) was undertaken in the 3D workflow 

(see Appendix C). The faults had previously been interpreted seismically in time. In the 

structural modeling module of Petrel, the fault framework was originally built under 

structural framework and moved to corner point gridding within the Pillar Gridding. In 

Figure 27, the faults have already been QC’d and adjusted through truncation and merging 

using the Edit Fault Model tool palette in Petrel. A total of four faults were merged into 

two, with selections based on the dominant fault and the dip/orientation of the faults in 

relation to the surrounding faults. The number of faults were truncated to the regional 

master fault in Figure 27. The reasons to follow this process include the following:  

• Improved modeling of the 3D grid and avoidance of discrepancies 

• Ensuring that the workflow in Petrel runs properly by adjusting all faults  
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Figure 27: The 35 faults in the AOI showing the regional growth fault on the west 

Further QC and fault cleaning were necessary as shown in Figure 28, where the fault-

horizon lines were used as input in the “Horizons” to edit the grid in the fault modeling 

process. Finally, Figure 29 is the resulted structural model of the Upper Frio zone shown 

in dark grey.  
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Figure 28: Before and after adjusting the horizon line. Adjustment of the horizon line 

circled in red 
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Figure 29: Target injection zone visualization of the Top Frio - Frio FS1in dark grey. 

This is the structural model under Structural Framework in Petrel (Geospace 

view).
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3.2 PETROPHYSICAL PROPERTY MODELING 

Property modeling is considered an important step in 3D geomodelling. It is carried 

out by filling grid cells with discrete or continuous properties. Detailed facies modelling 

effort was not performed for this project; however, sandstones were separated from 

shales/mudstones at the well level, based on a sand cut-off at GR and SP logs.  

The 3D model was populated with porosity values using GRFS stochastic method, 

a well-known geomodeling technique that effectively honors available data points, 

particularly under conditions of data scarcity. Through a sequential simulation process, 

each location is generated while considering both previously simulated points and actual 

well data. By utilizing this approach, uncertainty is characterized effectively, which is 

crucial when dealing with sparse datasets. Multiple realizations can be produced using this 

method, thereby enhancing the understanding of variability and uncertainty within the 

model.  

 

3.2.1 Well log Upscale and Data Analysis 

 Porosity logs were upscaled using arithmetic method in Petrel. Figure 31 shows the 

input well log and the upscaled porosity, honoring the same response.  
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Figure 30: The resulted upscaled log PHIE_base of the key well- No1 consistent with its 

input well log. The blue log is the PHIT. The datum is flattened in Anahuac 

shale. 

When performing data analysis in Petrel, running a normal score transformation of 

the data before running the GRFS simulation algorithm. Normal score transformation is 

used with caution particularly since the project has limited input data, because the 

distribution of the property is forced to match the distribution of the input exactly (that is, 

both the position and the relative height of the histogram bars). You can see some of the 

results of these histogram later in this section. After the data is normal scored, the 

variograms are set and ran the simulation. In Petrel, when the simulation is complete, the 

data is back-transformed automatically from the normal distribution to the original 

distribution as seen in Figure 32. 
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Figure 31: Normal score transformation performed in Petrel modeling background for 

running stochastic simulation (property modeling). The histogram on the 

right shows the transformed values (standardized to follow a normal 

distribution with a mean of 0 and standard deviation of 1) 

Figure 32 indicates that a value is picked and simulated from the normal 

distribution; the histogram with the transformed values is standardized to follow a normal 

distribution with a mean of 0 and standard deviation of 1. Then after the geostatistical 

algorithm has been run, the picked value is back-transformed to its original distribution.  

After the data had been back-transformed from the data analysis, the vertical 

variogram range was set according to the well logs, and the horizontal (lateral spatial 

correlation) major and minor variogram ranges were theoretically estimated based on the 

current geologic knowledge of the field and by analogy with a nearby field. The values 

were established at 20,000ft for the base case, 15,000ft for the low case, and 25,000 ft for 

the high case, as shown in Tables 5, 6, and 7. The major orientation direction (azimuth 
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angle) was set to the default value of 0°. The same workflow was applied to each case 

following the same completion of the data analysis.  

 

3.2.2 Property (Porosity) Modeling 

Below, the workflow and approach are presented for executing a total of 21 

realizations in the static modeling process. These realizations are used to calculate the 

uncertainty of porosity, based on the standard deviation from the mean and on variogram 

that deviate from the base value.  

Effect of variogram alone:  

I. Upscale 𝑃𝐻𝐼𝐸𝑏𝑎𝑠𝑒  

II. Perform data analysis  

III. Run  𝑃𝐻𝐼𝐸𝑏𝑎𝑠𝑒 porosity model with base variogram from Table 5 

Table 5: Basecase variogram ranges for property modeling 

 

IV. Upscale  𝑃𝐻𝐼𝐸𝐵+ 

V. Perform data analysis  

VI. Run  𝑃𝐻𝐼𝐸𝐵+ porosity model with base variogram ranges from Table 6  

Table 6: B+ variogram ranges for property modeling 

 

VII. Upscale 𝑃𝐻𝐼𝐸𝐵++ 

Basecase/Varigoram Base Low High

Maximum range (ft) 20,000      15,000      25,000      

Minimum range (ft) 20,000      15,000      25,000      

Vertical range (ft) 17 16 18

Bplus/Varigoram Base Low High

Maximum range (ft) 20,000      15,000      25,000      

Minimum range (ft) 20,000      15,000      25,000      

Vertical range (ft) 13 12 14
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VIII. Perform data analysis  

