Copyright
by
Previna Arumugam

2025

The Thesis Committee for Previna Arumugam

Certifies that this is the approved version of the following Thesis:

Efficient Detection of Unintended Lateral Migration of CO:: An
Example from the Onshore Gulf Coast (Texas—Louisiana, USA)

APPROVED BY
SUPERVISING COMMITTEE:

Dr. Alexander Bump, Supervisor
Dr. Susan Hovorka, Co-Supervisor

Dr. Hailun Ni, Reader

Efficient Detection of Unintended Lateral Migration of CO:: An
Example from the Onshore Gulf Coast (Texas—Louisiana, USA)

by

Previna Arumugam

Thesis
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Energy and Earth Resources

The University of Texas at Austin
August 2025

Dedication

To my mother, godparents, family, and friends, your strength and unwavering belief in me
continue to push me farther than I ever thought possible.

To my colleagues at Hibiscus Petroleum — your encouragement helped me cultivate my
passion for CCS and inspired me to chase bigger dreams.

To Yayasan Pahang and my home state, thank you for making this journey to the United
States possible.

To Nur’ain Zalia and Dr. Hijaz Kamal Hasnan — your support opened the door to this
incredible opportunity and made this Master’s journey a reality.

To Mark Hafle — your mentorship throughout my time in the U.S. has been a steady source
of inspiration and guidance.

And to everyone who stood by me through thick and thin — this is for you.

Acknowledgements

I want to express my sincere gratitude to everyone who contributed to my academic,
technical, and personal growth throughout this thesis journey.

Thank you to the Jackson School of Geosciences and the Energy and Earth
Resources (EER) Department at The University of Texas at Austin for awarding the EER
Fellowship and for fostering a supportive environment that encouraged interdisciplinary
learning exploration. Special thanks to Dr. Fred Beach for his ongoing support. I am deeply
grateful to Monica Reed, whose assistance made it possible for me to attend the IEAGHG
CCS Summer School 2024, an experience that significantly broadened my knowledge and
perspective on carbon capture and storage, and fueled the passion reflected in this thesis. I
also wish to thank Shelby Escobar for her consistent guidance and encouragement
throughout the program.

I am deeply thankful to the Gulf Coast Carbon Center (GCCC) and industrial
sponsors for supporting this research. Special thanks to Dr. Alex Bump and Dr. Susan
Hovorka for their invaluable mentorship, which greatly shaped my thinking and approach.
I also thank German Chaves for laying important groundwork through his earlier thesis. I
am grateful to Dr. Shuvajit Bhattacharya and Dr. Chao Li for their guidance in rock physics,
and to Dr. Sergey Fomel and Rebecca Gao for their help with geophysical modeling. The
energy and knowledge of the GCCC team were a constant source of inspiration. And also
Dr. Andrey Bakulin to share the cost insights on the onshore seismic survey cost ranges.

Finally, I acknowledge the assistance of ChatGPT, Copilot, Notebook LLM, and
other Al tools, which helped expedite my coding and problem-solving throughout this

work.

Abstract

Efficient Detection of Unintended Lateral Migration of CO:: An
Example from the Onshore Gulf Coast (Texas—Louisiana, USA)

Previna Arumugam, MSEER

The University of Texas at Austin, 2025

Supervisor: Alexander Bump, Susan Hovorka

Carbon capture and storage (CCS) plays a pivotal role in reducing atmospheric
CO., but its effectiveness hinges on reliable and cost-efficient monitoring, particularly in
geologically complex regions like the Gulf Coast. Seismic monitoring, particularly time-
lapse (4D) surveys, is often regarded as the industry standard, heavily influenced by
pioneer projects like Sleipner. While seismic provides visually compelling and technically
rich data, it is expensive and often impractical or unnecessary.

This thesis aims to develop a cost-effective, risk-based monitoring framework by
characterizing model uncertainty, evaluating spatial and temporal risk zones, and aligning
the monitoring strategy with actual containment risks based on CO: plumes. The
methodology follows a streamlined logic: “model — map — monitor”. The study identifies
when and where monitoring is most valuable using a case study of ensemble reservoir
simulations—multiple realizations of subsurface behavior under uncertainty using spatial

and temporal analysis on gas saturation outputs.

Synthetic seismic modeling supports the detection limits of seismic methods,
showing that a 5% CO: saturation threshold defines the extent of detectable plumes without
noise incorporation. Based on a cost analysis of various seismic monitoring methods,
targeted 2D seismic surveys guided by spatial heatmaps and temporal windows
demonstrate a potential reduction in monitoring costs compared to blanket 3D surveys,
without compromising containment assurance.

The study recommends a shift in regulatory and operational practice from
assumption-driven, one-size-fits-all requirements toward adaptive, risk-based, and site-
specific monitoring strategies. This approach enhances economic viability and improves
long-term storage security, thereby supporting the broader deployment of CCS
technologies. Future work should incorporate pressure outputs from uncertainty models to
generate pressure-based heatmaps, enabling a combined plume and pressure map to

strengthen targeted risk-based monitoring.

Table of Contents

LSt OF TADIES ...ttt ettt ettt et 11
LSt OF FIGUIES ..ttt ettt ettt e st e e e e saeenbaeesaeenseenns 12
Chapter L INtrodUCTION........eieiiiieciie ettt ettt e e st e e s e e e savee e beeennsaeenns 15
1.1. Statement of Problem..........coceeviiiiniiiiniiiiceeeeeee 16

1.2. ODJECLIVES ..uviiiiiiieeiiieecieeeeiee et e e rre e et e e e taeesteeesbeeesssaeesasaeessseeensseeennses 23

1.3. REIEVANCE ..ot 23

1.4. Chapter Organizationcocueeeerueriereenieeieneenie et esie e saeens 26
Chapter II: Research Background............ccccvevuiieiiiiieeiiieiieeiicee e 28
2.1. Regulatory Framework and the Need for Monitoring Plans................... 28

2.2 Geological complexity of the U.S. Gulf Coast.........cccecvevvrreiienreenenne. 29

2.3. Geophysics for Efficient CO2 Plume Detection.........c..cccceecvenvenienicnnnes 31
2.3.1. Seismic Forward Modeling..........c.cccceevieniienieniieiiereeeeeie e 32

2.3.1.1. Rock Physics Modelingcccceveevueriieneeneniiinienenienens 32

2.3.1.2. Synthetic Seismic Generation..........cccceevvveercureercueeencveeenneenn 33

2.3.1.3. Detectability Threshold from Forward Modeling................ 34

2.3.2. Active Seismic Monitoring Methods..........ccceeevvvenciieenciieeniieenee, 37

2.3.2.1. Surface Seismic MONItOTINGccceevveeierieneeniinienieneeienens 38

2.3.2.2. Vertical Seismic Profiling (VSP).....ccccovvviviiiiniieiiieee. 39

2.3.2.3. Distributed Acoustic Sensing (DAS)ccccceevveriiievienrennnen. 40

2.3.3. Integration with Regulatory Framework............cccccocovvrviinnnnnnnne. 41

2.4. Monitoring Strategy Developmentcoceeeiieriiniiienieeiienie e 43
2410 Prior WOTK oo 44

2.4.1.1. Single flow-unit modelcccovveeiiiiriiieiieeee e 45

2.4.1.2. Full-field modelcccooviriiniiiiiiiieeee e 48

2.5. GaPSs 1N LIETAtUTEoeecivieeiiieciieeeee ettt e 50
Chapter III: MethOdOLOZYoevviiiiieiiieiieeie ettt ebe e e eene e 52
3.1. Input Reservoir Models.........coovieeiiieeiiiecieeeeece e 52

3.2 Targeted Risk-Based Monitoring Strategyccceeveeevieerieecieenieeneenne. 53
3.2.1. Expressing Model Uncertaintyccccceceeveevereeneeneneenenniennens 53

3.2.2. Generating Heatmaps.........c.eevueerieeiieniieiieeie e ens 55

3.2.2.1. Spatial Analysis of Plume Migration............cecceeevuereennenne 55

3.2.2.2. Temporal Analysis of Plume Migrationcccceceeeennenne. 56

3.2.3. Enabling Targeted Risk-Based Monitoringccceceevveeiueennnne 57

3.3. Seismic Forward Modeling and Detectability Analysisc.cceueenee. 58
Chapter IV: Results & ANalySIS.......cceriiriiiiriiriiieiieeceeee et 63
4.1. Input Reservoir Models.........cocveeeriieeiiieeieeeieeeeeee e 63

4.2. Targeted Risk-based Monitoring Strategycoceevveveenervieneeneeniennns 65
4.2.1. Spatial ANaLYSIS ...eeeviuriieiiieiiieeeiie e 65

4.2.2. Temporal ANalYSIScoceviriirieiirienieieeieeeeeee e 69

4.3. Synthetic Seismic Detectability Analysis.......ccccveevveeeiieeeiieeniieeeieeens 72
Chapter Vi DISCUSSION ..c..veuviiieriieiieteritenieete ettt sttt ettt ettt st et e saeesaesareseeesbeennes 77
5.1 Spatial and Temporal Risk ZONnescccceecveeeriieeniieeniieeieeeiie e 77

5.2. Seismic Detectability and Monitoring Limits..........cccceceveenerienienene 80

5.3. Seismic cost and practical considerationccceeeeveeevieeeiiveeeiieenneeenns 83

COSt MOEL.....ooiiiiiiiiie s 85

54. Recommendationcoceoiiiiiiiiiiiiiei e 90

Chapter VI: ConCIUSIONceiiiiiiiiie ettt ettt s e e s e e s e e e ssvee e sseeesnseeenns 92

RETETEICES ...ttt ettt ettt st sb et nae e 95
APPENdix (OF APPENAICES) ...eieuriieeerieeriieeiieeeieeeeieeesteeesteeesteeessaeeessaeesseeessseeessseeenssees 103
Appendix A: Computer Modeling Group (CMG) Simulation Input File (.sif)103

Appendix B: Python Workflow for Spatial and Temporal Gas Saturation
ANALYSIS 1ottt ettt e et et e et e e taeenbeesaaeenneas 104

Appendix C: Computer Modeling Group (CMG) Geostatistical software library
(LGSLIB) 1.ttt ettt ettt ettt sae e 131

Appendix D: Seismic Forward Modeling Python Code (Gao et al., Unpublished)132

Appendix E: Seismic Forward Modeling Madagascar Code (Fomel, 2024;
Fomel et al., 2013; Gao et al., Unpublished)cccvvveviienciiiniieieeeeee, 370

10

List of Tables

Table 1 Seismic Monitoring Comparison based on Literature Synthesis.........c..cccceeuennee. 41
Table 2 Cost estimate for a single onshore survey based on spatial analysis (cost
ranges from Andrey Bakulin, personal communication, 2025).................... 87

Table 3 Cost estimate based on temporal analysis...........ccceeeeveerieriiienieeiiienie e 89

11

List of Figures

Figure 1 Schematic illustration of a deep CO: storage project showing regulatory
protection of underground sources of drinking water (USDWs) (Pett-
Ridge et al., 2023) .o 19
Figure 2 Simplified CO: plume migration with radial and asymmetrical unintended
lateral migration across lease boundary which could pose a risk of
interference to nearby aquifer, producing fields, and leakage to vertical
path (fault and WellS).cocviiiiiiiiieiieceeeee e 20
Figure 3 A realistic CCS project landscape, featuring overlapping developments,
extensive faulting, and numerous legacy wells, underscores the need for
advanced monitoring and risk management.c.cccceeviieiiieniienienieennen. 21
Figure 4 Forecasted modeled plume fingering south of the lease boundary.
(2023CHO6676, 2023) ..ottt sttt ettt sttt 25
Figure 5 Fluvial Channel Geometries Representing Subsurface Uncertainties. Four
end-member fluvial channel configurations used in the single flow-unit
model: (a) Continuous-Narrow, (b) Continuous-Wide, (c)
Discontinuous-Narrow, and (d) Discontinuous-Wide.cccceevvvveerreennee. 46
Figure 6 Synthetic Sub-Seismic Fault Configurations and Transmissibility Values
illustrating the fault orientation (0°, 45°, 90°, 135°) and transmissibility
(from 0.0 £0 1.0). oot 47
Figure 7 CO: plume saturation at Year 200 across model realizations. Quadrants vary
by fluvial channel characteristics, columns by fault transmissibility, and

rows by fault orientation. All models dip NW—SE.........cccocvvviiiniieiniieenn 48

12

Figure 8 Full-field facies model with faults mapped from 3-D seismic. The model

spans approximately 71,500 ft x 79,500 ft (~21.8 km x 24.2 km)

horizontally with a total vertical thickness of 2,800 ft (~0.85 km)............... 49
Figure 9 20 representative CO: realizations. The base case is highlighted with a

SQUATE. «.veeeereeeueteeeiteeesteeesateeesateeesateeeasseeesaeeesseesnsseesnsseeanssessnsaeennseeennseesnnneens 54
Figure 10 Facies model original grid 250 ft x 250 ft % 14 ft (left), regularized new

grid (right) 250 ft X 250 ft X 5 £t eooeeeiiieee e, 60
Figure 11 Synthetic Seismic cube visualization in Petrel (Collaborators: Rebecca Gao

and Dr Sergey Fomel) The cube spans approximately 72,000 ft x 78,500

ft (~21.95 km x 23.93 km) horizontally and 2,100 ft (~0.64 km)

vertically, at a resolution of 250 ft X 250 ft X 5 ft......ccceoviieviiniiiiiiiiieee 61
Figure 12 Full-field model (base case) CO: plume saturation clipped to extent of the

PIUME ONLY. c.eiiiiiiiiieie ettt et e e e et esaae e e e 64
Figure 13 Base case (top), Stacked plume (middle), and heatmaps (bottom). 68
Figure 14 Migration distance versus time for 200 years. Dashed line indicates end of

INJECTION At 30 YEATS. .eeueeiririeiieeiiieiie ettt 70
Figure 15 Migration distance versus time for 50 years. Dashed line indicates end of

INJECTION At 30 YEATS. .eeueeiririeiieeiiieiie ettt 71
Figure 16 Dynamic simulation of CO: plume saturation five years after injection

(left), 30 years post-injection (right).ccceecveeeriiieriiienieeeeeeee e 73
Figure 17 Seismic amplitude difference between the baseline (pre-injection) and two

time-lapse snapshots: after five years of injection (left) and thirty years

POSt-INJECtION (TIZNL). oeovvvieeiiieeiie e 74

13

Figure 18 The red contour shows the CO: plume front; the yellow contour indicates
the seismic detectability limit based on amplitude response. Analysis on
travel times may offer higher sensitivity on the limit (Barnett et al.,
2025). Scale 1S 1N TRteccuviieiieeeiee et 76
Figure 19 CO: plume migration risk maps from the single flow-unit model. Left: Base
case maximum gas saturation. Center: Stacked maximum saturation
from all 20 realizations. Right: Areas where the ensemble diverges from
the base case, showing where unacceptable plume spread is most likely
(high-risk corridor). Model area is 71,500 ft x 94,500 ft (~21.8 km %
28.8 km) with 500 ft grid SPACING.c.eevvierieiieeiieieeeee e 86

14

Chapter I: Introduction

The imperative to combat climate change has spurred extensive efforts worldwide
towards developing and implementing carbon capture and storage (CCS) solutions. To
provide high levels of assurance that storage will be permanent requires accurate
characterization and rigorous risk assessment of potential CO: storage units. In the United
States, regulatory frameworks under the EPA’s Class VI Underground Injection Control
(UIC) Rule mandate that operators must predict, monitor, and demonstrate control over
both the lateral and vertical migration of injected CO- to ensure protection of underground
sources of drinking water (USDWs) (UIC, 2013a, 2013b). Conformance and containment
represent critical aspects of commercial-scale geologic carbon storage, focusing on closing
the gap between the reservoir model and the actual observation of CO2 plume distribution
underground, and ensuring long-term security and environmental protection through
containment. Significant costs are associated with monitoring activities; however these

measures are necessary to safeguard the environment and address economic considerations.

The U.S. Gulf Coast basin has been shaped by complex depositional and tectonic
processes over the Cenozoic era, producing one of the world's most prolific hydrocarbon
provinces. The early Miocene depositional framework highlights significant progradation
episodes that were built across a submerged shelf platform (Galloway, 1989). This
sequence is bounded by key stratigraphic markers, including the Anahuac and
Amphistegina B shales, and consists of systems such as the Santa Cruz fluvial and North
Padre delta systems. These systems were characterized by wave-dominated deltas and
barrier/strandplain complexes, which facilitated extensive sediment deposition along the

Texas Coastal Plain and offshore regions. Hydrocarbon exploration in these reservoirs has

15

produced significant resources, primarily associated with growth faulting and salt dome

provinces.