IX. Run 𝑃𝐻𝐼𝐸𝐵++ porosity model with base variogram range from Table 7 

Table 7: B++ variogram ranges for property modeling 

 

1. Effect of porosity alone: 

I. Create PHIE at global well log under the wells folder in Petrel 

𝑃𝐻𝐼𝐸ℎ𝑖𝑔ℎ = 𝑃𝐻𝐼𝐸 + 𝑠𝑡𝑑             (9)  

𝑃𝐻𝐼𝐸𝑙𝑜𝑤 = 𝑃𝐻𝐼𝐸 − 𝑠𝑡𝑑         (10)  

For the std is ±0.08 for basecase, ±0.06 for B+, ±0.05 for B++ according to the 

statistics of the well log input data 

II. Upscale 𝑃𝐻𝐼𝐸ℎ𝑖𝑔ℎ with 12 well for basecase, 13 wells with B+, 14 wells 

with B++ 

III. Perform data analysis and keep same variograms for initial basecase models 

IV. Run the 𝑃𝐻𝐼𝐸ℎ𝑖𝑔ℎ property modeling for PHIE_base, PHIE_B+, and 

PHIE_B++ 

V. Upscale 𝑃𝐻𝐼𝐸𝑙𝑜𝑤 with 12 well for basecase, 13 wells with B+, 14 wells 

with B++ 

I. Perform data analysis and keep same variograms for initial basecase models 

II. Run the 𝑃𝐻𝐼𝐸𝑙𝑜𝑤 property modeling for PHIE_base, PHIE_B+, and 

PHIE_B++ 

2. Effect of combination variogram and porosity together  

I. In each case 𝑷𝑯𝑰𝑬𝒉𝒊𝒈𝒉 

Bplusplus/Varigoram Base Low High

Maximum range (ft) 20,000      15,000      25,000      

Minimum range (ft) 20,000      15,000      25,000      

Vertical range (ft) 16 15 17
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a. Basecase → use variogram from basecase high 

b. B+ → use variogram from B+ high 

c. B++ → use variogram from B++ high 

II. In each case 𝑷𝑯𝑰𝑬𝒍𝒐𝒘 

a. Basecase → use variogram from basecase low 

b. B+ → use variogram from B+ low 

c. B++ → use variogram from B++ low 

The resulted histograms of base case with low and high variogram ranges are 

displayed in Figure 33 as an example, where the property model is in purple, and it is 

honoring and consistent with the upscaled (in green) and input well log (in red) (All other 

18 resulted histograms can be seen in Appendix D). 

 

 

Figure 32: The effective porosity with low and high variogram ranges in the base case 

(Left histogram: base variogram at 20,000 ft, middle: low at 15,000, and 

right: high at 25,000 ft)   
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3.3 UNCERTAINTY ANALYSIS 

To study the reservoir quality and the uncertainty of the property, the previously 

described approach was employed. A very high level of uncertainty was observed, 

stemming from the limited data and the wide well spacing. Consequently, the variogram 

inherently reflects high uncertainty due to the lack of closely spaced data points. It does 

not provide a robust estimate of small-scale variability since the smallest available 

distances (approximately 3000ft) remain quite large. As a result, the variogram model is 

more uncertain, particularly at short distances. In Figure 34, the three key wells are 

displayed alongside the effect porosity mode, which was extracted from 3D property model 

(shown on the far-right log). Well-1 was utilized for the base model, ensuring ethe 

extracted effective porosity honors the input data. In contrast, well-2 and well-3 represent 

total porosity since they were not incorporated into the base modeling.  

 

 

Figure 33: The resulted effective porosity model displayed as an extracted log (in the far 

right for the base case model) from the 3D grid in Petrel. Well-2 and well-3 

are honoring its total porosity instead of PHIE when stochastically modeling 

in 3D property modeling since these two wells were not sampled in the base 

case model. The datum is flattened on Anahuac shale. 
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3.3.1 Results and Discussion 

In the following figures, the effective porosity legend is set to a minimum of 2% 

and a maximum of 32%, reflecting the lowest and highest porosity values obtained from 

all 21 realizations. Red indicated the highest porosity value, while purple represents the 

lowest. All figures follow the same arrangement: the base porosity is displayed on the left, 

the low is in the middle, and the high on the right. Figures 35, 36, & 37 show the effective 

porosity maps for each main case, with varying the variogram ranges illustrating both the 

low and high results relative to the base case (as detailed in Tables 5, 6 & 7). Figures 38, 

39 & 40 present the change in porosity values based on their standard deviation from the 

mean while maintaining the base variogram range at 20,000ft. Figures 41, 42 & 43 display 

the corresponding high porosity and high variogram values, as well as the combined low 

porosity and low variogram values. Additionally, the global seed was to 1342, defining the 

starting point for random number generation in the algorithm to ensuring consistency 

across 21 realizations. (Note: Although there are 27 total realizations in the figures below, 

some are displayed twice for consistency and comparison). For a large well spacing there 

would be limited data points to establish spatial continuity and observe variability between 

wells at short distances. Due to the limited data sampling, which leads to greater 

heterogeneity, the resulted 3D porosity maps do not exhibit any clear trend or pattern 

leading to low quality reservoir.  
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Figure 34: PHIE_basecase with variogram range (base at 20,000ft, low at 15,000ft and 

high at 25,000ft respectively)  

 

Figure 35:PHIE_ B+ with variogram range (base at 20,000ft, low at 15,000ft and high at 

25,000ft respectively)  



 77 

 

Figure 36: PHIE_B++ with variogram range (base at 20,000ft, low at 15,000ft and high at 

25,000ft respectively)  

 

Figure 37: PHIE_basecase with low and high porosity respectively based on +/- 0.08 std 

from the mean with the same base variogram at 20,000 ft 
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Figure 38: PHIE_B+ with low and high porosity value based on +/- 0.06 std from the 

mean with the same base variogram at 20,000 ft 

 

Figure 39: PHIE_B++ low and high porosity value based on +/- 0.05 std from the mean 

with the same base variogram at 20,000  
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Figure 40: Basecase with porosity and variogram combined 

 

Figure 41: B+ with porosity and variogram ranges combined 
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Figure 42: B++ with porosity and variogram ranges combined 
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Chapter 4: CO2 Storage Capacity Analysis- Simulation Study 

The dynamic modeling workflow for geological carbon storage (GCS) aims to 

simulate CO2 injection and its distribution within stratified reservoirs, ensuring storage 

efficiency while assessing associated risks. Key parameters include porosity, permeability, 

and boundary conditions, all of which directly impact the CO2 plume migration, pressure 

build up, storage capacity, and the AoR delineation. By accounting for site-specific factors, 

such as reservoir heterogeneity and injectivity, the model provides insights into the optimal 

storage potential while minimizing risks associated with CO2 leakage and ensuring 

compliance with Class VI permit requirements (Hosseini et al., 2024).  

4.1 DYNAMIC RESERVOIR MODELING  

After building the static modeling of porosity and permeability, these properties 

were exported for simulation study. Note that there was a total of 21 static realizations, but 

only 15 realizations were used for the simulation study. The remaining 6 were excluded 

due its very low porosity and permeability leading to injection rate and well bottom-hole 

pressure limitations; hence they are not going to be part of the VOI analysis. Dynamic 

simulations were conducted using Computer Modeling Group (CMG) software to predict 

storage capacity within the injection zone. The primary input parameters for the simulation 

were porosity and permeability (results described in the previous chapter). Due to low 

quality reservoir rock, the injection rate was set at 0.1 MtCO₂/year for two injection wells, 

with their locations determined by the highest net pay map values (Figure 44), the portions 

of the gross pay that meet local criteria for pay (such as porosity, permeability) are net pay. 

To prevent model crashes due to numerical divergences, constraints were imposed on the 

model's bottom-hole pressure based on a 90% of fracture gradient of 0.7 psi/ft. This 

limitation accounts for the low porosity and permeability of the reservoir. CMG internally 
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sets pressure at standard condition (pstd) equal to 14.7 psia or 101.325 kPa and temperature 

at standard condition (tstd) equal to 60.0 deg F or 15.56 deg C by default. The CO2 density 

according to National Institute of Standards and Technology (NIST) at standard conditions 

is 1.87 kg/m3. Injection pressures were limited to the reservoir's constraints, and boundary 

conditions were adjusted using volume modifiers in CMG to extend the boundaries to 

estimated regional boundaries. Table 8 summarizes the fluid properties for the injection 

zone. The brine salinity is at 116000 ppm, 0.116 kg/l, the CO2 viscosity at initial condition 

is 618 kg/m3, and water viscosity is 0.39 cp, the initial pressure (psi) is 2790 psi, and the 

reservoir temperature is at 163 °F. 
 

Table 8: Fluid Properties 

CO2 

Density 

Brine 

salinity at 

the in-zone 

CO2 

Viscosity 

(cp) 

Water 

Viscosity (cp) 

Initial 

Pressure (psi) 

Reservoir 

Temperature 

(°F) 

618 kg/m3 

at initial 

condition 

2 mol/kg = 

116000 

ppm 

0.049  0.39 2790 163 

 

https://webbook.nist.gov/cgi/fluid.cgi?T=60&PLow=10&PHigh=20&PInc=0.1&Digits=5&ID=C124389&Action=Load&Type=IsoTherm&TUnit=F&PUnit=psia&DUnit=kg%2Fm3&HUnit=kJ%2Fmol&WUnit=m%2Fs&VisUnit=uPa*s&STUnit=N%2Fm&RefState=DEF
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Figure 43: Net pay map showing bullseyes where the CCS injection wells were placed 

For each well, perforations were made along different layers of the model, over 20 years: 

• Layers 34–49 were perforated and injected during the first 10 years, then shut in.  

• Layers 18–33 were perforated and injected during years 10–15, then shut in.  

• Layers 2–17 were perforated and injected during the last 5 years.  

The maximum allowable injection pressures were calculated using Equation (8), 

considering a fracture gradient of 0.7 psi/ft and 90% of the fracture pressure. Table 9 shows 

these values for the two injection wells. This is visualized in the plot as the gas rate in the 

green line and the well BHP in the blue line. The maximum allowable pressure for 

CCS_well_Inj_1 is 4496 psi corresponding to the fracture gradient of 0.7 psi/ft and 90% 
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of the fracture pressure, same approach for CCS_well_Inj_2 where the maximum 

allowable pressure is calculated to be at 4435 psi. These values are shown in Table 9. 