The U.S. Gulf Coast has rapidly emerged as a world-class opportunity for carbon
capture and storage (CCS), with more commercial-scale projects in development due to the
region's capacity (Meckel & Trevifio, 2014). The area has recently experienced a surge in
CCS activity, driven by aggressive decarbonization targets, favorable geology, and strong
policy incentives, such as the 45Q tax credit. The Gulf Coast presents a uniquely complex
and challenging environment, characterized by highly heterogeneous Miocene fluvial-
deltaic reservoirs, extensive fault networks, over a million legacy wells, and in some cases
tightly constrained, irregular lease boundaries. These geological and operational challenges
are further compounded by competing land uses and overpopulated hydrocarbon
infrastructure. This intersection of opportunity and risk makes the Gulf Coast a valable test
case for advancing safe, reliable, and cost-effective monitoring at scale. While this research
focuses on the Texas-Louisiana Gulf Coast as a representative example of subsurface, the
targeted risk-based monitoring strategies developed here broadly apply to CCS projects in

diverse geological settings worldwide.

1.1. STATEMENT OF PROBLEM

Carbon capture and storage (CCS) is one of the few scalable technologies for
reducing atmospheric CO: emissions and mitigating climate change (IPCC et al., 2023).
CCS involves injecting the captured CO: deep underground into a secure geological
formation, thereby preventing its release into the atmosphere. After decades of pilot
projects demonstrating the feasibility of CO: injection it is transitioning to commercial-
scale deployments worldwide to meet the need for large-scale emission reduction. The

rapid growth of CCS projects along the U.S. Gulf Coast has increased the need for

16

monitoring strategies that are both effective and affordable. This expansion is primarily
driven by incentives like the 45Q tax credit, which supports projects that capture and store
large amounts of CO.. Unlike an upfront subsidy, 45Q rewards projects over time:
companies can claim tax credits for 12 years, but only after their CCS facilities are up and
running and actively storing CO.. This means the financial benefit is gradual, providing
steady motivation to keep CO: securely stored year after year (Victor & Nichols, 2022).

However, the economics of CCS have undergone significant changes. Instead of
relying on direct government funding, operators must demonstrate that their projects are
cost-effective and meet stringent regulatory requirements. Chief among these is the EPA’s
Class VI Underground Injection Control (UIC) Rule, which requires ongoing monitoring
as a condition for obtaining and maintaining a permit. The UIC Rule requires operators to
demonstrate their ability to control and contain the injected CO-, with monitoring plan
focused on predicting plume and pressure front movement within a defined Area of Review
(AoR) and preparing corrective action plans if migration extend beyond modeled
boundaries. While monitoring is required to detect any allowed movement and leakage,
but the framework focuses on modeling, predicting and preparing for CO> movement rather
than directly detecting the leaks if any. In other word the framework is preventive, not
reactive ultimately protecting underground sources of drinking water (USDWs).

Early science-driven projects, such as Sleipner and Illinois Basin-Decatur, set a
precedent for intensive and expensive monitoring programs that are unsustainable at scale.
The challenge now is to maintain the same level of safety and regulatory assurance but
with a targeted, risk-based, and economically viable monitoring approach.

The U.S. Gulf Coast presents a uniquely challenging subsurface environment. Its
complex geology, including heterogeneous fluvial-deltaic systems, sub-seismic faults, salt

structures, and over a million legacy wells, introduces significant uncertainty in predicting

17

and tracking CO: plume migration. These uncertainties are compounded by tightly
constrained and irregular project boundaries, where even minor lateral plume migration
away from the planned area may result in regulatory non-compliance.

In order to safeguard USDWs, the EPA enforces strict standards through the Class
VI UIC permit, as mandated by the Safe Drinking Water Act (SDWA) in 40 CFR Parts
146.84 and 146.90. These rules require operators to demonstrate that CO- injected deep
underground will remain securely contained beneath the primary confining zone,
preventing migration into protected aquifers (Figure 1). As a result, regulatory
requirements directly influence initial site screening, favoring geologic settings with thick,
laterally continuous confining units and minimal faulting, as well as the design of
monitoring systems that can rapidly detect any pressure changes or plume migration near
the confining zone. Ultimately, these regulations shape where storage projects can be sited
and the data that must be collected, modeled, and reported throughout the project lifecycle.

The U.S. Environmental Protection Agency (EPA), through the Class VI
Underground Injection Control (UIC) Program, requires operators to demonstrate both
elevated pressure and CO> plume containment within the Area of Review (AoR) during
both the injection and post-injection phases. While the EPA outlines required monitoring
activities, such as mechanical integrity testing and pressure monitoring, the program
remains non-prescriptive, mainly regarding specific methodologies, frequencies, and
spatial coverage. EPA designed the non-prescriptive program to allow maturation of

optimal monitoring programs and flexibility to accommodate site specific factors.

18

=i Biorefine:

Ground level

Basement;

Deep ground
water well

Protected fresh
ground water

approx

1 mile

Injection

Figure 1 Schematic illustration of a deep CO: storage project showing regulatory
protection of underground sources of drinking water (USDWs) (Pett-Ridge
etal., 2023)

19

Most screening for CCS projects begins with the assumption of isotropic reservoirs
and radial plume spread (Figure 2). However, geological heterogeneity and anisotropy
often lead to asymmetric plume behavior, including unintended lateral migration beyond
lease boundaries. Such deviations pose risks to underground drinking water sources
(USDWs), nearby producing fields, and potential vertical leakage pathways such as faults
and legacy wells that may be encountered by the unexpected plume migration. These risks
challenge the integrity of containment and raise concerns about environmental safety, legal

compliance, and public trust.

Lease boundary =~ —~~ T~ N Aquifer
/, /Y\ —_—
/ LN E=T==

/ - \ /

/ s N/

/ e y

/ P /N

/ // /N
/ // Injector / \\
I / Well i \
’ 4 / l

1 / o Y Legacy
/ p I
m / , Kok Wells

\ / / /

\ // yd /
Producing s /

fields /|° /s y

lelas \ e /
/
/
/
e
j/
// |
T 1
Faults

Figure 2 Simplified CO: plume migration with radial and asymmetrical unintended lateral
migration across lease boundary which could pose a risk of interference to
nearby aquifer, producing fields, and leakage to vertical path (fault and
wells).

20

In practice, the subsurface landscape for CCS is complex (see Figure 3). Rather
than a blank slate with uniform geology, the Gulf Coast is crowded with thousands of
historic hydrocarbon fields, multiple injection projects, extensive fault networks, and tens
of thousands of legacy wells. Individual storage leases often have irregular and fragmented
boundaries, legacy wells and adjacent hydrocarbon fields, all of which limit acceptable
CO:2 migration. In such settings, both plume and pressure must be closely monitored and
managed per EPA requirements (UIC Class VI, 40 CFR 146.84 and 146.90) to ensure

ongoing protection of USDWs and regulatory compliance.

@ rrojectsin development

/Faults
@ weus

Figure 3 A realistic CCS project landscape, featuring overlapping developments,
extensive faulting, and numerous legacy wells, underscores the need for
advanced monitoring and risk management.

These complexities significantly increase the importance of reliable tracking of CO:
plume migration and pressure buildup, thereby elevating the importance and challenge of
the monitoring strategy. Traditional tools, such as time-lapse (4D) seismic monitoring, are
widely regarded as a powerful tool for visualizing CO: plume evolution. It enables the
detection of changes in subsurface elastic properties associated with CO: saturation.

However, seismic surveys are expensive and typically conducted at multi-year intervals,

21

which limits their temporal resolution. In most onshore settings, seismic detectability
thresholds also limit ability to map the actual plume edge, instead providing a somewhat
fuzzy edged detection of the areas of significant CO2 thickness and saturation. A generic
cost estimate based on the IEAGHG Monitoring Selection Tools (IEAGHG, 2019), such
as 2D and 3D seismic surveys, is classified as high-cost due to the sophisticated data
acquisition and processing required. Well monitoring is moderately expensive, while they
evaluate surface monitoring is the lowest-cost option. However, neither monitoring wells
nor surface monitoring provides a map of the subsurface plume that meets UIC regulatory
expectations. It is essential to note that these cost estimates are approximate and may vary
significantly depending on project specifics, technological advancements, and market
dynamics.

This thesis addresses the inefficiencies in monitoring strategies by evaluating the
impact of subsurface uncertainties on CO2 migration. It proposes a cost-effective, targeted
risk-based monitoring framework for unintended lateral migration and supports it through
the time-lapse detectability of CO: plume migration. Using the Miocene fluvial-deltaic
reservoirs of the Texas-Louisiana Gulf Coast as a case study, this research integrates
reservoir simulation and spatial-temporal risk analysis to identify high-risk zones and
optimize monitoring well and survey placement, if necessary, as well as the frequency of
subsurface monitoring. While the workflow is tailored to the Gulf Coast's complex geology
and operational realities, the principles and methodologies are broadly applicable to CCS
projects in diverse geological and regulatory environments worldwide. The overarching
goal is to proactively detect unintended lateral migration of CO», ensure regulatory

compliance, and support CCS's safe, reliable, and economically viable deployment at scale.

22

1.2. OBJECTIVES

The primary objective of this study is to develop a cost-effective, targeted risk-
based monitoring framework for detecting unintended lateral migration of CO: plumes in
geologically complex carbon storage reservoirs. The case study is on the Miocene fluvial-
deltaic formations of the TX-LA Gulf Coast, building from reservoir and seismic models
developed recently by collaborators.

To achieve this, the research is organized into three main parts

1. Characterize Model Uncertainty and CO- Plumes Evolution

Quantitatively assess the spatial and temporal variability of CO: plume migration
using ensembles of reservoir simulations. Identify the range of possible plume extents and
highlight high-risk zones where lateral migration could extend beyond the project
boundaries.

2. Design and Evaluate Risk-Based Monitoring Strategy

Develop spatial and temporal heat maps from fluid-flow simulation results to
identify an optimal monitoring plan, i.e., placement of monitoring wells and seismic survey
frequency. Propose a targeted monitoring approach focusing resources on areas and times
of highest risk, accounting for real-world operational constraints.

3. Identify and Quantify the Limitations of Seismic Detectability

Synthetic seismic response modeling (via Gassmann fluid substitution on gas
saturation maps) generates amplitude maps. Demonstrate that the seismic amplitude
anomaly is consistently smaller than the actual CO: plume extent and explicitly quantify

this gap as the practical limitation in detecting plume migration.

1.3. RELEVANCE

This research introduces a new outlook on carbon capture and storage (CCS)

project monitoring strategies. Traditionally, monitoring design has relied heavily on

23

stochastic or statistical sensitivity analyses, such as tornado plots to evaluate uncertainty.
While useful, these methods often fail to capture the spatial and temporal complexity of
plume migration in geologically heterogeneous reservoirs.

This study moves beyond conventional approaches by expressing model
uncertainty through multiple geological realizations of a base-case reservoir model. Instead
of treating uncertainty as abstract statistical variation, it is visualized as a range of possible
plume behaviors. These variations generate spatial and temporal heatmaps to identify
where and when monitoring should be focused. This approach provides a more intuitive
and actionable understanding of plume migration risk.

Addressing this problem is a multifaceted and relevant issue, encompassing critical
aspects such as environmental protection, reputation maintenance, and operational
efficiency. Effective monitoring is crucial to demonstrating compliance with permit
conditions. Where characterization is insufficient to rule out all undesirable outcomes,
monitoring may also be a safeguard for underground sources of drinking water. Lastly,
monitoring may offer reassurance to a skeptical public and even protection from lawsuits
alleging harm from storage operations (Romanak et al., 2014). These goals must be
balanced against cost. From an operational perspective, inefficient or overly conservative
monitoring can increase costs and compromise the commercial viability of CCS projects,
particularly under today’s tax credit-driven incentives.

The first commercial CCS facility in the U.S., operated by Archer Daniels Midland
Company (ADM) in Decatur, Illinois, a lawsuit against ADM, alleges trespass, nuisance,
and unjust enrichment (Figure 4) due to possible unintended migration of CO: beyond the
operator’s storage lease. This underscores the critical need for effective monitoring to
prevent such infringements and mitigate risks associated with carbon capture projects

(2023CH06676, 2023). The primary evidence in the case is the defendant's reservoir

24

model, which predicted trespass five years into the future. However, whether this
prediction would materialize remains uncertain. Nonetheless, the ongoing lawsuit is a
significant example of the potential repercussions of unintentional migration.

Another allegation against the same operator has been criticized following two CO-
leaks near an underground drinking water source (USDW), raising concerns about
transparency and regulatory oversight (Ramirez-Franco, 2024). The EPA identified
corrosion-induced fluid migration in the deep monitoring well VW#2, prompting ADM to
isolate the affected zones with bridge plugs and confirm that there was no impact on surface
or groundwater (ADM, 2024). While ADM emphasized its commitment to safety and
regulatory compliance, media coverage portrayed the incident in a negative light, fueling
public concern. This contrast between technical containment and public perception
underscores the crucial need for effective, transparent monitoring systems to identify and

mitigate risks, preserve public trust, and counter misinformation.

L4
w
3
z
z
m

700 00 G000 B00 GROD GO0 900 900 MO0 SO0 96000

8

g

§

§ §
3 §
:
§ §
]

§

§

]

&
e e T O T e
00 60 S0 600 S0 600 SH0 66N S0 SX0 5000

W0 00 | 800 | 8000 | 600 | 800 | 0000 | 900 | ™G0 | 000 | 0800

Hel

Figure 4 Forecasted modeled plume fingering south of the lease boundary.
(2023CH06676, 2023)

25

The relevance of this work is underscored by real-world challenges, such as legal
disputes over CO: trespass and public concerns about leaks near drinking water sources.
These issues highlight the need for technically sound monitoring strategies, which are also
transparent, cost-effective, and capable of early detection. By integrating reservoir
modeling, targeted risk-based analysis, and seismic forward modeling, this study provides
a practical framework for enhancing monitoring effectiveness and regulatory compliance
in CCS projects, particularly in geologically complex regions such as the Gulf Coast.
Ultimately, the goal is to nudge the EPA to shift away from conventional methods towards

targeted, parsimonious monitoring where it makes a difference.

1.4. CHAPTER ORGANIZATION

This thesis is structured to build context from the regional and technical
background, through project-specific modeling, into the development and implications of
a new monitoring strategy.

The chapters are organized as follows:

Chapter II establishes the regulatory framework for CCS monitoring on the Gulf
Coast and provides a summary of the relevant geological complexity of the Gulf Coast
explored and its relevance to the anonymized commercial project based on prior work
(Chaves, 2024).

Chapter III details the methodology employed in this research to address the
proposed problem, including ensemble reservoir simulations (Chaves, 2024), the targeted
risk-based monitoring framework developed in this research, and the synthetic seismic

modeling developed by Rebecca Gao and Dr. Sergey Fomel.

26

Chapter IV presents the primary results, including analysis of model-driven
uncertainty, targeted risk-based monitoring, and the operational limits of detectability
derived from synthetic seismic data.

Chapter V discusses broader implications of these results, emphasizing regulatory
compliance, operational decision-making, and economic impact for CCS deployment.

Chapter VI summarizes key findings and recommendations for advancing practical,

targeted risk-based monitoring strategies in geologically complex CCS settings.

27

Chapter II: Research Background

This chapter provides an overview of the role of monitoring in Carbon Capture and
Storage (CCS). Integrating geological and geophysical understanding is important to
support a safe, parsimonious monitoring strategy. The chapter aims to synthesize literature
and regulatory monitoring requirements, subsurface complexity, seismic detectability
based on seismic forward modeling, seismic monitoring technologies, risk-based strategy

development, and an introduction to prior work.

2.1. REGULATORY FRAMEWORK AND THE NEED FOR MONITORING PLANS

The EPA’s Class VI Underground Injection Control (UIC) Rule establishes a
legally enforceable framework for monitoring and verifying the safe operation of geologic
sequestration (GS) projects, with a particular emphasis on protecting underground sources
of drinking water (USDWs). Operators are required to lease pore space for the occupation
of CO.. According to §146.84, owners or operators must predict the lateral and vertical
migration of the carbon dioxide plume using computational modeling grounded in site-
specific data, incorporating heterogeneities and uncertainties in the subsurface, and
consider potential migration pathways such as faults, fractures, and legacy wells.
Furthermore, the model must be updated at least every five years to support the re-
evaluation of the Area of Review (AoR), ensuring ongoing containment and conformance
throughout the entire operational and post-injection lifecycle (UIC, 2013a).

Under §146.90, Class VI projects are required to submit and follow a Testing and
Monitoring Plan that confirms the project operates within permitted parameters and does
not threaten USDWs. This enforceable plan must detail the strategies for monitoring the
extent of the CO: plume and elevated pressure front throughout the project's lifespan. EPA

guidance specifies at least one direct method (such as pressure sensors in the injection

28

zone) and one indirect method (like seismic or electromagnetic surveys), unless site-
specific geology renders these methods unsuitable. EPA guidance emphasizes the
integration of monitoring data with numerical modeling to enhance the accuracy of
predictions, particularly during AoR re-evaluations. Although the EPA adopts a non-
prescriptive approach, this flexibility comes with a requirement for scientifically defensible
monitoring strategies, customized to the site's complexity while still maintaining technical
rigor (UIC, 2013b).

Despite the regulatory flexibility, most operators (e.g. Archer Daniels Midland
Class VI Permit Application for Decatur Project) rely heavily on the EPA guidance, which
suggest one direct and one indirect method may not be sufficient for approval of the Class
VI permit (UIC, 2013b). Most operators appear to base their monitoring plans on an EPA
sample template that includes spaces to fill the blanks for direct and indirect monitoring
methods (U.S. Environmental Protection Agency, 2021). EPA guidance suggests that
repeat 3D is the preferred indirect method, describing it as high resolution. To date, most,
if not all Class VI permit applications on the Gulf Coast have taken that advice and offered
repeat 3D seismic as their indirect method. While that approach may speed permit
applications, it is expensive and logistically complex. A better approach would balance
cost with systematic, site-specific analysis of project risks within the framework of

regulatory requirements

2.2. GEOLOGICAL COMPLEXITY OF THE U.S. GULF COAST

The Cenozoic stratigraphy of the U.S. Gulf Coast consists of highly variable
depositional systems, including fluvial-deltaic complexes, wave-dominated deltas,
strandplain and barrier-lagoon systems, shelf-fed aprons, and submarine fans. (Galloway,

1989; Galloway et al., 2000). This diversity leads to complex and often discontinuous

29

reservoir architectures that are difficult to accurately characterize with limited well logs
(Bridge & Tye, 2000; Krishnamurthy et al., 2022; Larue et al., 2023). Heterogeneities,
including stratigraphic pinch-outs and mudrock baffles, can disrupt lateral and vertical
flow, reduce storage efficiency, and complicate predictions of plume migration. Studies
emphasize that 3D sedimentary facies connectivity plays a critical role in governing both
reservoir quality and plume behavior (Bump et al., 2023; Krishnamurthy et al., 2022;
Meckel & Trevifio, 2014).

Faulting is widespread in the U.S. Gulf Coast and plays a central role in fluid
migration and trapping for many hydrocarbon fields and can be explicitly mapped and
included in fluid flow models. However, minor faults that fall below seismic resolution
(typically <100-200 m in trace length), are difficult to detect using conventional 3D
seismic methods. These sub-seismic faults may not appear continuous, but their
complexity, including slip surfaces and fault steps, influences vertical or lateral leakage
and potentially have a strong impact on plume migration and stabilization (Chaves, 2024;
Pickering et al., 1996).

Faulting is widespread in the U.S. Gulf Coast, where both seismic- and sub-seismic-
scale faults influence fluid migration and plume behavior. While larger faults can often be
mapped from seismic and incorporated into models, sub-seismic faults those with throws
<30 m are below seismic resolution and difficult to detect, yet may still impact pressure
dissipation and vertical containment (Chaves, 2024). German Chaves' work demonstrated
that faults with transmissibility values above 0.1 generally do not significantly alter the
Area of Review (AoR), but their orientation and interaction with high-permeability zones
can influence plume shape.

The presence of historical and existing wells across the U.S. Gulf Coast further

complicates site integrity. These wells particularly those that are poorly documented,

30

improperly plugged, or degraded can act as potential leakage pathways if pressurized CO:
or brine migrates toward them. Their variable construction quality and unknown subsurface
condition make it difficult to ensure long-term containment, creating both environmental
and financial risks. A robust monitoring strategy must include comprehensive wellbore
inventories and integrity assessments, with corrective action plans for any wells located
within the Area of Review (AoR). The AoR is the region surrounding the injection site
where CO: and pressure changes could reasonably be expected to migrate the fluid during
the project lifetime, as determined by numerical modeling. If plume stabilization behavior
1s not well constrained, the CO- could encounter old or unrecorded wells that were not
prepared for exposure, increasing the risk of leakage and remediation costs. This study
directly addresses those risks by evaluating how heterogeneity, fault transmissibility, and
storage conditions affect plume stabilization over time.

The U.S. Gulf Coast is also characterized by complex pressure regimes, including
widespread overpressure zones that can limit the storage window thickness and therefore
storage capacity (Bump et al., 2023). Additionally, high-relief buoyant traps may allow
CO: to accumulate and potentially overcome sealing thresholds, particularly if not
adequately monitored (Bump et al., 2023; Finkbeiner et al., 2001).

In summary, the geological and structural complexities of the Gulf of Mexico
introduce significant uncertainty into reservoir behavior, plume migration prediction, and
pressure evolution prediction, making it a challenging yet essential testbed for developing

risk-based, targeted monitoring strategies to reduce these uncertainties.

2.3. GEOPHYSICS FOR EFFICIENT CO: PLUME DETECTION

Monitoring geologic carbon storage requires geophysical tools that can detect and

delineate CO: plumes with sufficient sensitivity, resolution, and spatial coverage to meet

31

regulatory expectations to “track the plume front” as well as to derisk the operator’s need
to lease the pore space occupied by CO,. Among the available methods, time-lapse (4D)
seismic monitoring stands out as the most widely adopted technique for assessing
conformance and containment. This section focuses on two key pillars: seismic forward
modeling for plume detectability and parsimonious seismic data collection for field-scale

implementation.

2.3.1. Seismic Forward Modeling

Seismic forward modeling determines whether the CO: plume can be detected
under relevant subsurface conditions. The process integrates reservoir simulation outputs
(e.g., saturation maps) with rock physics models to generate synthetic seismic responses.
These datasets help evaluate the seismic detectability of plume-related changes in reservoir

properties.
2.3.1.1. Rock Physics Modeling

Rock physics provides the theoretical foundation for seismic forward modeling by
linking changes in fluid saturation to variations in the elastic properties of reservoir rocks.
Among various approaches, the Gassmann equation is the most widely used, along with
the Biot-Gassmann substitution and other empirical or heuristic models (Kazemeini et al.,
2010; Smith et al., 2003; Vasco et al., 2019).

A common approach utilizes the Gassmann fluid substitution method to calculate
changes in elastic moduli resulting from CO: replacing brine in pore spaces. These
substitutions are performed under several key assumptions: (1) the shear modulus remains
unchanged; (2) fluids are uniformly distributed at the seismic wavelength scale; and (3) the
properties of the dry rock frame, fluid, and solid matrix are well-characterized (Arts et al.,

2004; Smith et al., 2003).

32

The core equations are as follows.

Saturated Bulk Modulus:

Ksat,new = Kdry +

k|~e.
p_x

[
‘S~
5

8

<

Kgry: dry rock frame bulk modulus
K;: solid grain bulk modulus
Ky : fluid bulk modulus

¢: porosity
Bulk density:

Pouk, = (1 — P)ps + ¢py
ps: solid density
py: fluid density

P-wave and S-wave velocities:

4
Ksat,new"';G G
V= [y =
Pbulk, Pbulk,

G: shear modulus (assumed constant)

2.3.1.2. Synthetic Seismic Generation

Once rock physics modeling yields updated values for Vp, Vs, and p, these
parameters forms the basis for generating synthetic seismic responses. In a standard
workflow, the elastic property volumes are used to compute acoustic impedance (Z), which
is the product of p X Vp. These impedance volumes are then convolved with a
representative seismic wavelet (typically a Ricker wavelet) to simulate synthetic

seismograms (Kazemeini et al., 2010).

33

The reflectivity series R is derived from impedance contrasts at layer interfaces.

For normal incidence, the reflection coefficient between two adjacent layers is:

Zy—2Zy p2Vp2— p1Vps

R = =
Zy+Zy paVprt+ piVp

By comparing pre-injection and post-injection states, seismic anomalies associated
with the evolution of the CO: plume can be quantified. Studies have shown that such
modeling significantly informs survey design and improves detection sensitivity,

particularly in heterogeneous reservoirs (Barnett et al., 2025; Smith et al., 2003).

2.3.1.3.Detectability Threshold from Forward Modeling

Seismic forward modeling provides a predictive lens into the detectability of a CO-
plume under real-world field conditions (i.e. presence or absence of the CO: plume),
However, its utility depends on whether modeled anomalies exceed the detection threshold
limits, which are influenced by fluid properties, reservoir conditions, and acquisition
parameters. Detectability is typically assessed by comparing baseline (pre-injection) and
monitor (post-injection) seismic datasets to identify measurable changes in the subsurface
caused by CO: injection (Arts et al., 2004; White, 2011).

The primary diagnostic indicators of the presence of CO: include amplitude
anomalies, often referred to as “bright spots” which arise from CO:-induced contrasts in
acoustic impedance, and travel-time shifts, commonly known as the “velocity push-down”
effect, associated with reductions in P-wave velocity (Arts et al., 2004; Kazemeini et al.,
2010; Smith et al., 2003). Time-shift analysis, which captures the delay in reflected seismic
arrivals, is another commonly used method to infer plume tracking (Arts et al., 2004;
Kazemeini et al., 2010). As a general guideline, a change in acoustic impedance of ~4% is

considered sufficient to produce a detectable anomaly (Barnett et al., 2025).

34

The success of time-lapse seismic depends heavily on rock properties. Lumley
(2013) notes that strong 4D seismic signals are most achievable in rocks with high porosity
and high dry-frame compressibility, which increase fluid sensitivity. For example, at the
Sleipner project, CO- injection into unconsolidated sands led to a P-wave velocity
reduction of up to 60%, creating an apparent velocity push-down effect (Arts et al., 2004;
Lumley, 2010). Likewise, the Ketzin site showed detectable seismic signatures for gaseous
CO:, though background noise and geological heterogeneity reduced repeatability
(Kazemeini et al., 2010).

Detectability is controlled by plume size, CO: saturation, depth, and reservoir
properties (Kazemeini et al., 2010). Larger, shallower plumes with higher saturation levels
are more likely to be detected, while deeper plumes suffer from signal attenuation and
reduced fluid compressibility (Gasperikova et al., 2020). Notably, when CO: rises above
~800 meters, it transitions from a supercritical to gaseous phase, enhancing seismic
contrast due to increased volume and impedance effects (Gasperikova et al., 2020;
Kazemeini et al., 2010; Lumley, 2010). In contrast, the presence of oil can dampen velocity
changes and reduce seismic response (Arts et al., 2004; Lumley, 2010; Vasco et al., 2019).
At Cranfield, low CO: saturation and hydrocarbons-obscured expected acoustic changes,
limiting the reliability of time-lapse seismic in detecting emplaced CO> (Alfi & Hosseini,
2016).

A widely used metric for evaluating time-lapse detectability is the normalized root
mean square (nRMS) difference between baseline and monitor surveys. Values below 0.4
are generally acceptable, and those below 0.2 are considered excellent (Isaenkov et al.,
2021, 2022; Pevzner et al., 2021; Yurikov et al., 2022). For instance, the CO2CRC Otway
Project achieved plume detection with average nRMS values of 0.15 (Isaenkov et al., 2021;

Lumley, 2010). Attaining such performance requires high signal-to-noise ratios (SNR) and

35

precise acquisition design, including dense source-receiver spacing, optimized source
frequency, and advanced processing techniques like migration and stacking (Gasperikova
et al., 2020).

Acquisition geometry also plays a critical role. While denser shot-receiver arrays
improve resolution and image clarity, they increase cost. Conversely, sparse geometries
reduce cost but compromise sensitivity, particularly to small or deep plumes (Urosevic et
al., 2011). Higher source frequencies can enhance vertical resolution but are typically
impractical in deeper settings due to attenuation.

Benchmark studies such as Kimberlina-2 have been instrumental in evaluating
detectability limits. This benchmark simulated 60 years of CO: injection and assessed the
visibility of both primary and secondary plumes—those that migrate beyond the intended
storage reservoir but remain within the storage complex. Results showed that 2D time-
lapse seismic, paired with a 20 Hz wavelet and advanced processing (e.g., Least-Squares
Reverse-Time Migration), could detect deep plumes under moderate noise conditions
(SNR = 2-5). However, detectability declined sharply beyond 1,000 meters in low-SNR
environments. Under ideal, noise-free conditions, 3D seismic with sparse acquisition and
a 10% nRMS threshold was capable of detecting plumes as small as 20,000 tonnes
(Gasperikova et al., 2020, 2022).

Wedge models are synthetic tools used to examine how seismic responses change
with varying thicknesses of fluid-saturated zones. In this study, the wedge geometry acts
as a proxy for a vertically resolved CO: plume, allowing us to assess detectability
thresholds based on plume thickness, saturation, and acoustic impedance contrasts. While
wedge models do not calculate plume thickness directly, they test whether a plume of a
given thickness would generate a detectable seismic response. This is important because

vertical plume resolution i.e., the ability to distinguish the top and bottom of the CO2 plume

36

depends on whether the wedge thickness exceeds the seismic tuning thickness. In this way,
wedge models are an analogue for understanding detectability as a function of plume
thickness, even though direct thickness measurements require other methods such as time-
shift analysis or inversion using well log constraints. Recent studies (e.g., (Barnett et al.,
2025; Li et al., 2024) have also used wedge models to examine the sensitivity of seismic
responses to CO: saturation and diffusion effects. These investigations highlight the
importance of optimizing SNR and accounting for patchy saturation, particularly in
geologically complex formations like the Miocene fluvial-deltaic reservoirs of the Gulf
Coast. According to Barnett et al (2025), time-shift analysis provides a more quantitative
estimate of plume thickness by comparing seismic travel times between baseline and
monitor surveys. The measured At can be converted to changes in velocity and, when
combined with well or pseudo-well information, used to estimate plume extent.

In summary, while seismic forward modeling provides valuable insights into plume
detectability, it remains constrained by plume characteristics, geologic heterogeneity,
depth, and acquisition design. Detectability thresholds often defined through nRMS or
impedance changes carry their own uncertainties, making seismic an inherently indirect
tool. Consequently, low-saturation zones or noisy environments can lead to plume
underestimation plume size, reinforcing the need for cautious interpretation and the
integration of complementary monitoring techniques. Plume underestimation occurs when
seismic monitoring fails to capture the full extent or volume of the CO: plume due to

detection limits, geologic complexity, or weak seismic responses.

2.3.2. Active Seismic Monitoring Methods

Building on insights from seismic forward modeling, field-scale seismic

monitoring provides the operational basis for tracking CO: plume evolution, verifying

37

containment, and identifying potential leakage pathways in geologic carbon storage (GCS)
projects. These methods translate modeled detectability thresholds into real-time or
periodic subsurface observations. Among the most widely deployed techniques are surface
seismic, Vertical Seismic Profiling (VSP), and Distributed Acoustic Sensing (DAS), each

offering distinct advantages in spatial coverage, resolution, and cost.

2.3.2.1. Surface Seismic Monitoring

Time-lapse 3D surface seismic surveys are the most established method for imaging
large subsurface volumes with high lateral resolution. Repeated acquisitions allow for
visualization of CO: plume migration, and deviations from model predictions, The
Sleipner project in Norway exemplifies this approach: since 1996, repeated 3D surveys
have revealed strong amplitude anomalies and velocity push-down effects caused by CO:
accumulation beneath thin intra-reservoir shales (Arts et al., 2004). These signals were
detectable despite being below nominal resolution due to constructive tuning effects. In
some setting pressure effects also can be detected through velocity changes. An increase
in pore pressure reduces effective stress in the rock frame, which lowers P-wave and S-
wave velocities, leading to travel-time delays (time shifts) and subtle changes in seismic
amplitude. At the Snehvit project, pressure was monitored through in-zone measurements,
while the seismic response primarily reflected saturation changes (Alfi & Hosseini, 2016;
Goudarzi et al., 2018; Hovorka et al., 2014).

At Cranfield (Mississippi), surface seismic captured amplitude changes consistent
with CO: injection, although interpretation was complicated due to hydrocarbon
interference (Vasco et al., 2019; Zhang et al., 2013). The initial Otway Project in Australia
demonstrated excellent repeatability (nRMS = 0.2), but the plume signals were subtle due

to low elastic contrast where CO2 was injected into in a depleted gas reservoir (Urosevic

38

et al., 2011). For instance, a 5-meter thick sand layer at 2,000 m depth failed to produce a
clear reflection, as its thickness was only ~5% of the seismic wavelength (Gasperikova et
al., 2020)

The Weyburn Field in Canada illustrates the interpretive complexity of 4D surface
seismic. Here, a 12% decrease in acoustic impedance was observed near injection wells,
attributed to both pore pressure buildup and CO- saturation. To distinguish between these
effects, advanced tools such as converted-wave (PS) data and amplitude variation with
offset (AVO) were used, demonstrating the value of multi-attribute analysis in a
stratigraphically complex, thin, carbonate depleted hydrocarbon reservoirs (White, 2011).