 

𝑃max 𝑖𝑛𝑗 = 𝐴𝑣𝑔. 𝐷𝑒𝑝𝑡ℎ × 0.7
𝑝𝑠𝑖

𝑓𝑡
× 90%              (8) 

Where, 𝑃max 𝑖𝑛𝑗 is the maximum allowable injection pressure (psi), 𝐴𝑣𝑔. 𝐷𝑒𝑝𝑡ℎIs the 

average depth of the target injection zone measured in ft, 0.7 is the fracture gradient and 

90% is the factor of fracture gradient pressure to avoid exceeding the formation’s fracture 

pressure.  

 

Table 9: Maximum injection pressure for CCS_well_Inj_1 and CCS_well_Inj_2. 

Injection Well Fracture 

Gradient 

Subsurface 

Average 

Depth (ft) 

Calculated Maximum 

Injection Pressure (psi) (90% 

of Fracture Gradient) 

CCS_well_Inj_1 0.7 7136 4496 

CCS_well_Inj_2 0.7 6917 4358 

 

The cumulative CO2 and injection rate behaviors over the 20-year simulation period 

are shown in Figures 45 and 46. Variations in perforation layers led to non-linear 

cumulative CO2 trends, with injection rates adjusted over time. For simplification, iteration 

tolerance was increased to allow the simulation to converge, given the low permeability 

values. Fifteen simulation realizations were modeled, each with varying variogram ranges 

to evaluate reservoir heterogeneity. Due to challenges with very low-porosity realizations, 

these simulations could not be completed and we assume those capacity values will be way 
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below the target volumes. The gas rate and the BHP follow the same behavior because of 

the perforation layers (Figure 45). For the first ten years of injection, the well begins 

injecting at a rate of 4e+06 ft3/day, or 211.33 tCO2/day then stops and returns injecting at 

a lower than increasing rate to 4.5e+06 ft3/day, or 238.29 tCO2/day for the following five 

years then stops and injects back to 6.24+06 ft3/day, or 330.42 tCO2/day. Figure 46 also 

shows the base case where the red lines represent the three scenarios of the base case 

varying in variogram range. The cumulative gas ranges from 1.74 MtCO2 to 2.66 MtCO2 

after 20 years. 

 

 

Figure 44: CO2 Rate at the standard condition and Well Bottom-hole Pressure for the 

base case with data analytics (BC V). CCS_well_Inj_1 is set at 4496 psi and 

CCS_well_Inj_2 is at 4358 psi with different perforation layers.  
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Figure 45: Cumulative CO2 in red and CO2 Rate in green at standard conditions for the 

base case scenarios in data analytics (low, base, high variogram values). The 

reason why the cumulative CO2 is not a straight linear line is due to the 

different perforation layers, injecting at 4e+06 ft3/day for the first ten years, 

then at 4.5e+06 ft3/day for the five years, then at to 6.24+06 ft3/day for the 

last five years of the injection period  

4.2 SIMULATION RESULTS AND DISCUSSION 

The CO₂ plume distribution after 20 years is illustrated in Figure 47, with the two 

injection wells highlighted. The faults are in purple in south west direction. These faults 

are considered minor and not critical to the simulation study.  
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Figure 46: CO2 plume model after 20 years. The plume is touching the minor faults that 

are considered not critical to the storage capacity and would not impact 

leakage for the study. The bar legend indicates the CO2 saturation. 

4.2.1 Area of Review Delineation 

The AoR is defined as the region surrounding a GCS project where underground 

sources of drinking water (USDWs) may be at risk due to injection activities (EPA, 2013). 

For Class VI CO2 wells, the AoR is critical to ensure the protection of underground sources 

of drinking water (EPA, 2013; UIC, 2010). The AoR is delineated using computational 

modeling that considers the physical and chemical properties of all phases of the injected 

CO2 stream, and displaced formation fluids based on available site characterization, 

monitoring, and operational data (EPA, 2013). The AoR in the simulation study was 

defined by the combination of the CO2 plume with a gas saturation greater than 1% and 

pressure front with a critical pressure (Pc) above 77 psi. The map in Figure 48 shows the 
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AoR of all 15 realizations after running the simulations for 20 years, observing how the 

AoR changes with each realization.  

 

 

Figure 47: AoR delineation for all 15 realizations 

The area of the different AoRs is shown in Table 10 where we later use the acreage 

to account for the cost of land lease in the value of information calculations in Chapter 5.  

Figure 49 shows the results of the 15 realizations’ total storage capacity output estimations. 

The results vary from 499 ktCO2 to 3.78 MtCO2. The most sensitive input or parameter 
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that affects the storage capacity, in this case, is the porosity and reservoir quality 

heterogeneity of the reservoir. These scenarios are defined earlier in Chapter 3.  

Table 10: The outcomes of the AoR definitions in acre and SQFT for each realization 

 

 

 

Figure 48: The outcomes of the cumulative storage capacity in tCO2 for each realization 

for 20 years (total of 15 realizations) 

Realization (Ri) AoR (Acre) AoR (SQFT)

R1 5144 224055216

R2 3118 135837504

R3 3950 172044576

R4 1187 51718788

R5 2630 114558444

R6 2819 122791284

R7 770 33557317

R8 1306 56893716

R9 794 34598837

R10 1847 80452706

R11 1519 66156314

R12 1146 49938491

R13 1902 82836310

R14 2583 112531162

R15 1389 60524006
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Chapter 5: Value of Information  

5.1 VOI CASE 

The fourteen legacy wells in the storage site provide historical data such as well 

logs, which can be repurposed for updated analyses in the pre-CO₂ injection phase of the 

project. Three out of the fourteen wells show better well log quality, specifically porosity 

which was considered for petrophysical analysis, stochastic modeling, and simulations to 

estimate storage capacity. A hypothetical Direct Air Capture (DAC) operator would 

evaluate the potential for a CO₂ storage site. The operator's goal is to store 1 MtCO₂ over 

20 years, motivated by the 45Q tax credit market offering $180 per tCO₂. The DAC 

operator wants to know the value of drilling a stratigraphic well to get a class VI permit in 

this challenging geological carbon storage site. The decision maker is faced with two 

alternatives, i.e., drill a stratigraphic well or not drilling any well. We identified two 

possible scenarios faced by the operator: 

• SC1 = the targeted interval can store 1 MtCO2 for 20 years 

• SC1c = the target interval fails to store 1 MtCO2  

In the flowing analysis, further details will be explained and discussed about the decision 

situation faced by the operator. Suppose a company needs to choose between different 

alternatives, but there is some uncertainty involved. After the uncertainty is observed and 

an option is selected, the company gains some benefit. Before getting any information, the 

company’s initial beliefs about the uncertainty are shown by the probability distribution 

p(x). now, suppose the company can collect more information before deciding to sign the 

contract. This additional information is represented by a likelihood probability p(y|x), 

which shows the conditional probability between the new information y and the uncertainty 

x.  
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5.2 DECISION ANALYSIS 

In decision analysis, one of the effective diagrams is the influence or relevance 

diagram to illustrate the relationship between the distinction of interest and the observed 

distinction (Howard & Matheson, 2005). For this study, the distinction interest is the 

amount of tCO2 (>1MtCO2) that the storage site can store, and the observed distinction is 

the stratigraphic well test results of storage capacity estimations. The arrow in the influence 

diagrams (Figure 50 and Figure 51) indicates the relevance or influence (Howard & 

Matheson, 2005) between the distinction interest and the observed distinction, and this is 

called the assessed form where we begin with a prior probability distribution over the 

distinction of interest as shown in Figure 50. The conditional probability of the observed 

data given the distinction of interest is called the likelihood. In Figure 51, the reversed 

arrow signifies the inferential form of the probability distribution assigned to the distinction 

of interest once the observed data is known. This updated distribution is known as the 

posterior, as it is utilized following the acquisition of results from modeling or simulation 

assessments. The probability distribution representing the anticipated observations in the 

study prior to data collection is termed the preposterior. This represents Bayes’ theorem 

application.  
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Figure 49: The influence diagram (or relevance) in the assessed form (prior belief) 

 

 

 

Figure 50: The influence diagram (or relevance) in the inferential form (posterior) 
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5.3 VALUE OF STRATIGRAPHIC WELL INFORMATION (VOI): 

 

5.3.1 Prior Value 

As explained in the previous chapters, 15 realizations were modeled stochastically 

and exported for simulations in CMG software to obtain the storage capacity estimations. 

To quantify the probability of the storage site storing the operator’s goal of 1 MtCO2, a 

statistical analysis, bootstrapping sampling with replacement (Efron & Tibshirani, 1985), 

was assessed to recalculate uncertainty in a calculated statistic from the 15-sample 

realizations itself. After getting the normal distribution of the means of the outcomes and 

the standard deviation of the sample data (Figure 52). Prior belief about the uncertainty is 

p(SC1) = 73.33%, p(SC1c) = 26.67%. This information represents the prior beliefs in the 

assessed form and it is shown in the probability tree in Figure 53.  

 

 

 
 

Figure 51: Bootstrap distribution of the 15 realizations (storage capacity predictions) 
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Figure 52: Prior probability (without additional information) of the storage capacity 

greater than 1MtCO2. The circle represents uncertainty  

The outcomes of drilling stratigraphic well will generate a profit or loss (NPV) for 

the DAC operator. The NPV is a function of the average amount of CO2 above 1MtCO2 

and the price of carbon credit per MtCO2 ($/MtCO2) minus the CAPEX and OPEX and the 

cost of land. Since the project is capture and sequester, the carbon price according to EPA, 

and current DAC operators with renewable energy to power DAC is through the 45Q tax 

credit of 180 $/tCO2. The cost of land is assumed with a price of $2,400 per acreage 

according to current appraisal district prices. In addition, according to the recent data from 

Energy Information Administration (EIA), the latest commercial electricity rate in Texas 

is 9.14 cent per kWh. The average energy consumed for a DAC project through the grid is 

assumed around 1100 kWh/tCO2. The cost of drilling deep stratigraphic well is assumed 

based on the historical production appraisals, which is around $1 to $3 Million.     