Despite its strengths, surface seismic is constrained by high acquisition costs and
limited repeat frequency and the logistical demands of repeated mobilization of sources
and receivers. These activities can conflict with surface land use, disturb surface
conditions, harm sensitive environments, or raise public concerns. Sparse geometries and
near-surface variability can introduce aliasing and reduce data quality. These limitations
highlight the need to incorporate forward modeling into survey design, particularly in
optimizing source-receiver spacing, wavelet choice, and processing workflows to enhance

signal-to-noise ratio (Gasperikova et al., 2020; Pevzner et al., 2021).

2.3.2.2. Vertical Seismic Profiling (VSP)

VSP offers higher vertical resolution and reduced sensitivity to near-surface noise
compared to surface seismic. By placing geophones in boreholes, VSP captures wavefields
closer to the injection zone, enhancing reliability. At both Cranfield and Otway, VSP
detected plume migration more precisely than surface seismic, especially near the wellbore

(Pevzner et al., 2021; Urosevic et al., 2011).

39

VSP is particularly effective in distinguishing amplitude and travel-time changes,
improving plume interpretability, and aiding calibration of surface seismic data. However,
spatial coverage is limited to the vicinity of instrumented wells, and installation costs can

be substantial, especially for permanent geophones or fiber-optic deployments.

2.3.2.3. Distributed Acoustic Sensing (DAS)

DAS is an emerging technology that transforms fiber-optic cables into dense
seismic receiver arrays. It enables high-frequency, high-density seismic data acquisition
with minimal surface disruption. At Otway, DAS achieved excellent repeatability (nRMS
as low as 0.02) and detected plume-related changes within days of injection (Pevzner et al.,
2021; Urosevic et al., 2011).

DAS offers several advantages, including real-time acquisition, low marginal costs,
and the potential to retrofit existing wells. However, its sensitivity is limited to axial strain
(single component), and it can be affected by thermal or seasonal noise. DAS is best suited
for near-well monitoring and is most powerful when integrated with other seismic tools
across multiple wells.

Both VSP and DAS present operational trade-offs. VSP is limited by borehole
availability and high hardware costs, DAS by signal dimensionality and environmental
factors. Still, when combined, they offer high-resolution subsurface imaging and robust
time-lapse monitoring capabilities (Arts et al., 2004; Isaenkov et al., 2021, 2022; Lumley,
2010; Pevzner et al., 2021; Urosevic et al., 2011).

To contextualize these methods, Table 1 presents a comparative overview of
resolution, relative cost, and EPA preference across various seismic monitoring techniques,

as synthesized from key literature sources.

40

Table 1 Seismic Monitoring Comparison based on Literature Synthesis

. Relative EPA Preference
Method Resolution Cost (UIC, 2013b)
Time-Lapse 3D Surface . 1 (Very
Seismic High (large-area) High) Most Preferred
Vertical Seismic . 2-3 Moderately
Profiling (VSP) Very High (near-well) (Moderate) Preferred
Crosswell Seismic Highest (inter-well) I_I%Ii(g\}lljry Less Preferred
2D Surface Seismic Moderate (line-based) 4 (Low) Least Preferred
DAS (with VSP or . . .
Walkaway) Very High (fiber) 3 (Moderate) | Emerging/Flexible
34
Microseismic Profiling Low (event-based) (Moderate- | Not Recommended
Low)
Focused Seismic . 5 (Very .
Monitoring (Spotlight) Targeted High Low) Emerging
Multi-Component High (fluid/pressure 2-3 Supplementa
Seismic (AVO, PS) differentiation) (Moderate) PP Y

In summary, while active seismic methods remain central to CCS monitoring, each
method has inherent limitations in terms of resolution, sensitivity, spatial coverage, or cost.
High-resolution tools, such as 3D seismic and VSP, offer excellent imaging but are often
expensive or spatially constrained. Emerging technologies like DAS offer real-time
insights but require integration with other methods for comprehensive monitoring. These
trade-offs reinforce the notion that no single tool is universally sufficient, and that
monitoring strategies must be tailored to balance technical capabilities, cost-effectiveness,

and site-specific risks.

2.3.3. Integration with Regulatory Framework

Following the discussion of seismic monitoring technologies, it is essential to

consider their alignment with regulatory expectations under the U.S. Environmental

41

Protection Agency’s Class VI Underground Injection Control (UIC) rule. This rule requires
operators to monitor plume and pressure front migration using both direct and indirect
methods. As described in the Class VI Well Testing and Monitoring Guidance,
“...Resolution and spatial coverage can be high, and, under the right conditions, this
method is ideal for imaging carbon dioxide in the subsurface...” Hence, seismic
monitoring, as an indirect method, is strongly recommended, particularly 3D time-lapse
surface seismic, due to its ability to provide wide-area, high-resolution imaging, as
demonstrated in projects such as Sleipner (UIC, 2013b).

Current best practices one frequently discussed improvement is via hybrid
monitoring frameworks as mentioned in the Class VI Well Testing and Monitoring
Guidance “The most comprehensive understanding of plume and pressure-front behavior
will follow from an integrated interpretation of information collected from a combination
of these method.” These combine intermittent, high-resolution seismic methods with
continuous, lower-cost tools to maximize efficiency without sacrificing containment
assurance. For example, Distributed Acoustic Sensing (DAS) enables near-real-time
monitoring along existing fiber-optic installations, allowing 3D seismic to be reserved for
anomaly-driven investigations e.g. CO2CRC Otway Project in Australia (Pevzner et al.,
2021). Similarly, focused or "spotlight" seismic techniques can reduce cost and deployment
complexity while maintaining adequate detection thresholds. This method aims to predict
optimal source and receiver locations to monitor specific "strategic areas" or "Spots" of
interest, identified through reservoir engineer studies (Al Khatib et al., 2021).

Complementary geophysical methods such as Electrical Resistivity Tomography
(ERT), gravity, and electromagnetic (EM) surveys can further enhance monitoring
capability, especially when seismic sensitivity is limited by depth, saturation, or lithology.

These tools could be particularly effective in high-saturation regions where seismic signals

42

may plateau, and they provide independent lines of evidence for plume evolution and CO:

mass balance (Gasperikova et al., 2020, 2022).

2.4. MONITORING STRATEGY DEVELOPMENT

According to (Hovorka, 2017) the Assessment of Low Probability Material Impacts
(ALPMI) is a structured, hypothesis-driven methodology designed to formally link risk
assessment with monitoring design in geologic carbon storage (GCS) projects. Unlike
conventional resource development strategies that optimize within an expected range of
outcomes, ALPMI focuses on low-probability events that, if realized, would constitute
“material impacts” — quantitatively defined events or trends (specified in terms of
magnitude, location, timing, and certainty) that stakeholders agree are unacceptable — and
therefore “unacceptable outcomes” (e.g., leakage beyond the storage complex or induced
seismicity above agreed thresholds) that signify project failure.

The ALPMI framework involves several key steps. First, it requires the definition
of quantitative and measurable success criteria. Second, it involves modeling potential
material impacts to understand their magnitude, timing, and evolution. Third, the response
of monitoring systems is forward modeled to determine whether these impacts can be
reliably detected above background noise using available equipment at planned spatial and
temporal frequencies. Fourth, monitoring is executed during project deployment. Finally,
the collected data are used to evaluate and report a finding of project success (Hovorka,
2017).

This systematic approach enables thorough documentation of project performance,
supports the development of cost-effective and site-specific monitoring programs, and
provides transparent justification for monitoring decisions to regulators, financiers, and

other stakeholders. While this research draws on the ALPMI framework for inspiration, it

43

modifies its initial steps to introduce a new “model-map—monitor” method. Building on
previous work by Chaves (2024), which defined and modeled a failure scenario (Step 1),
this study primarily focuses on Step 2, assessing whether that scenario meets the success
criteria and partially addresses Step 3 by simulating the monitoring response, although

noise is not included.
2.4.1. Prior Work

In this study, a material impact is defined as an unacceptable outcome such as loss
of containment that important stakeholders would consider project failure. One potential
pathway to such an outcome is CO: plume migration beyond the lease boundary or
prepared Area of Review (AoR), potentially triggering regulatory or operational
consequences. This thesis builds directly on prior work by Chaves (2024), which modeled
how subsurface uncertainty could lead to such triggering events, thereby causing material
impacts, in the context of CO: plume migration and Area of Review (AoR) delineation in
CCS projects.

The study systematically evaluated how sub-seismic faults and fluvial channel
heterogeneities influence plume behavior, pressure buildup, and containment integrity.
Using a combination of simplified box models, single flow-unit models, and a full-field
model, prior work identified key risks, including lateral plume migration beyond lease
boundaries, vertical leakage along faults or legacy wells, and loss of injectivity. While sub-
seismic faults were confirmed as a significant uncertainty, their effect on the AoR was
found to be minimal under realistic transmissibility values (>0.1), becoming consequential
only in extreme scenarios. Notably, the study also demonstrated that low-permeability

zones can act as pressure buffers, supporting the concept of composite confinement. These

44

findings underscore the importance of high-resolution reservoir characterization and risk-

based simulation in developing more efficient and defensible monitoring strategies.
2.4.1.1. Single flow-unit model

The single flow-unit model, originally developed by Chaves (2024) with support
from Dr. David Hoffman, is based on a structural framework for a CCS project located on
the Texas—Louisiana Gulf Coast. The project name and location remain confidential. The
dip direction of the structure is NE-SW, which strongly controlled modeled plume
migration. The input geological model incorporates seismic interpretations, mapped
horizons, hundredths of well log data, and was discretized at high resolution (143 x 189 x
231 cells, with 500 ft x 500 ft lateral spacing and 19 ft vertical resolution). For dynamic
simulation, a representative 200-ft-thick flow unit at a depth of about 5000 ft was extracted
from the total 2800 ft thickness of the prospective reservoir and modeled using a 143 x 189
x 10 grid (270,270 cells), balancing computational efficiency with sufficient spatial
fidelity.

The simulation assumes an injection period of 30 years, followed by 170 years of
post-injection monitoring, for a total simulated duration of 200 years. During injection, 1
million tonnes of CO: per year (1 Mtpa) is injected into the selected interval. This results
in a total of 30 million tonnes of CO: injected over the 30-year period. While the broader
storage formation may include multiple flow zones, this study focuses on a representative
200 ft-thick single flow unit, chosen to evaluate performance, plume behavior, and
monitoring needs in high resolution.

To systematically capture geological uncertainty, in Chaves’s study, Dr. Dave
Hoffman created four end-member fluvial channel geometries—Continuous Narrow,

Continuous Wide, Discontinuous Narrow, and Discontinuous Wide—He derived

45

variograms inputs defining the range of channel geometries based on published seismic
amplitude data and variogram modeling (Figure 5). Based on the thesis, "published seismic
amplitude data" primarily refers to seismic amplitude extractions, which are visual
representations derived from 2D and 3D seismic data. These extractions are used to identify
and characterize channel geometries such as their width, thickness, wavelength, and trends,
serving as a key source of information for understanding sand distribution and depositional
patterns within the geological models. Petrophysical property distributions, including sand
fraction (Vsand), porosity, and permeability were generated using sequential Gaussian
simulation (SGS) and co-kriging, with Vsand as the primary conditioning variable.

To further explore the potential for lateral migration and containment failure,
Chaves introduced derived and systematically tested based on probabilistic predictions
from actual data and correlations to generate synthetic sub-seismic faults in four
orientations (0°, 45°, 90°, and 135°). Fault orientation refers to the direction the fault traces
across the reservoir and assigned a range of transmissibility values (0 to 1) which represent

how easily fluids can flow across the fault plane to simulate worst-case scenarios (Figure

6).

N “ e 1
MU RIS R B Saashes
O = X P = \ O s % & B
19 5
SR AL \ I S s y '
D 3 = ,
R 9 \ Vi R T
§. N \ A % N A 3 { . " x
N X \ o) 4 \
N B f N f N \ ' A X '
Continuous- Continuous- Discontinuous- Discontinuous-
Narrow Wide Narrow Wide

Figure 5 Fluvial Channel Geometries Representing Subsurface Uncertainties. Four end-
member fluvial channel configurations used in the single flow-unit model:
(a) Continuous-Narrow, (b) Continuous-Wide, (c¢) Discontinuous-Narrow,

and (d) Discontinuous-Wide.

46

Fault transmissibility

Figure 6 Synthetic Sub-Seismic Fault Configurations and Transmissibility Values
illustrating the fault orientation (0°, 45°, 90°, 135°) and transmissibility
(from 0.0 to 1.0).

Combining the four geological models with fault orientations and transmissibility
values resulted in 64 unique simulation cases to assess CO: plume migration under
geological uncertainty in CMG (Figure 7) Modeled CO: plume saturation at Year 200
across the ensemble of realizations. Each subplot represents a unique combination of
geological parameters. Quadrants reflect variations in fluvial channel characteristics (e.g.,
width, continuity, orientation); columns vary by sub-seismic fault transmissibility; and
rows vary by fault orientation. All models are oriented along a general NW—SE dipping
direction. The figure illustrates how interactions between fluvial architecture and fault
properties influence plume stabilization under uncertainty. 1.0 Mtpa of CO: injection from
a single well. into a single-flow unit was simulated for 30 years of injection and 170 years

post-injection, totaling 200 years of simulation.

47

Sub-seismic: Fault Transmissibility

0.01 0.1 1 [0 [0.01 | 0.1

[E

Continuous- Narrow Continuous- Wide

T
-
T
YT
T
I

TYTTT?

i

i

(el

YIFITTY

45°

v
YriviT
S

TYTITTY
1131314
"y

90°

{444
(ir/

T
THiY
roiTe

135°

Discontinuous- Narrow Discontinuous- Wide

E

i
Foed /l’l’/

T

E

i

(eaiii

Sub-seismic: Fault direction

faed Foadl

T
Yrvier

1444
(447

ot

faad
(141

T

45°

90°

rrrTe
\wyirre
wrroer
T

135°

Figure 7 CO: plume saturation at Year 200 across model realizations. Quadrants vary by
fluvial channel characteristics, columns by fault transmissibility, and rows
by fault orientation. All models dip NW-SE.

2.4.1.2. Full-field model

The full-field model (Figure 8) provides a deterministic view of a single flow-unit
incorporating the same operator-supplied structural data, faults mapped using 3-D seismic,
and well information as the 64 models. The reservoir grid is defined at 286 x 318 x 200
cells (250 ft x 250 ft x 14 ft), with additional vertical refinement in injection zones. Where
export artifacts required it, simulation faults replaced original structural faults to preserve
continuity. The original framework faults caused gridding issues in the simulation model,
so they were replaced with simplified “simulation faults” that preserved fault geometry but
avoided artifacts during property distribution and flow simulation.

Petrophysical property fields were generated using Sequential Gaussian Simulation
(SGS), conditioned by lithofacies from Sequential Indicator Simulation (SIS), and

informed by regional depositional trends. A water injection step rate test (SRT) provides

48

the observational data used to calibrate the model by adding and permeability multipliers
to match observed pressures, resulting in a robust static model ready for dynamic

simulation in CMG (Chaves, 2024).

Figure 8 Full-field facies model with faults mapped from 3-D seismic. The model spans
approximately 71,500 ft x 79,500 ft (~21.8 km x 24.2 km) horizontally with
a total vertical thickness of 2,800 ft (~0.85 km).

Chaves created a full-field dynamic simulation model using a static model exported
from Petrel (Figure 8) and imported into CMG software as rescue file format. The model
retained the original grid dimensions and included three facies with calibrated relative
permeability and capillary pressure curves. He adjusted these inputs using lab data and
published correlations to match field conditions. Closed boundary conditions were applied

using volume and transmissibility modifiers. The full-field model represents a confidential

49

CO: storage site and therefore the exact location is not disclosed. The model spans
approximately 71,500 ft x 79,500 ft horizontally, with a total vertical thickness of 2,800 ft.
It consists of 286 x 318 x 200 grid cells, with 250 ft horizontal and 14 ft vertical resolution.
The model includes all Miocene injection flow units and the overlying sealing formation,
with vertical refinement applied in the injection interval for improved simulation accuracy.
The simulation included three injection wells operating over a 15-year injection period,
followed by 50 years post-injection monitoring. CO2> was injected into the Miocene
formation under pressure constraints.

Additionally, sub-seismic faults with a 0° orientation were incorporated to assess
their impact on plume migration and pressure distribution, with fault transmissibility
evaluated as a sensitivity parameter. However, only the base case without geological or
fault-related uncertainties was used for the current study, as the primary objective was to

determine the detectability threshold rather than to analyze uncertainty.

2.5. GAPS IN LITERATURE

Although seismic methods remain a central component of geological carbon
storage (GCS) monitoring, their practical limitations predominantly in deep or geologically
complex reservoirs continue to challenge their site-specific and cost-effective application.
Much of the existing literature focuses on improving the seismic toolset itself, such as
refining forward modeling workflows or optimizing acquisition parameters. Commonly
cited issues include signal masking in stiff formations and patchy saturation effects that
reduce signal repeatability and detection accuracy. However, this body of work tends to
assume that seismic will always be the default monitoring solution, rarely questioning

whether it should be applied uniformly across all project areas.

50

Rather than advancing seismic modeling or maximizing tool sensitivity, this
research takes a step back to reconsider the monitoring design process itself. It asks not
how to monitor better everywhere, but where monitoring is actually needed—and when it
provides value. Instead of deploying blanket surveys or making tool selections in isolation,
this study uses ensemble-based reservoir simulations, grounded in existing geological
models, to evaluate the spatial and temporal uncertainty of CO: plume behavior. From this,
the ALPMI method of identifying when and where material impacts may occur are used to
determine where monitoring should be focused.

This reservoir-model-guided monitoring approach lays the foundation for a model-
informed, risk-based monitoring framework. It shifts the focus from tool-driven monitoring
to risk-driven design, creating a pathway for selecting the most appropriate tools—seismic
or otherwise—based on the risk profile of specific zones and timeframes. By doing so, it
avoids the inefficiencies of one-size-fits-all strategies and offers a more defensible and
cost-effective alternative aligned with regulatory expectations.

In summary, while previous studies have focused on improving the precision of
monitoring tools or detecting minimum thresholds, this research redefines the monitoring
challenge. It reverses the typical workflow starting not with the tools, but with the reservoir
and builds a “model-map—monitor” framework to guide adaptive, site-specific monitoring

based on actual plume migration risk, rather than technical capability alone.

51

Chapter II1: Methodology

This chapter presents the workflow developed to assess and optimize monitoring
strategies for detecting unintended and materially consequential lateral CO: plume
migration. Building upon the static and dynamic reservoir models described in Chapter II.
The methodology integrates two core components: (1) targeted risk-based monitoring
strategy, and (2) seismic forward modeling for detectability assessment. The reservoir of
interest is a Miocene fluvial-deltaic system located on the Texas-Louisiana Gulf Coast,
characterized by significant geological complexity, including heterogeneous channel
architectures, sub-seismic faults, salt domes, and legacy wells. All analyses utilize
industry-standard platforms, including Petrel and CMG, with additional data preparation
and processing conducted in Python and synthetic seismic generation in Madagascar. This
integrated approach aims to deliver a cost-effective, new risk-based monitoring framework

tailored to the challenges of complex subsurface environments.

3.1. INPUT RESERVOIR MODELS

The methodology presented in this chapter utilizes two primary reservoir models
developed and described in prior work by (Chaves, 2024) as inputs for all subsequent
analyses: a single flow-unit model and a full-field model. The single-flow-unit model is
designed to probe key aspects of geological uncertainty at a spatial resolution. In contrast,
the full-field model captures the broader reservoir context and dynamic behavior, which is
used in the full-field synthetic seismic forward modeling. Both models incorporate static
components (geological property modeling) and dynamic components (fluid flow
simulations) to represent spatial heterogeneity and time-dependent plume migration

accurately.

52

3.2. TARGETED RISK-BASED MONITORING STRATEGY

Conventionally, stochastic sensitivity analysis is used to inform monitoring design.
Instead, this study generates spatial-temporal heatmaps from ensemble reservoir models to
guide monitoring deployment. Rather than using model outputs for post hoc interpretation,
this method actively informs monitoring decisions, integrating risk and cost within a
practical framework that can be readily applied in real-world projects. This study develops
a parsimonious, targeted risk-based monitoring approach using outputs from model
simulations. Rather than relying on statistical summaries like tornado plots, each
simulation represents a physically plausible outcome, ensuring the monitoring design
reflects the full spatial and temporal uncertainty of the reservoir.

The core innovation of this study is visualizing uncertainty as spatial and temporal
variations in plume behavior with heatmaps. By overlaying footprints of the 20
realizations, the heatmaps highlight “hot zones” where plume divergence is most
significant. This enables a shift from assumption-based to data-driven surveillance, guiding
monitoring where variability—and thus risk—is highest. The workflow integrates three
components: (1) expressing model uncertainty, (2) generating heatmaps, and (3) enabling

targeted monitoring that maximizes detection confidence with minimal cost.

3.2.1. Expressing Model Uncertainty

This study addresses model uncertainty by analyzing gas saturation results from
single flow-unit model simulations originally developed by Chaves (2024), while the
original analysis focused on both the CO: plume and the pressure front (Area of Review
(AoR), this research examines only the CO: plume migration specifically, namely the
spatial extent of CO- saturation over 200 years. In total, there were 64 unique models, as
mentioned in Chapter 2, with different uncertainties tested, such as fluvial channel

geometries and subsurface fault uncertainties due to orientation and transmissibility. To

53

capture the most extreme behaviors, 20 representative (Figure 9) cases were selected,

corresponding to fault transmissibility values of 0 (sealed) and 1 (fully open).

~

0759-g 07
4

~APRED N

T
T

g o
s 1
2 5l
2213028

3086007

4
st
‘?i@ﬁﬁ?_

9.
9
9

pernasy

ssiTen
S
& g
| I’an"f. []
SKESEES

7
=t

W

87:
2%

=

ey

3
ki

T
SAEE

6 925830078

! 076

] 9.26540-07
0.76%8.

] tu?»:?
. ‘427» 07
\ 3272e-07.

o
|
° 3 & 5 ;
g 8 §] S
Tllllﬂ‘f 'Tll(lll"l: "(™
£8 —v\;ﬁhcu ; SherEES
i i i 1
g 3
| .‘l""".‘r. il o
SALEEES 5

Figure 9 20 representative COx: realizations. The base case is highlighted with a square.

Simulation results were exported from CMG in (Simulation Input File, .sif') format
(see Appendix A). The .sif format organizes data by property and time step, listing each
cell’s property value (such as gas saturation) in sequence, but does not include explicit
spatial coordinates. This preserves site confidentiality and supports efficient parsing for
analysis.

A Python workflow (see Appendix B) was developed to process these files,
extracting gas saturation values for every cell and time step. The workflow reconstructs 2D
grid maps by assigning each cell’s gas saturation value according to its grid indices. For
visualization and comparison, a “max aggregate” approach was employed: for each (I, J)

grid cell, the maximum gas saturation value observed across all K layers (vertical cells)

was assigned, resulting in a plan-view map of the plume’s areal extent at each time step.

54

This approach enables the creation of gas saturation maps that closely match those
produced in CMG, as shown in Figure 9, providing clear snapshots of plume growth and

lateral migration for comparison and quality control.
3.2.2. Generating Heatmaps

3.2.2.1. Spatial Analysis of Plume Migration

The study employs a Python-based workflow (see Appendix B) to map and
compare CO: plume movement across various simulation scenarios with the base case. For
each case and time step, the gas saturation grid is converted into a binary map: grid cells
with more than 1% CO: saturation are marked as 1 (indicating the presence of a plume),
and the rest are marked as 0. These binary maps display the spatial footprint of the plume
in a clear and consistent format.

The base case is processed in the same way to produce a binary reference map.
Then, for the remaining 19 cases representing unintended lateral plume migration, the
binary plume maps are aligned and stacked together. For each cell, the binary values from
all cases are summed. The result is a single composite map where the value of each grid
cell reflects the number of scenarios in which CO: was present at that location. A cell with
a value of 0 indicates no plume presence in any case, while a value of 19 indicates that all
cases resulted in plume presence at that location. This stacking procedure reveals the
variability in plume migration across the ensemble of model realizations.

To identify deviations from the base case, this stacked heatmap is compared to the
base case plume map by subtraction. The difference highlights areas where plume
migration in the ensemble diverges from the base case, which are referred to as mismatch
zones. However, simply subtracting the base case plume map from this stack produces a

mismatch map that reflects both under- and over-prediction relative to the base case.

55

Crucially, this “mismatch” includes areas that were part of the base plume and are therefore
not necessarily unexpected. To isolate the additional migration not seen in the base case,
an “additions only” map is computed by identifying cells where CO: is present in the
ensemble stack but absent in the base case. This reveals the plume expansion attributable
to uncertainty, distinguishing risk-prone regions where plume behavior deviates from the
base case.

This two-step binary approach (1) stacking ensemble plumes and (2) subtracting
the base provides a more meaningful and spatially resolved comparison. It moves beyond
basic anomaly detection and offers direct insight into where monitoring effort should be
focused, relative to modeled expectations. Ultimately, this lays the foundation for a model-
informed monitoring design.

Finally, the stacked values are visualized as a heatmap: “hot zones” corresponds to
grid cells where the plume occurs in many cases, indicating a high probability of
unintended CO: migration. These persistent areas become monitoring priorities. This
layered approach, binary conversion, ensemble stacking, base comparison, and heatmap

visualization, offers a targeted, risk-informed basis for model-guided monitoring design.

3.2.2.2. Temporal Analysis of Plume Migration

Based on spatial observations that plumes can migrate preferentially in various
directions depending on geological and fault conditions that may not be defined
deterministically but can be provided probabilistically, a temporal analysis can be
conducted to evaluate plume migration dynamics over time along the preferential direction.
A Python workflow (see Appendix B) was developed to track the maximum distance in
grid cells that the CO: plume extends from the injection well for each simulation case each

year. For every grid cell exceeding the detection threshold (gas saturation > 0.01), the

56

Euclidean (straight-line) distance from the well location was calculated using the square
grid indices (I, J). Migration distances are reported in the number of grid cells, providing a
flexible framework for relative comparison across scenarios; conversion to physical
distance is straightforward by multiplying by the actual grid cell size. This study presents
results in grid cell units, focusing on migration patterns and trends, with the option to
convert to real-world distances in future analyses.
The Euclidean distance:
Distance = v/ (I — Iyen)? + (J — Jwen)?

The farthest plume extent from the well was recorded for each simulation year,

generating a time series of maximum migration distances. Scenarios were classified as
“hot” or “cold” based on their maximum plume extent in the final simulation year: cases
with a migration distance greater than 40 grid cells were designated as “hot,” while those
below this threshold were considered “cold”. This threshold is determined based on
observation. This classification and the base case were visualized using time-evolution
plots, allowing for a direct comparison of plume migration trends, variability, and outlier
behaviors across all realizations. This temporal analysis provides a robust tool for
identifying riskier migration scenarios and informs the development of targeted monitoring

strategies throughout the operational and post-injection phases of the project.

3.2.3. Enabling Targeted Risk-Based Monitoring

By integrating both spatial and temporal analyses of plume migration, this
workflow enables the development of a truly targeted, risk-based monitoring strategy. The
spatial heatmaps identify specific locations where the CO: plume is most likely to migrate
or where the highest variability is observed across multiple scenarios, effectively

highlighting persistent “hot zones” that warrant close surveillance. Temporal analysis

57

complements this by revealing when plume migration is most active, allowing monitoring
efforts to be concentrated not only in space but also during key time windows. Together,
these insights eliminate guesswork and allow monitoring resources to be deployed
precisely where and when they are most needed. This approach ensures that the monitoring
program is both scientifically robust and cost-effective, directing investment to areas of
highest risk, maximizing early detection of anomalous migration, and fulfilling regulatory
and operational requirements with maximum efficiency. Ultimately, this risk-based
methodology transforms monitoring from a broad, assumption-driven exercise into a

focused, data-informed process tailored to the actual behavior of the subsurface system.

3.3. SEISMIC FORWARD MODELING AND DETECTABILITY ANALYSIS

The second part involves conducting seismic forward modeling and detectability
analysis on the full-field model. With the full-field reservoir model established, the next
stage was to systematically prepare input data for seismic forward modeling to evaluate the
detectability of CO: plume migration. For this purpose, the full-field reservoir model
served as the basis for all subsequent geophysical analysis.

The static reservoir facies model was discretized on a grid of 288 x 314 x 200 cells
(totaling over 18 million cells), with an average vertical resolution of 10 feet and horizontal
resolution of 250 feet exported from Petrel. Additionally, relevant well log data,
specifically compressional and shear wave velocities, and bulk density, were compiled to
provide the necessary elastic property inputs for the seismic modeling workflow. Time-
lapse gas saturation outputs from dynamic reservoir simulations (spanning 15 years of
injection and 50 years of post-injection, for a total of 65 years) were also exported as

properties from CMG.

58

Both datasets were converted to Geostatistical Software Library (GSLIB) format
(see Appendix C) to ensure compatibility with the Petrel and Madagascar software. The
GSLIB format was chosen because it retains location information in the X, Y, and Z
directions, which is crucial for accurate seismic modeling in Madagascar and analysis in
coordinate-specific software, such as Petrel, as well as for ease of data transfer between
software. The prepared datasets were then passed to collaborators Rebecca Gao and Dr.
Sergey Fomel for seismic forward modeling. Most data preparation and transformation
steps were conducted in Python (see Appendix D (Gao et al., Unpublished)), including
filtering non-physical values, normalizing data ranges, and structuring all input variables
for integration into the seismic modeling workflow.

The first significant step in the seismic workflow was the regularization of the
original non-uniform grid, which involved interpolating missing data and populating
elastic property parameters (see Figure 10). After regularization, the grid was refined to
288 x 314 x 420 cells (nearly 38 million cells), with the vertical resolution (Zinc) improved
to 5 feet, while the X and Y dimensions remained unchanged. Variogram analysis, using
available field log data, supported the spatial modeling of P-wave velocity, S-wave
velocity, and bulk density, ensuring the resulting elastic property cubes reflected realistic

geological trends.

59

Figure 10 Facies model original grid 250 ft x 250 ft x 14 ft (left), regularized new grid
(right) 250 ft x 250 ft x 5 ft.

The original facies model from Chaves (2024), shown on the left in Figure 10, was
constructed on a non-uniform grid with numerous missing or null cells, resulting in gaps
and discontinuities that hindered subsequent seismic forward modeling. The model was
regularized and refined vertically to overcome these limitations by interpolating missing
values and resampling the property data onto a uniform, high-resolution grid. This process,
illustrated on the right in Figure 10, produced a continuous and fully populated facies
model that preserves key geological features while ensuring compatibility with geophysical
simulation workflows.

To simulate the seismic response of CO- injection, the Gassmann fluid substitution
method was applied in Python (see Appendix D (Gao et al., Unpublished)). This approach
estimates changes in elastic properties, most importantly, compressional wave velocity and
bulk density, resulting from CO: replacing brine within the reservoir's pore space.
Accurately capturing these changes is crucial for generating realistic synthetic seismic data

that accurately represents evolving reservoir conditions. (Li et al., 2024; Smith et al., 2003).

60

Using these property cubes and time-dependent saturation data, full-stack synthetic
seismic volumes were generated at a dominant frequency of 28 Hz using Madagascar (see
Appendix E (Fomel, 2024; Fomel et al., 2013; Gao et al., Unpublished)). The modeling
process included facies-to-property mapping, application of fluid substitution, calculation
of acoustic impedance, depth-to-time conversion, and convolution with a representative

seismic wavelet, resulting in synthetic seismic images in depth Figure 11.

Figure 11 Synthetic Seismic cube visualization in Petrel (Collaborators: Rebecca Gao and
Dr Sergey Fomel) The cube spans approximately 72,000 ft x 78,500 ft
(~21.95 km % 23.93 km) horizontally and 2,100 ft (~0.64 km) vertically, at a
resolution of 250 ft x 250 ft x 5 ft.

Once the synthetic seismic data were generated, the files were formatted and
exported in GSLIB format and subsequently imported back into Petrel for amplitude-based
detectability analysis. This final stage enabled quantitative evaluation of the seismic
response to varying CO: saturation and the identification of plume detection thresholds,
establishing the minimum conditions required for effective seismic monitoring in this
geological setting.