NPV Assumptions: 

o CAPEX:  

o Based on the scale of 1-billion-dollar capex for 1 MtCO2 captured 

SC1

0.7333

0.2667

SC1
c
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o Cost of land is a function of the average AoR acreage calculated (above a 

cumulative average of 1MtCO2 for 20 years) and the price is assumed based on 

cost of land per acre in Texas  

o OPEX: 

o Assuming the energy consumption of the DAC operator is through 

green energy assuming a lot of wind development in south Texas. The main 

energy consumption is through the grid  

o The full-time operational employment is 30 and a wage of $54k per 

employee per year 

o Revenue: 

o Carbon price based on the 45Q tax credit 

The decision maker obtains no value if the contract is not signed and earns a sure 

zero. While the NPV for the specific storage site studied with a storage capacity of greater 

than 1MtCO2 (SC1) is $29.59M. Alternatively, the NPV is -$17.53M when the storage 

capacity is not greater than 1 MtCO₂ (SC1c).  Assuming the decision maker is risk neutral, 

which is often a valid assumption in value of information (Bickel, 2006), who goes for the 

maximum expected value between the alternatives of “Develop” or “Not Develop”, the 

expected value (EV) of “Develop” is $17.02M ($29.59*0.7333-$17.53*0.2667), the 

expected value of “Not Develop” is 0. Since the EV is greater than 0, hence the storage 

formation is feasible for DAC project. The DAC operator’s decision without drilling 
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stratigraphic wells can be represented with the decision tree in Figure 54.  The rectangular 

represents decision, and the circle represents a probability of the uncertainty. 

 

 

Figure 53: Decision tree without stratigraphic well (VOI). The rectangular represents 

decision, and the circle represents uncertainty. 

 

5.4 VALUE OF PERFECT INFORMATION (VOPI) 

5.4.1 Posterior Value (The Value with Stratigraphic Well) 

Now, the question remains should the operator pay for a stratigraphic well as per 

Class VI permit? The operator wants to evaluate the value of drilling stratigraphic well to 

reduce geological uncertainty.  The most the operator should be willing to pay for drilling 

stratigraphic well is the value with perfect information. Since the operator is risk neutral, 

in general we can say the value with perfect information, is equal to the difference between 

Develop? Storage capacity NPV (M$)

SC1 $29.59

0.7333

Yes EV1 $17.02

0.2667 -$17.53

SC1
c

$0.00

No
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the expected value with perfect information (EV2) and the expected value without perfect 

information (EV1) (Bratvold et al. 2007) as shown below.  

 

𝑉𝑂𝑃𝐼 = [𝐸𝑉 𝑤𝑖𝑡ℎ 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑉 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛]       

Suppose the decision maker knew the storage site could store higher than 1MtCO2 

for certain, since the probability of SC1 is 73.33% and the test is perfect, meaning if SC1 

will occur the test will report that with certainty, then the probability the test will report 

SC1, p(“SC1”), is also 73.33% and they would drill and earn $29.59M. If they knew the 

storage site could not have that storage capacity, 26.67% they would not have to drill the 

stratigraphic well. The VOPI probability tree can be illustrated in Figure 55.   

 

 

Figure 54: Information gathering relevance (VOPI) 

"SC1" SC1

1 0.733 1.000 0.733

SC1 "SC1"

0.7333 0.7333

0 0.000

"SC1
c
" 0.000 SC1

c
0.000

"SC1" SC1 0.000

0 0.000 0.000

0.2667 0.2667

SC1
c

"SC1
c"

1 1.000

"SC1
c"

0.267 SC1
c

0.267
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Hence, the value with perfect information is $21.70M (0.7333*$29.59M), and 

therefore perfect information is worth $4.68M. Any tests higher than this value is not worth 

the cost. This decision situation faced by the operator is illustrated in Figure 56. 

 

 

Figure 55: Decision tree of value of perfect information (VOPI) 

 

Obtaining perfect information is very rare and does not happen in the real world, 

however the value with perfect information is useful for the decision maker as it set the 

upper boundary limit for any imperfect information gathering activity.  

The VOPI is the most the decision maker should pay. Any information-gathering 

activity beyond this value is worthless and not economic. Hence, exploring the Value of 

Imperfect Information (VOII) is worthwhile and essential in the VOI analysis.  

Drill Strat. well? Storage capacity NPV(M$)

Yes SC1

$29.59

"SC1" $29.59

0.733

No $0.00

EV2 $21.70

VOPI EV2-EV1=21.70-17.02 $4.68

Yes SC1
c

-$17.53

0.267 $0.00

"SC1
c"

No $0.00
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5.5 VALUE OF IMPERFECT INFORMATION 

Now, assuming the operator can further obtain information about the target 

formation with a well test. Assume the accuracy of the test is 90%. The preposterior 

probability is as follows: 

𝑝("𝑆𝐶1") = 𝑝("𝑆𝐶1"|𝑆𝐶1)𝑝(𝑆𝐶1) = 0.9 •  0.7333 + 0.1 • 0.2667 = 0.69 

𝑝("𝑆𝐶1𝑐") = 𝑝("𝑆𝐶1𝑐"|𝑆𝐶1𝑐)𝑝(𝑆𝐶1𝑐) =  0.1 • 0.7333 + 0.9 • 0.2667 = 0.31  

Or  

𝑝("𝑆𝐶1𝑐") = 1 − 𝑝("𝑆𝐶1") = 0.31 

The posterior probabilities for different outcomes of uncertainty SC1 given the different 

outcomes of “SC1” is as follows: 

 

𝑝(𝑆𝐶1|"𝑆𝐶1") =
𝑝("𝑆𝐶1"|𝑆𝐶1)𝑝(𝑆𝐶1)

𝑝("𝑆𝐶1")
=  

0.9 • 0.7333 

0.69
= 0.961 

𝑝(𝑆𝐶1𝑐|"𝑆𝐶1") = 1 −  𝑝(𝑆𝐶1|"𝑆𝐶1") = 0.039 

The probability tree of the above analysis is illustrated in Figure 57  
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Figure 56: Probability tree of storage capacity  

 

The posterior values with stratigraphic well give the degree of accuracy of the 

performance of the well test is as follows; 

(0.961*29.59) + (0.039*-17.53) = $27.78 and (0.234*29.59) + (0.766*-17.53) = - $6.50 

The posterior value (the value with stratigraphic well) is $19.08 (27.78*0.69 + 0*0.31). 