In summary, this chapter presents a two-part methodological framework that
combines spatial-temporal risk analysis and seismic forward modeling to inform the design

of CO: plume monitoring. By leveraging ensemble reservoir simulations, heatmap-based

61

uncertainty mapping, and synthetic seismic generation, the study presents a technically
robust and cost-effective approach to developing monitoring strategies. The following
chapter builds on this foundation to evaluate the detectability and monitoring performance

across different scenarios, ultimately guiding more effective subsurface surveillance

62

Chapter IV: Results & Analysis

This chapter presents the results derived from the simulation workflows introduced
in Chapter III, grounded in the geological context and model setup outlined in Chapter II.
The results are organized according to the study’s two-pronged methodology: (1) risk-
based spatial and temporal analysis of CO: plume migration, and (2) seismic forward
modeling for detectability assessment. Together, these findings support the development
of a cost-effective, model-informed monitoring strategy for geologic carbon storage in

complex subsurface environments.

4.1. INPUT RESERVOIR MODELS

All results in this chapter are derived from the two reservoir models previously
described the single flow-unit model and the full-field model. While Chaves (2024)
evaluated both the CO: plume and the pressure front to inform the Area of Review (AoR),
the present analysis focuses solely on the plume to support detectability and monitoring
design.

A single 200 ft thick flow-unit model was used to evaluate geological uncertainty
across 64 realizations, varying fluvial channel architecture, fault orientation, and fault
transmissibility over a 200-year simulation. As discussed in Chapter II, prior results
demonstrated relatively minor variation in plume extent, suggesting robust plume
containment under a wide range of conditions.

In contrast, the full-field model (2,800 ft thick, covering an area of approximately
71,500 ft x 79,500 ft, with three injection wells and large-scale faults represented by
simulation faults) was used to generate a baseline plume saturation map (Figure 12) for

seismic forward modeling. Sub-seismic faults uncertainty were omitted to isolate the

63

detectability of the plume under conservative conditions, justified by earlier findings

showing limited impact of sub-seismic faults on plume shape and extent (Chaves, 2024).

0.500

=~0.400

=0.300

=0.200

93257e07~

Actual Scale: 1:0

Y/X: 1.000000:1

Axis Units: ft

Total Blocks: 18,086,400
Active Blocks: 16,402,100

Figure 12 Full-field model (base case) CO: plume saturation clipped to extent of the
plume only.

Although the full-field model was originally developed by Chaves (2024) for Area
of Review (AoR) analysis, this study repurposes the same model to evaluate CO2 plume
detectability. The base case gas saturation map (Figure 12) was extracted directly from the
original full-field simulation but is interpreted here through a different lens focusing on

plume shape and detectability rather than pressure footprint. The rounded plume geometry

64

observed in this base case served as a foundational reference for both the uncertainty

analysis presented and the seismic detectability assessment in Chapter III.

4.2. TARGETED RISK-BASED MONITORING STRATEGY

This section presents a targeted monitoring strategy derived from spatial and
temporal analyses of CO: plume migration under geological uncertainty. Departing from
traditional sensitivity plots like tornado diagrams, this study adopts a spatially resolved,
ensemble-based approach using outputs from the single flow-unit model. The smaller grid
size of this model allowed for efficient simulation across 64 scenarios, capturing a wide
range of uncertainty in fluvial architecture and sub-seismic fault behavior. As established
by Chaves (2024), these uncertainties have minimal effect on AoR determination, but their

influence on plume shape remains critical for monitoring design.

4.2.1. Spatial Analysis

Heatmaps were generated from 20 representative cases of the single flow unit
model to visualize where and when to monitor CO: migration, providing spatial and
temporal insights. These maps were produced by converting each case’s gas saturation
output into binary plume footprints using a threshold of 0.01. At each time step, these
binary grids were aggregated across scenarios to generate stacked plume maps and
heatmaps.

Figure 13 presents the results over five-time steps—Years 5, 10, 15, 30, and 200—
across three rows:

i. The top row shows the evolution of CO: gas saturation of the base case plume.
ii. ~ The middle row displays the stacked CO: gas saturation plume footprints from the

19 failure cases.

65

iii. ~ The bottom row shows heatmaps (number of cases) of the differences between the
stack and the base case.

In the top row, the plume expands steadily outward from the injection point
(marked with a cross), growing in size and gas saturation over time. Its geometry remains
relatively symmetric and rounded through Year 200, consistent with stable containment
behavior which exhibit similar shape to the base case plume front in Figure 12. Most CO:
gas saturation accumulated around the injection well with hot red and yellow colors, while
the edges have lower concentrations of CO: gas saturation in green.

The middle row shows the maximum aggregated CO. gas saturation of the
composite of the 19 failure cases. At early time steps (Years 5 and 10), the plume footprints
are compact and similar to the base case. By Year 15, however, plume asymmetry emerges,
and by Years 30 and 200, the plume becomes more elongated and biased toward the
northwest. These footprints are visibly larger and more irregular, indicating divergence
among the failure cases.

The bottom row presents the heatmap of deviations between the base case and the
ensemble. The color scale reflects the number of scenarios in which COs: is present at each
location. White indicates both the base case and no case presence; yellow to red shows
increasing overlap. Early in the simulation, differences are minor and concentrated near
the injection well. Over time, the plume spread becomes broader, with higher
concentrations in the northwest quadrant, highlighting where the ensemble deviates most
from the base case.

This sequence of images captures the temporal evolution of CO: plume behavior
across scenarios, including where divergence begins and how it intensifies. Areas with
consistently high overlap across cases (i.e., red/orange regions) represent persistent

migration paths, while regions of low overlap indicate greater uncertainty. These heatmaps

66

help identify potential monitoring zones based on where plume differences are most
consistently observed.

In summary, the spatial analysis reveals a clear temporal trend in plume expansion
and variability across scenarios. The base case shows gradual, symmetric growth, while
the ensemble cases exhibit increasing lateral spread and geometric asymmetry over time.
The stacked plume maps demonstrate a consistent northwest bias in plume migration,
especially in later years. The deviation heatmaps highlight specific regions where plume
presence differs most frequently from the base case, with differences becoming more
pronounced after Year 15. These spatial patterns form the observational basis for
identifying priority monitoring zones in areas of highest scenario overlap and plume

variability.

67

» B & B

Year5 Year 10 Year 15 Year 30 Year 200

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Gas Saturation

Year5 Year 10 Year 15 Year 30 Year 200

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Gas Saturation

- g WA
+

+ + + +

Year 5 Year 10 Year 15 Year 30 Year 200

0 11 14

2 5 8
Number of Cases with CO: Plume Difference

Figure 13 Base case (top), Stacked plume (middle), and heatmaps (bottom).

68

4.2.2. Temporal Analysis

Temporal analysis was conducted by tracking the maximum CO: plume migration
distance from the injection well over time for all 20 scenarios, using the dominant
migration path observed, which in this case trends updip toward the northwest. Migration
distance was measured in grid cells, and results were plotted across the entire 200-year
simulation period (Figure 14). By plotting migration distance versus time, two distinct
clusters are observed: one group behaves similarly to the base case (black dotted line), and
the other group migrates farther. For purposes of our study, this long migration path
defined as unacceptable.

Figure 14 presents the full 200-year evolution of migration distances for all cases.
The base case (black dashed line) demonstrates a steady and predictable plume migration
pattern over the 200-year simulation period. During the early phase (010 years), the plume
expands gradually, reaching approximately 10 grid cells, indicating stable containment.
Between Years 10 and 50, migration continues at a moderate pace, ultimately plateauing
just below 30 grid cells by the end of the simulation. This behavior reflects symmetrical
plume growth. The consistent and bounded nature of the base case serves as a reference for
acceptable plume migration, against which more aggressive or erratic behaviors in the
failure scenarios can be evaluated.

In the early years (0—10), all scenarios show nearly identical behavior—the plume
expands gradually and symmetrically, and the migration distance remains within a narrow
range. This tight clustering reflects low initial uncertainty and predictable plume behavior
during the injection phase.

After Year 25, the contrast between the two clusters sharpens. One group colored
in cooler shades (blues) plateaus under 30 grid cells, showing good agreement with the

base case. The other group colored in warmer hues (yellows to reds) migrates well beyond

69

40 grid cells, indicating larger lateral plume spread. The threshold 40 grid cells are based
on interpreter observation. This divergence continues throughout the post-injection phase,

with some scenarios reaching over 80 grid cells by Year 200.

— Base Case
—— Casel
—— Case 2
—— Case 3
Case 4
Case 5
—— Case 6
—— Case 7
—— Case 8
Case 9
Case 11
Case 12
Case 13
Case 14
—— Case 15
Case 16
Case 17
Case 18
—— Case 19
—— Case 20

(grid cells)

Migration distance

0 25 50 5 100 125 150 175 200

Time (years)

Figure 14 Migration distance versus time for 200 years. Dashed line indicates end of
injection at 30 years.

Figure 15 zooms in on the first 50 years of plume migration to highlight the onset
of divergence in finer detail. During the initial 5 years, migration distances across all
scenarios are nearly indistinguishable. At Year 15, early signs of divergence begin to
appear; however, the spread is still modest and many of the scenarios remain closely
clustered around the base case. This suggests that within the first 15 years, there is still
limited diagnostic value or overlaps in differentiating acceptable from unacceptable
behavior. By Year 25, the onset of separation becomes more distinct. The two clusters one

closely tracking the base case (cooler lines) and the other drifting upward (warmer lines)

70

are now visibly differentiated. Nevertheless, the absolute difference in migration distance

between these groups remains small at this point, with just a few grid cells separating them.

=—e: Base Case
—&—.Case:]l
—— Case 2
—e— Case 3
Case 4
Case 5
—— Case 6
=—e—Casa7
~— Case 8
Case 9
Case 11
Case 12
Case 13

—— Case 14
—— Case 15
Case 16
Case 17
Case 18
—— Case 19
—— Case 20

(grid cells)

Migration distance

5 15 25 35 45

Time (years)

Figure 15 Migration distance versus time for 50 years. Dashed line indicates end of
injection at 30 years.

This temporal pattern provides critical operational insight: the effective monitoring
window opens as early as Year 15, when early detection of anomalous migration becomes
possible. Early warning within this window allows for timely adjustment of injection
strategies or implementation of mitigation measures before unacceptable migration occurs.
At the same time, deferring intensive monitoring efforts until after Year 5 avoids
unnecessary costs during a period of low diagnostic value. These findings support the
design of a cost-effective, risk-informed monitoring strategy that is responsive to the

evolving behavior of the plume.

71

The temporal analysis reveals a clear divergence in plume migration behavior over
time, with two distinct clusters emerging from the ensemble of 20 scenarios. Initially, all
cases exhibit nearly identical plume migration distances, indicating consistent early-time
behavior and limited diagnostic value before Year 15. However, by Year 25, the ensemble
begins to separate into two behavioral groups; one that remains closely aligned with the
base case, plateauing at under 30 grid cells and another that steadily diverges, exceeding
40 grid cells and continuing to grow. This divergence becomes increasingly pronounced in
the post-injection phase (after Year 30), with some failure scenarios surpassing 80 grid

cells by Year 200.

4.3. SYNTHETIC SEISMIC DETECTABILITY ANALYSIS

A 4D time-lapse seismic model was developed by integrating the static geological
framework with dynamic fluid saturation changes from the reservoir model. Instead of
using a single-parameter input, the model was populated with elastic properties; P-wave
velocity (Vp), S-wave velocity (Vs), and bulk density (p) were derived from well log
analysis. Time-dependent saturation data from the dynamic model simulated evolving
elastic properties. Gassmann fluid substitution was applied and synthetic seismic volumes
generated at multiple time steps, forming the basis for detectability assessment.

Figure 16 presents two panels showing simulated CO: gas saturation from the
dynamic reservoir model at two time points: after five years of injection (left) and after an
additional thirty years of post-injection (right). In the left panel, three separate plumes are
visible around the three injection wells, each with a distinct core of higher gas saturation
(red and yellow) surrounded by lower-saturation regions (green and blue), and all remain
relatively small at this early stage. In the right panel, the plumes have grown in size, with

some merging to form larger, more elongated zones of elevated gas saturation; the highest

72

saturation cores remain, while the lower-saturation regions have expanded, illustrating
further migration and spreading of CO: over time. The color scale represents gas saturation
values. These snapshots capture the temporal evolution of the plume and serve as dynamic
inputs for seismic forward modeling, supporting the generation of synthetic time-lapse

seismic volumes for each simulation year.

Figure 16 Dynamic simulation of CO: plume saturation five years after injection (left), 30
years post-injection (right).

To assess detectability, defined here as the ability to distinguish the presence or
absence of COs: in the subsurface using seismic data the first step in this process involves
generating a baseline synthetic seismic volume at year zero before injection using the static
reservoir model with no CO: present. Subsequently, synthetic seismic volumes can be
generated for each simulation year using saturation from fluid flow modeling, elastic
properties from well log analysis, and Gasmann fluid substitution. By subtracting each
time-lapse seismic volume from the baseline, amplitude difference volumes are calculated,

highlighting changes in the seismic response due to CO- saturation.

73

Figure 17 shows synthetic seismic amplitude difference maps for the same model
and time intervals as Figure 16, illustrating how CO: plume evolution is expressed in the
seismic response. In both panels, amplitude differences are presented relative to the
baseline, with the color scale ranging from blue (negative amplitude changes) through
white to yellow (positive amplitude changes). The left panel corresponds to five years of
injection, where amplitude anomalies are concentrated around three separate zones, each
matching the locations of the high-saturation CO: plumes. The right panel shows results
after an additional thirty years of post-injection, where the amplitude anomalies have
grown in both magnitude and spatial extent; some have merged, producing larger, more
continuous features. These synthetic seismic maps visually capture how the changing CO-

saturation within the reservoir alters the seismic amplitude response over time.

Seismic (default)

gu‘é
015

Seismic (default)

Q.15
Q.10
Q.05
0.00
Q05
Q.10
Q.15

0 2500 5000 7500 10000 125008US 0 2500 5000 7500 10000 125008US
OO — — OO — —
1:100000 1:100000

Figure 17 Seismic amplitude difference between the baseline (pre-injection) and two
time-lapse snapshots: after five years of injection (left) and thirty years post-
injection (right).

74

These changes are clearly reflected in the amplitude variations, confirming the
sensitivity of the synthetic seismic response to plume evolution over time. Based on this,
the detection of the CO: plume front can be evaluated, as shown in Figure 18, where the
red contour represents the actual plume front derived from the fluid flow model. The yellow
contour indicates the seismic amplitude anomaly limit, which is consistently smaller than
the true plume extent. This difference defines the seismic detectability threshold.

Figure 18 displays a synthetic seismic amplitude difference map at a selected time,
illustrating both the CO: plume front and the seismic detectability limit. Seismic amplitude
represents changes relative to the baseline. The red contour outlines the true CO: plume
front as derived from the reservoir simulation, while the yellow contour marks the seismic
detectability limit based on amplitude response. This figure enables a direct visual
comparison between the simulated plume extent and the area detectable using synthetic
seismic. The analysis shows that the seismic response is unable to detect CO- saturation
levels below 5% in this case. Therefore, the seismic detectability limit for this geological

setting is defined as a minimum of 5% CO- saturation.

75

Figure 18 The red contour shows the CO: plume front; the yellow contour indicates the
seismic detectability limit based on amplitude response. Analysis on travel
times may offer higher sensitivity on the limit (Barnett et al., 2025). Scale is
in feet.

76

Chapter V: Discussion

The management and verification of CO: plume containment remains a central
challenge for carbon capture and storage (CCS) projects, particularly as regulatory
expectations shift toward risk-based, site-specific monitoring. The U.S. EPA and
international agencies increasingly emphasize that monitoring programs must be
scientifically justified, cost-effective, and tailored to the specific risks of each site. This
chapter discusses the implications of the results presented in Chapter IV, organized around
three key themes: (1) spatial and temporal risk zones, (2) seismic detectability and
monitoring limitations, and (3) cost and practical considerations. Each theme is discussed

in relation to current literature, regulatory frameworks, and study findings.

5.1. SPATIAL AND TEMPORAL RISK ZONES

Effective monitoring of CO: plume migration requires not only a robust
understanding of plume behavior, but also an appreciation of the spatial and temporal
uncertainty introduced by subsurface complexity. The Texas-Louisiana Gulf Coast, like
many onshore U.S. storage settings, presents a geologically challenging environment:
heterogeneous fluvial-deltaic stratigraphy, sub-seismic faulting, introduce uncertainty in
how injected CO. migrates over time, particularly as plumes tend to remain symmetrical
early on but become elongated during and after the post-injection phase. The presence of
legacy wells does not directly impact plume shape but increases the importance of getting
plume migration predictions right to avoid well encounters. These factors introduce
directional variability in both lateral and vertical plume movement, complicating the design
of reliable monitoring programs.