Hence, the value of the stratigraphic well is $2.05M ($19.08M – $17.02M). Now, the 

operator should perform the test with a 90% accuracy if the cost is less than $2.05M. Figure 

58 illustrates the decision analysis above with the stratigraphic well test.  

 

"SC1" SC1

0.9 0.660 0.961 0.660

SC1 "SC1"

0.7333 0.6867

0.1 0.039

"SC1
c
" 0.073 SC1

c
0.027

"SC1" SC1 0.073

0.1 0.027 0.234

0.2667 0.3133

SC1c "SC1c"

0.9 0.766

"SC1c" 0.240 SC1c 0.240
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Figure 57: Decision tree with value of imperfect information (VOII) 

5.6 SENSITIVITY ANALYSIS 

Figure 59 plots the VOI against the accuracy test. In the operator’s situation, he/she 

should not buy information with a test of 80% accuracy. Accuracy below 80%, the VOI is 

zero. Meaning it cannot add any value to the decision situation.  

 

 

Figure 58: Sensitivity of operator's VOI to Test Accuracy for the storage capacity 

Drill Strat. well? Storage capacity (Si) NPV(M$)

S1 $29.59

0.96

Yes $27.78

0.04 ($17.00)

"S1" $27.78 not S1

0.687

No $0.00

EV2 $19.08

S1 $29.59

VOII =19.08-17.02 $2.05 0.23

Yes ($6.50)

0.77

0.313 $0.00 not S1 -$17.53

"S2"

No $0.00
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Chapter 6: Discussion and Future Work 

6.1 VALUE OF INFORMATION (VOI)  

This study aims to determine whether drilling stratigraphic wells in a low-quality 

reservoir is worthwhile for a DAC operator involved in a Geological Carbon Storage (GCS) 

project. Specifically, the key question addressed: What is the value of drilling stratigraphic 

wells in a low-quality reservoir? VOI analysis for this research involves a total of 15 

realizations, each examining how porosity distribution affects storage estimates by varying 

theoretical variogram range and porosity based on standard deviation. Scenarios consider 

whether the site can store 1 MtCO2 over 20 years, from a single storage unit.  

Given the assumption the DAC operator is risk-neutral, then the notion of value of 

perfect information (VOPI) is applicable, and the VOI study is implemented to use the 

application for a GCS project and have it useful for future studies. The analysis focuses on 

the Value of Perfect Information, representing the maximum that should be paid for 

information. This focus helps establish a “buying price” (Bratvold et al., 2009) for drilling 

stratigraphic wells, ensuring that drilling is considered only if the cost is below this value 

for the DAC operator. The value with perfect information is $21.70M and therefore perfect 

information is worth $4.68M.  Any tests higher than this value is not worth the cost.  The 

posterior value of the decision situation with imperfect information is $19.08M, hence the 

company should perform the test with a 90% accuracy if the cost is less than $2.05M. The 

study is tailored to a specific storage site and injection period, indicating that results might 

differ for other sites or times. This study is to demonstrate the VOI application and steps 

that is needed to be taken. The current VOI analysis concentrates exclusively on the value 

of drilling the stratigraphic wells, excluding other information-gathering activities such as 

core samples, and formation testing. This would require additional geological 
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characterization, modeling, and assessments for the VOI study (Bratvold et al., 2009) and 

understanding the degree of accuracy for each of the tests to account for multiple 

uncertainties and more complex analysis for a VOI study. Enhancing the analysis could 

include a sensitivity analysis to identify which variables most significantly impact the NPV 

outcomes, recognizing these factors like the energy consumption costs and carbon pricing 

could greatly influence these results. In addition, the time value of money was ignored to 

demonstrate the VOI application. Future work should incorporate discounting to reflect 

how costs and benefits change over time, providing a more accurate economic assessment. 

The decision tree and influence diagram would even get bigger to display the decision 

analysis. Future directions for VOI analysis involve exploring the value of imperfect 

information, which reduces but does not eliminate uncertainty, providing a more realistic 

assessment. 

6.2 SITE CHARACTERIZATION AND MODELING  

In this project, the lithology analysis was based on GR and SP logs cut off to set 

reservoir or non-reservoir. The reservoir rock is sandstone, and the non-reservoir is 

siltstone and shale. The practice in petrophysics is to calculate Vclay. There are no cores 

in the AOI to calibrate any facies assemblage or to calibrate the Vclay parameter, hence 

the petrophysical modeling was run without facies. Saying this, future work could be 

considered to carry on with further facies characterization and modeling. In addition, more 

petrophysical analysis is recommended for further assessment, for example well log 

calibration and normalization, density and neutron correction, and calculation of new 

porosity. Also, creating models with different (better) poro-perm transform since there 

were no cores in the AOI. It is important to add the deeper zones for characterization, 

geomodeling and simulation. In addition, I started the project with a time-depth conversion 
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to generate the static modeling for the porosity and permeability to export them for 

dynamic modeling, which is an extra effort into the research workflow.  