This study addresses that challenge through a “model-map—monitor” framework

that operationalizes subsurface uncertainty into practical monitoring guidance. Building

77

upon the full-field and uncertainty-rich single flow-unit models established by Chaves
(2024), this research explicitly simulates uncertainty using a 20-member ensemble that
captures end-member variations in channel architecture and sub-seismic fault orientation
and transmissibility. The model outputs simulation over 200 years (30 years of injection
followed by 170 years of post-injection migration) forms the foundation for both spatial
heatmaps and temporal trend analysis.

The “map” stage of the workflow translates raw saturation data into high-resolution
risk surfaces. Binary plume presence maps are generated for each realization and time step,
then stacked to reveal the frequency with which CO: reaches specific locations. The
resulting heatmaps (see Figure 13, Chapter IV) visualize spatial “hot zones” where CO: is
most likely to appear across scenarios. In the base case, plume growth is relatively
symmetrical and remains centered on the injection well. However, ensemble analysis
reveals a different picture: as early as Year 15 of the 30 year injection period , the plume
begins to show directional bias most notably northwest, corresponding with higher
transmissibility zones and geologic pathways dictated by local heterogeneity and the
influence of small dip. This migration pathway is preferential pathway for CO: plume to
extent.

By Year 200, this divergence becomes stark. While some scenarios remain near the
base case footprint, others exhibit significant lateral spread sometimes doubling the
migration distance. These differences arise from subtle but critical variations in the
geologic model, particularly the behavior of sub-seismic faults and channel connectivity.
Importantly, areas with consistent plume overlap across scenarios highlighted in
red/orange in the heatmaps mark the highest-risk zones, where CO: presence is not only
likely but recurrent because the cases are stacked. In the single flow-unit model, the worst-

case scenario plume migration reaches up to 80 grid cells, equivalent to 40,000 ft (~12.2

78

km). A monitoring array (e.g. 2D seismic line) of at least 10—12 km, oriented along the
dominant plume migration direction, would be required to effectively cover the potential
spread. These zones are the optimal targets for cost-effective, spatially focused monitoring
strategies such as repeat 2D seismic or “spot” methods.

Complementing this spatial picture is a temporal analysis of maximum plume
extent, which tracks the Euclidean migration distance of the CO: front over the entire 200-
year period (Figure 14, Figure 15, Chapter V). The results show that plume behavior is
nearly identical across scenarios during the first 5-10 years, reflecting strong early
containment and limited value in deploying intensive monitoring infrastructure during this
phase. However, starting around Year 15, deviations begin to emerge but with multiple
overlaps. By Year 25, two distinct behavioral clusters are visible: one tracks the base case
closely, while the other migrates beyond 40 grid cells an operational threshold indicating
unacceptable lateral movement. Although the gap between these clusters are small, but
clear distinction between the cluster can be observed.

This subtle but critical window between Year 15 and Year 25 defines the earliest
moment when adaptive monitoring becomes essential. Monitoring too early wastes
resources, as plume behavior is still predictable. Monitoring too late risks missing the onset
of migration that could exceed regulatory or operational containment boundaries. These
findings support a time-phased surveillance strategy: low-intensity baseline monitoring
during early injection, followed by intensified surveillance in key directions and
timeframes as plume divergence emerges. Moreover, the good news is that the injection
period is 30 years, and being able to differentiate acceptable from unacceptable CO: plume
migration behavior as early as 15 years gives the operator enough time to adjust the
injection strategy. Even better if another monitoring parameter, like pressure, can be

incorporated.

79

Together, the spatial and temporal analyses affirm that monitoring strategies must
be both site-specific and dynamically informed by multiple probabilistic model outputs
that bound the site uncertainties. Rather than applying a uniform, one-size-fits-all
approach, this study demonstrates that surveillance efforts should be concentrated in zones
and time periods where unacceptable outlier migration responses can be separated from
compliant and acceptable responses. This paradigm shift moves beyond static coverage or
tool-based targeting to a probabilistic monitoring strategy—using ensembles not just to
validate a single outcome, but to test whether unacceptable scenarios are emerging and
require early detection.

Although these results are specific to the Gulf Coast site studied here, the workflow
itself is transferable. Any CCS project with sufficient static and dynamic modeling data
can apply this “model-map—monitor”” methodology to identify priority monitoring zones,
optimize technology selection, and minimize cost all while maintaining regulatory

defensibility and public trust.

5.2. SEISMIC DETECTABILITY AND MONITORING LIMITS

A persistent challenge in CO: plume monitoring is the inherent limitation of seismic
physics: detection is not guaranteed by the presence of CO- alone but rather depends on
whether changes in subsurface properties produce a measurable seismic response. Seismic
imaging is widely adopted for its spatial coverage and ability to track plume evolution, yet
its effectiveness is constrained by detectability thresholds, typically requiring at least a 4%
change in acoustic impedance or nRMS below 0.4 (see Chapter II). These thresholds are
highly sensitive to subsurface conditions, including reservoir depth, formation stiffness,

saturation distribution and operation acquisition parameters.

80

This study addresses these limitations through seismic forward modeling, using the
full-field reservoir model to simulate gas saturation changes over time (see Chapter 1V,
Figure 16, Figure 17, Figure 18). The resulting synthetic amplitude difference maps allow
comparison between the true modeled plume front and the seismically visible anomaly. A
consistent finding is that the seismic response underestimates the plume extent: the yellow
amplitude anomaly never fully reaches the red contour representing the actual CO: front.
This is not a modeling error, but a physical constraint on detectability. In this case, the
seismic detection limit corresponds to approximately 5% CO- saturation, leaving lower-
saturation margins undetectable even under ideal, noise-free conditions. Here, the
underestimate ranges between roughly 200 and 2000ft with the worst mismatch on the
northwest sides of the plumes (Figure 18). More generally, the mismatch between seismic
amplitude and the actual plume depends on the rate of lateral change of saturation. Rapid
lateral change in the saturation will result in relatively small mismatch whereas slow lateral
change may result in much larger mismatch. The reservoir model can be used as calibration
tool to predict the rate of change in saturation.

These findings reinforce the need for a “model-map—monitor” framework. Instead
of assuming the base case model is “correct” and retrofitting a monitoring plan to it, this
workflow accepts uncertainty by running multiple realizations. The result is a spatial-
temporal map of risk highlighting where and when plume migration deviates from
expectations, and guiding monitoring toward those areas. This shift avoids false certainty
and enables adaptive surveillance based on actual geologic variability. Moreover, by
knowing seismic detectability limits ahead of time, operators can reverse-engineer their
monitoring plan: first identify where the plume may migrate, then assess whether it will be
visible to seismic, and finally determine the most suitable tool and frequency. The

detectability analysis is still useful because it provides the calibration between the reservoir

81

model and seismic survey for AoR re-evaluation. Future work could build on these results
to formally integrate detectability thresholds into dynamic AoR adjustments.

Importantly, there is a demand for site-specific, risk-based justification for
monitoring plans. Ensemble modeling addresses this need more effectively than traditional
sensitivity plots (e.g., tornado diagrams) by asking, “What if?”” What if transmissibility is
higher? What if sub-seismic faults connect unexpectedly? Exploring these questions
through multiple model outputs offers deeper insight into plume behavior than perfecting
input parameters ever could.

Seismic tools should be selected based on site-specific risk profiles. DAS and VSP
provide high-resolution imaging near wells but have limited spatial reach. Surface seismic
covers broader areas but at higher cost, and its resolution is often insufficient for thin or
low-saturation plumes. Thus, seismic should not be used by default it should be deployed
where and when it adds value, with a clear understanding that parts of the plume will likely
remain invisible to this method alone.

It is worth noting that this study did not incorporate field noise, acquisition
geometry, or AVO (Amplitude Versus Offset) effects. These factors are currently under
investigation through ongoing collaborations and will be critical for refining seismic
detectability in future work. As such, the results presented here represent an optimistic
upper bound, and real-world performance and survey limitations.

Despite these limitations, seismic forward modeling in this thesis provides valuable
operational insight: it sets realistic expectations and emphasizes that detection is a
probabilistic outcome, not a binary one. It also underscores the importance of integrating
seismic with complementary tools such as pressure sensors to improve plume visibility and
containment assurance. Pressure monitoring, in particular, is expected to offer earlier

detection of migration risks and is often more resilient to site-specific limitations.

82

Finally, beyond technical performance, seismic monitoring plays a critical role in
public trust and regulatory transparency. As seen in recent CCS projects, including those
with legal disputes, stakeholders demand verifiable evidence of plume containment. A
monitoring strategy backed by transparent, model-informed reasoning is not only
scientifically sound but also more defensible in regulatory and public domains.

In summary, this section affirms a central principle of this research: monitoring
design must begin with the models. By simulating plume uncertainty and understanding
seismic constraints, operators can allocate monitoring resources intelligently, maximizing

detectability, reducing unnecessary costs, and reinforcing confidence in CO: containment.

5.3. SEISMIC COST AND PRACTICAL CONSIDERATION

Cost remains a dominant factor in the selection, design, and justification of seismic
monitoring programs for CO: storage—a reality consistently echoed in both industry
experience and academic literature. While 3D time-lapse (4D) seismic remains the “gold
standard” due to its ability to provide full-field spatial coverage and resolution, it comes
with a substantial financial burden. For onshore U.S. projects, costs typically range
between $50,000 and $100,000 per square mile, excluding permitting, data processing, and
repeat acquisition expenses. In contrast, 2D seismic surveys are significantly cheaper
$5,000 to $20,000 per linear mile but offer reduced imaging capability and limited lateral
coverage.

The findings from Chapter IV reinforce the need to balance resolution with cost.
While 3D seismic can detect major plume movement, the results clearly show that
migration risk is neither spatially uniform nor temporally constant. Instead, the ensemble
simulations reveal localized “hot zones” of plume divergence and specific post-injection

time windows primarily after Year 15 when migration becomes most uncertain. A blanket,

83

high-cost 3D seismic over the entire project area and timeline is, therefore, both technically
excessive and economically inefficient.

Instead, the study advocates a tiered, model-informed monitoring strategy. Full-
field 3D seismic, while highly effective, is best reserved for initial site characterization or
milestone verification due to its cost. In contrast, repeating 2D seismic along model-
predicted risk corridors can achieve substantial cost savings often five to ten times lower
than 3D seismic while still capturing critical plume dynamics. Emerging techniques like
“spotlight” (Spotlight Earth, n.d.) seismic surveys, represent an even more affordable
alternative, offering localized imaging with minimal acquisition footprint (Al Khatib et al.,
2021) add company webiste. This hybrid approach is supported in the literature (see also
Kazemeini et al., 2010) and strongly aligns with EPA Class VI guidance, which requires
at least one direct and one indirect monitoring method but allows operators the flexibility
to develop scientifically defensible, risk-prioritized strategies tailored to site conditions.

Seismic monitoring tools should be matched to risk tier and detection need. Vertical
Seismic Profiling (VSP) and Distributed Acoustic Sensing (DAS) offer high-resolution
detection near injection wells, but their spatial coverage is limited. Conversely, surface
seismic can image broader areas but suffers from higher cost, lower repeatability, and site-
specific noise challenges. The optimal solution is not to choose one tool but to combine
them strategically deploying higher-cost methods when and where warranted and
augmenting them with lower-cost options like DAS for continuous surveillance or early-
warning triggers. This principle of tool integration also increases resilience to non-
detection risks and enhances cross-validation across different monitoring technologies.

Crucially, as demonstrated in Chapter IV, even the most advanced seismic tools
cannot guarantee full detectability of CO: plumes unless the modeling parameters are

carefully refined and replicated under real operational conditions. This requires that

84

acquisition parameters such as the source signal, receiver sensitivities, and background
noise precisely match those used in the model. If not properly aligned, the monitoring
process can become unstable or misleading, much like a circular reference error in Excel,
where outputs feed back into inputs without resolution. Due to physics and site limitations,
seismic anomalies often lag behind actual plume edges.

The “model-map—monitor” workflow developed here is explicitly designed to
support this integration. By simulating uncertainty across multiple realizations, it identifies
both where the plume might go and when monitoring is most needed. This enables
operators to design scientifically justified, cost-efficient, and regulatorily compliant
programs while avoiding the common mistake of anchoring plans to a single reservoir
model. This also empowers decision-makers to rationalize budget allocations and optimize
monitoring schedules in alignment with regulatory milestones and performance-based
closure requirements.

In summary, seismic monitoring is valuable, but most cost effective when used
selectively and strategically. By leveraging ensemble modeling and spatial risk mapping,
operators can reduce costs without compromising containment assurance delivering
credible, transparent, and adaptable monitoring solutions, especially in complex regions

like the Gulf Coast.

Cost Model

The realistic single-flow-unit model in Figure 19 illustrates a visual progression of
plume-based risk mapping. The model spans approximately 71,500 ft x 94,500 ft (~21.8
km x 28.8 km) with a grid of 143 x 189 x 10 cells and a resolution of 500 ft x 500 ft x 20
ft. The left panel displays the maximum gas saturation for the base case. The center panel

represents the stacked maximum gas saturation across all 20 realizations, highlighting

85

recurrent plume presence in the central corridor trending northwest. To isolate high-risk
zones—those reflecting unacceptable deviation—the right panel subtracts the base case
from the stacked ensemble. This leaves behind areas where plume behavior diverged

beyond acceptable limits, revealing a narrow, repeatable migration path.

Figure 19 CO: plume migration risk maps from the single flow-unit model. Left: Base
case maximum gas saturation. Center: Stacked maximum saturation from all
20 realizations. Right: Areas where the ensemble diverges from the base
case, showing where unacceptable plume spread is most likely (high-risk
corridor). Model area is 71,500 ft x 94,500 ft (~21.8 km x 28.8 km) with
500 ft grid spacing.

This ensemble-based plume divergence mapping provides the foundation for cost-
efficient monitoring design. As shown in Figure 19, the majority of plume presence is
concentrated within an elliptical, northwest-trending zone occupying a fraction of the full
model area. Therefore, to reflect a more realistic upper-bound cost scenario, the “full 3D
seismic” assumption is revised to cover ~29.08 mi?, or approximately 12% of the full model
domain (242.4 mi?) covers the area of plume extent. Meanwhile, based on qualitative
analysis of the rightmost heatmap, the highest-risk zone—representing unacceptable plume

divergence—is assumed to occupy ~24.24 mi?, or roughly 10% of the model area (high-

risk zone or hot-zone). This spatial concentration enables a more focused seismic

86

monitoring footprint, avoiding unnecessary coverage across low-risk regions. The high-
risk corridor in this study is defined as the spatial zone where ensemble simulations show
recurrent plume presence and the greatest divergence from the base-case scenario. For cost
modeling purposes, three spatial strategies were considered to calculate baseline survey
estimates under different coverage scenarios, using the low and high cost ranges discussed
above:
e Full-field 3D seismic: revised to cover ~29.1 mi? (12% of the model area)
e Targeted 3D seismic: focused on the high-risk corridor (Figure 19) (~24.2
mi? or 10% of the model area)
e 2D seismic line: 80 grid cells x 500 ft = 40,000 ft (7.6 miles), representing
the worst-case lateral plume migration path through the risk zone
Table 2 Cost estimate for a single onshore survey based on spatial analysis
summarizes the estimated costs for a single seismic survey under three spatial monitoring
strategies. A full-field 3D seismic survey, now redefined to cover approximately 12% of
the model area (~29.1 mi? or 75.3 km?), represents the highest-cost option, with estimated
expenses ranging from $1.45 million to $7.53 million. A targeted 3D survey, focused on
the high-risk corridor (~24.2 mi? or 62.8 km?, or 10% of the model area), offers substantial
cost reductions, with costs ranging from $1.21 million to $6.28 million. The lowest-cost
approach is a 2D seismic line spanning the worst-case plume migration distance (7.58 mi

or 12.2 km), with estimated costs between $37,900 and $392,400.

Table 2 Cost estimate for a single onshore survey based on spatial analysis (cost ranges
from Andrey Bakulin, personal communication, 2025).

Monitoring Strategy Spatial Coverage Cost per Survey (M$)
3D seismic 29.08 mi? (75.3 km?) 1.45-7.53
Targeted 3D seismic 24.24 mi? (62.8 km?) 1.21 - 6.28

87

2D seismic line 7.58 mi (12.2 km) 0.038 — 0.392

The cost analysis assumes a total monitoring timeline of 80 years, consisting of a
30-year CO: injection period followed by 50 years of post-injection monitoring, in
accordance with EPA Class VI guidance. Two temporal monitoring strategies were
evaluated: (1) a high-frequency approach, with seismic surveys conducted every 5 years,
resulting in 17 total surveys over the monitoring period (Years O through 80); and (2) a
time-targeted approach, with surveys conducted every 15 years, totaling six surveys at
Years 0, 15, 30, 45, 60, and 75. These temporal strategies were applied to both full-field
(12%) and targeted (10%) spatial coverage scenarios to compare cumulative monitoring
costs under different spatial and temporal configurations.