To mitigate the major geological risks, it is recommended to perform additional 

studies, such as core analysis to estimate porosity, permeability, and capillary pressure, as 

well as 3D seismic interpretation of the total storage window to better define the structure, 

seismic facies, and the boundary conditions of the reservoir compartment. The initial plan 

was to characterize the full-storage window (about 2900 to 4200 ft) including running 

amplitude analysis in Paleoscan on several seismic horizons in the model, however this 

analysis is still not conclusive due to the amount of noise in the seismic. The full storage 

section (Figure 8) was considered to provide an overview of the total storage capacity of 

the site. Due to time constraints, only one zone was targeted for detailed evaluation, that is 

the interval between Frio Top and Frio FS1 marker (called Upper Frio zone). This research 

focused on the Upper Frio zone, so a feasibility study for a GCS site would have some 

limitations since it does not consider the total section for storage.  Adding the deeper zones 

could change the economics of the project, where the synclinal area (Figure 7), south of 

the defined AoRs (Figure 48) is, also, a potential site for a CO2 sequestration project. 

Future work should consider studying the whole storage window, so more storage 

capacity is added, to better justify any investment in stratigraphic wells. This upper Frio 

zone was selected as an analog from a nearby field that we believed could represent similar 

properties; however, after petrophysical analysis and static modeling the interval showed 

significant differences in porosity and sand presence (poorer reservoir properties than the 

analog field). In addition, the analysis was based on three wells with porosity logs and 

applied to three main cases. The analysis could be expanded to characterize the deeper 

zones, and compare with the current target zone (Upper Frio). As for the uncertainty 

analysis, the number of realizations was a total of 15 for storage capacity outcomes, future 
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simulations could include the remaining excluded 6 (the low values of porosity and 

variogram ranges).  
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Chapter 7: Conclusions and Recommendations   

Based on the assumptions outlined in this study, our analysis for this specific site 

recommends drilling a stratigraphic well with an expected value of $4.68 million, as 

determined by the Value of Perfect Information (VOPI). Stratigraphic wells and associated 

data collection activities that exceed this value are not economically justified. This Value 

of Information (VOI) analysis provides a framework for assessing the economic viability 

of drilling stratigraphic wells in low-quality reservoirs for DAC operators involved in GCS 

projects. The analysis indicates that drilling a stratigraphic well is advisable as long as the 

drilling cost remains below the VOPI threshold. While relying solely on VOPI may be 

idealistic, it establishes a clear benchmark for making informed investment decisions.  

Additionally, the evaluation of value with imperfect information underscores the 

importance of test accuracy; performing tests with at least 80% accuracy adds value for 

this specific study to the decision-making process. Although this study is site-specific and 

time-specific, the same VOI analysis can be applied to include the deeper layers of the Frio 

formation since the focus was on one interval. Also, the same framework can be applied 

for other relevant data, for example, the value of 3D seismic or 2D lines in the study area. 

Future research can expand the analysis to enhance its applicability, thereby supporting 

more effective and efficient GCS projects. Future recommendations could consider well 

placing as an extension to the study. Optimizing well placement is crucial for refining 

variogram estimates due to the scarcity of the data in the area, particularly the nugget and 

sill, which determine spatial correlation and model variance. Strategically placing new 

wells at distances that challenge existing nugget estimates enhances confidence in the 

variogram, leading to a more constrained and accurate geological model. Avoiding 

redundant drilling close to existing wells ensures that each new well provides valuable 
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information, thereby improving the model’s reliability in estimating storage capacity. 

Addressing challenges with sparse well distribution through strategic placement and 

uncertainty management ultimately leads to better-informed decision-making and more 

robust geological assessments.  
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Appendices 

APPENDIX A 

The Advanced velocity model dialog box in Petrel. The advanced velocity model 

requires the following input: (Chapter 2.2) 

1. Name. Set a name for future velocity model. 

2. Type of conversion. For example, from TWT to Z. 

3. Datum (Z=0). The elevation reference point (SRD or Other) must be set. 

4. One or more zone descriptions. For example, a set of surfaces in two-way time. 

5. A definition of the velocity model for each zone. For example, V=Vint. 

6. Input parameters for the velocity model. For example, a surface of Vint. 

7. Correction data, if required. For example, well tops for the specified zones. 
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APPENDIX B 

Porosity-Permeability transform from literature that were also tested for the project but 

not used.  

 

From Chapter 2.4: Porosity-Permeability transform adapted from (McRae et al., 1995) 
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APPENDIX C 

Results of the fault truncation and QC. Some faults in the west were truncated to the main 

regional fault.  

From chapter 2.4:  reservoir quality analysis (Faults QC) 
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APPENDIX D 

 
From Chapter 3.2:The histogram distributions of high and low porosity models according 

to their standard deviation (Y-axis is the frequency, x-axis is the porosity; red bar is the 

input well log, green bar is the upscaled porosity, & purple bar is the property (porosity) 

modeled) 
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From Chapter 3.2: The histogram results of combined data analysis and high and low 

porosity (Y-axis is the frequency, x-axis is the porosity; red bar is the input well log, 

green bar is the upscaled porosity, & purple bar is the property (porosity) modeled) 
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