Table 3 presents a temporal cost comparison of seismic monitoring assuming either
a 5-year survey interval (17 total surveys) or a 15-year interval (6 total surveys), including
baseline. The estimates are stratified across three levels of spatial monitoring: full-field 3D,
targeted 3D, and 2D seismic.

e Full-field 3D seismic (revised to cover 12% of the model area, ~29.1 mi?)
is the most expensive option, with per-survey costs ranging from $1.45M to
$7.53M. Over 17 surveys, this strategy could cost $24.7M to $128.1M,
while a 15-year interval results in a total cost of $8.73M to $45.2M.

e Targeted 3D seismic (focused on the highest-risk 10% zone, ~24.2 mi?)
offers moderate savings, with per-survey costs ranging from $1.21M to
$6.28M. Over 17 surveys, total costs range from $20.6M to $106.7M, and
for the 15-year interval, $7.27M to $37.66M. This reflects a consistent cost
reduction of approximately 16.7% compared to full-field 3D seismic under

both temporal strategies.

88

e 2D seismic lines, used along the worst-case plume migration path (~7.6 mi),
are the most affordable approach. With per-survey costs between $37.9K
and $392.4K, total costs range from $643.9K to $6.67M for 17 surveys, and
$227.3K to $2.35M for the 15-year interval. This represents a cost reduction
of 95-97% compared to full-field 3D seismic under equivalent temporal

conditions.

Table 3 Cost estimate based on temporal analysis

Monitoring Cost per Survey | 5-Year Interval 15-Year Interval
Strategy (M$) (17x) (MS) (6x) (MS)

3D seismic 1.45-17.53 24.72 — 128.06 8.73 —45.20
Targeted 3D

Seismic 1.21 -6.28 20.60 — 106.71 7.27-37.66

2D seismic line | 0.038 — 0.392 0.644 — 6.67 0.227-2.35

Overall, for onshore U.S. projects, 3D seismic survey costs typically range between
$50,000 and $100,000 per square mile, excluding permitting, data processing, and repeat
acquisition expenses. In contrast, 2D seismic surveys are significantly cheaper, typically
ranging from $5,000 to $20,000 per linear mile, though they offer reduced imaging
capability and more limited spatial coverage. Based on the cost estimates presented, 2D
seismic 1s approximately 95-97% less expensive than full-field 3D seismic. The cost tables
also highlight that spatial targeting (e.g., focusing on high-risk corridors) and temporal
optimization (e.g., surveys at 15-year intervals instead of every 5 years) yield substantial
cumulative savings. However, cost reductions from targeted 3D seismic alone are more
modest, approximately 17% lower than full-field 3D under equivalent survey frequencies.

These findings underscore the value of adaptive, model-informed monitoring, where both

89

spatial coverage and timing are optimized to balance cost efficiency with monitoring

effectiveness.

5.4. RECOMMENDATION

This study supports a shift in CCS monitoring practices from default, tool-driven
approaches to flexible, model-informed, risk-based frameworks. The spatial and temporal
analysis presented demonstrates that CO: plume migration is neither uniform nor static.
Instead, risk evolves over time and space, with distinct “hot zones™ and critical windows
emerging under different geological scenarios. These findings align with U.S. EPA Class
VI guidance and broader regulatory trends, which increasingly emphasize that monitoring
plans must be site-specific, scientifically justified, and cost-effective.

In response to these evolving expectations, this research advocates for a model—
map—monitor strategy that leverages ensemble-based reservoir simulations to identify
where and when proactive monitoring is most valuable. Rather than relying on a single
“best” model or applying blanket surveillance, operators should embrace uncertainty, use
modeling to map risk, and allocate monitoring resources accordingly.

Given the limitations of seismic alone, especially in detecting low-saturation zones
or operating within complex, noisy settings this study recommends a tiered, integrated
monitoring framework:

i. Deploy high-cost, full-field 3D seismic selectively, such as during initial
site characterization, or in response to specific anomalies.

ii. Prioritize repeat 2D and spotlight surveys over model-identified high-risk
zones during periods of greatest uncertainty. These approaches save cost
compared to blanket 3D seismic with minimal compromise in monitoring

effectiveness. The current cost model, developed using simplified area

90

assumptions from a single-flow-unit framework, demonstrated cost
reductions of approximately 17% for targeted 3D and up to 97% for 2D
seismic, depending on the spatial and temporal strategy applied. However,
due to limitations in the current Python implementation, dynamic area
calculations across ensemble realizations and full economic modeling were
not conducted. Future work should extend the cost model to integrate
ensemble-based plume footprint analysis, enabling more granular and
economically optimized monitoring design at field scale.

iii. Integrate complementary tools, especially pressure monitoring, to enhance
detectability and provide earlier warnings in marginal zones. Pressure
signals often precede seismic anomalies and are more resilient to site-
specific noise. Future efforts should expand modeling to predict pressure
responses and integrate them into monitoring plans.

In summary, the “model-map—monitor” approach demonstrated here provides a
defensible, adaptable, and cost-efficient pathway for CCS monitoring design. As the
industry matures and expectations rise, success will depend not on maximizing data, but
on smartly targeting surveillance based on modeled risk. This framework empowers
operators and regulators to achieve containment assurance while avoiding unnecessary cost

paving the way for responsible, scalable CCS deployment.

91

Chapter VI: Conclusion

This thesis addressed a central challenge in geologic carbon storage: how to design
CO: plume monitoring programs that are both scientifically robust and economically viable
in the face of geological complexity and regulatory uncertainty. Building on a targeted
review of current monitoring frameworks, regulatory guidance, and CCS literature
(Chapter 2), this work developed and applied a workflow that integrates reservoir
modeling, scenario-based uncertainty analysis, and synthetic seismic forward modeling
(Chapters 3 and 4). This combination enabled a detailed assessment of both the technical
limits and practical opportunities for risk-based, targeted monitoring of CO: storage
projects.

The results show that CO: plume migration is neither spatially nor temporally
uniform; “hot zones” of persistent migration and critical monitoring windows can be
systematically identified by leveraging ensemble-based reservoir modeling. Heatmaps and
temporal analyses demonstrated that these zones emerge only under specific geological
scenarios and timeframes, supporting the adoption of adaptive, risk-prioritized monitoring
strategies over uniform, one-size-fits-all approaches. This methodology also offers a shift
away from traditional tornado plots and single best-case models, reframing uncertainty as
a planning tool rather than a drawback.

Synthetic seismic modeling confirmed that while seismic remains a powerful tool
for detecting COs., its sensitivity is limited by both physical thresholds and acquisition
constraints. In this study, the seismic anomaly consistently lagged behind the true plume
front, especially in low-saturation (noise free forward modeling). These findings
emphasize the need for complementary lines of evidence, such as pressure monitoring,

which may offer earlier and more consistent detection in marginal zones.

92

A major practical finding is that targeted monitoring using repeat 2D seismic or
spotlight surveys in identified risk zones can reduce surveillance costs by a factor of five
to ten compared to conventional 4D seismic, without sacrificing detection confidence when
guided by reservoir modeling. While 2D and spotlight methods may offer narrower spatial
coverage, when deployed along model-predicted risk corridors and during periods of
greatest uncertainty, they can achieve comparable detection confidence with significantly
less financial burden. Importantly, this cost benefit is enhanced when monitoring is not
continuous but scheduled strategically. Thus, while the per-survey cost savings are already
substantial, the total lifecycle savings can be even greater when both space and time are
optimized in tandem.

The current cost model, based on simplified area assumptions from a single-flow-
unit framework, demonstrated cost reductions of approximately 17% for targeted 3D
seismic and up to 97% for 2D seismic, depending on the spatial and temporal monitoring
strategy employed. However, due to limitations in the Python implementation, full
economic modeling—particularly dynamic area quantification across all ensemble
realizations—was not performed. Beyond refining spatial footprint estimates, future work
should prioritize the full integration of both spatial and temporal targeting into the cost
framework. This involves identifying not only where plume divergence is most likely to
occur, but also when monitoring efforts are most critical based on evolving uncertainty.
Such dual targeting would allow operators to allocate resources with greater precision,
reduce redundant or low-value surveys, and strengthen the scientific defensibility of
monitoring strategies—particularly for complex, large-scale CO: storage projects. This
aligns with emerging regulatory trends and recent literature advocating for flexible, model-

justified monitoring frameworks. While the application here is site-specific to a Gulf Coast

93

reservoir, the general workflow is transferable and can be adapted to other CCS sites with
similar uncertainty profiles.

However, the thesis also acknowledges limitations: seismic noise and AVO effects
were not included, pressure data was not integrated, and seismic cost estimates remain site-
specific and subject to market variability. Future work will expand upon this workflow by
explicitly incorporating field seismic noise and Amplitude Versus Offset (AVO) effects
into the detectability analysis, ensuring that model predictions more closely match real-
world monitoring conditions. Other future work involves integrating pressure data from
fluid flow simulation pressure heatmaps both spatially and temporally.

Simply, this research offers a timely and actionable roadmap for operators and
regulators facing mounting pressure to reduce costs without compromising safety. The path
forward is clear: ditch the default, blanket seismic and adopt smart, risk-informed
monitoring. By doing so, the industry can maintain public trust, meet regulatory
requirements, and accelerate the deployment of CCS at scale. In conclusion, this research
provides both a technical foundation and a clear policy nudge for the CCS industry and
regulators, especially the U.S. EPA, to move beyond blanket monitoring requirements. It
advocates for risk-based, site-specific, and adaptive monitoring strategies that maximize
both technical assurance and cost-effectiveness, supporting the sustainable and scalable

deployment of carbon storage in the energy transition.

94

References

2023CHO06676 (The Circuit Court of Cook County 2023).

ADM. (2024, August 24). Response to EPA Notice.

Al Khatib, H., Boubaker, Y., & Morgan, E. (2021). Breaking the seismic 4D ‘image’
paradigm of seismic monitoring. First Break, 39(9), 85-91.
https://doi.org/10.3997/1365-2397.162021072

Alfi, M., & Hosseini, S. A. (2016). Integration of reservoir simulation, history matching,
and 4D seismic for CO2-EOR and storage at Cranfield, Mississippi, USA. Fuel,
175, 116—-128. https://doi.org/10.1016/j.fuel.2016.02.032

Arts, R., Eiken, O., Chadwick, A., Zweigel, P., Van Der Meer, L., & Zinszner, B. (2004).
Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy,
29(9-10), 1383—1392. https://doi.org/10.1016/j.energy.2004.03.072

Barnett, H. G., Ireland, M. T., Dunham, C. K., & van der Land, C. (2025). Low
Computational Cost Stochastic Gassmann Fluid Substitution Modelling of
Hydrogen and Carbon Dioxide in Clastic Storage Reservoirs.

Bridge, J. S., & Tye, R. S. (2000). Interpreting the Dimensions of Ancient Fluvial
Channel Bars, Channels, and Channel Belts from Wireline-Logs and Cores.
AAPG Bulletin, 84(8), 1205-1228. https://doi.org/10.1306/A9673C84-1738-
11D7-8645000102C1865D

Bump, A. P., Bakhshian, S., Ni, H., Hovorka, S. D., Olariu, M. L., Dunlap, D., Hosseini,
S. A., & Meckel, T. A. (2023). Composite confining systems: Rethinking

geologic seals for permanent CO2 sequestration. International Journal of

95

Greenhouse Gas Control, 126, 103908.
https://doi.org/10.1016/j.1jggc.2023.103908

Chaves, G. (2024). Effect of Sub-seismic Reservoir Heterogeneity on CO: Plume
Migration, Onshore Gulf of Mexico (Texas, USA). University of Texas at Austin.

Finkbeiner, T., Zoback, M., Flemings, P., & Stump, B. (2001). Stress, pore pressure, and
dynamically constrained hydrocarbon columns in the South Eugene Island 330
field, northern Gulf of Mexico. AAPG Bulletin, 85(6).
https://doi.org/10.1306/8626CA55-173B-11D7-8645000102C1865D

Fomel, S. (2024). Madagascar [C, Python]. University of Texas at Austin.
https://ahay.org/wiki/Main_Page

Fomel, S., Sava, P., Vlad, 1., Liu, Y., & Bashkardin, V. (2013). Madagascar: Open-source
software project for multidimensional data analysis and reproducible
computational experiments. Journal of Open Research Software, 1(1), 8.
https://doi.org/10.5334/jors.ag

Galloway, W. E. (1989). Depositional framework and hydrocarbon resources of the early
Miocene (Fleming) episode, northwest Gulf Coast Basin. Marine Geology, 90(1—
2), 19-29. https://doi.org/10.1016/0025-3227(89)90110-2

Galloway, W. E., Ganey-Curry, P. E., Li, X., & Buffler, R. T. (2000). Cenozoic
depositional history of the Gulf of Mexico basin. AAPG Bulletin, 84(11), 1743—
1774. https://doi.org/10.1306/8626C37F-173B-11D7-8645000102C1865D

Gao, R., Previna, A., Fomel, S., & Chen, Y. (Unpublished). Seismic Forward Modeling

[Python]. University of Texas at Austin.

96

Gasperikova, E., Appriou, D., Bonneville, A., Feng, Z., Huang, L., Gao, K., Yang, X., &
Daley, T. (2022). Sensitivity of geophysical techniques for monitoring secondary
CO2 storage plumes. International Journal of Greenhouse Gas Control, 114,
103585. https://doi.org/10.1016/.1jggc.2022.103585

Gasperikova, E., Daley, T., Appriou, D., Bonneville, A., Feng, Z., Huang, L., Yang, X.,
Wang, Z., Dilmore, R., & Gao, K. (2020). Detection Thresholds and Sensitivities
of Geophysical Techniques for CO2 Plume Monitoring (NRAP-TRS--1-001-2020,
DOE/NETL--2021/2638, 1735331; p. NRAP-TRS--1-001-2020, DOE/NETL--
2021/2638, 1735331). https://doi.org/10.2172/1735331

Goudarzi, A., Hosseini, S. A., Sava, D., & Nicot, J. (2018). Simulation and 4D seismic
studies of pressure management and CO ; plume control by means of brine
extraction and monitoring at the Devine Test Site, South Texas, USA.
Greenhouse Gases: Science and Technology, 8(1), 185-204.
https://doi.org/10.1002/ghg.1731

Hovorka, S. (2017). Assessment of Low Probability Material Impacts. Energy Procedia,
114, 5311-5315. https://doi.org/10.1016/j.egypro.2017.03.1648

Hovorka, S., Nicot, J.-P., Zeidouni, M., Sun, A., Yang, C., Sava, D., Mickler, P., &
Remington, R. L. (2014). Expert-Based Development of a Standard in CO2
Sequestration Monitoring Technology.

IEAGHG. (2019). Monitoring Selection Tool. leaghg. https://ieaghg.org/ccs-

resources/monitoring-selection-tool

97

IPCC, Core Writing Team, H. L., & Romero, J. (2023). Climate Change 2023: Synthesis
Report. Longer Report [Report]. IPCC. https://doi.org/10.59327/IPCC/AR6-
9789291691647

Isaenkov, R., Pevzner, R., Glubokovskikh, S., Yavuz, S., Shashkin, P., Yurikov, A.,
Tertyshnikov, K., Gurevich, B., Correa, J., Wood, T., Freifeld, B., & Barraclough,
P. (2022). Advanced time-lapse processing of continuous DAS VSP data for
plume evolution monitoring: Stage 3 of the CO2CRC Otway project case study.
International Journal of Greenhouse Gas Control, 119, 103716.
https://doi.org/10.1016/j.1jggc.2022.103716

Isaenkov, R., Pevzner, R., Glubokovskikh, S., Yavuz, S., Yurikov, A., Tertyshnikov, K.,
Gurevich, B., Correa, J., Wood, T., Freifeld, B., Mondanos, M., Nikolov, S., &
Barraclough, P. (2021). An automated system for continuous monitoring of CO2
geosequestration using multi-well offset VSP with permanent seismic sources and
receivers: Stage 3 of the CO2CRC Otway Project. International Journal of
Greenhouse Gas Control, 108, 103317.
https://doi.org/10.1016/j.1jggc.2021.103317

Kazemeini, S. H., Juhlin, C., & Fomel, S. (2010). Monitoring CO2 response on surface
seismic data; a rock physics and seismic modeling feasibility study at the CO2
sequestration site, Ketzin, Germany. Journal of Applied Geophysics, 71(4), 109—

124. https://doi.org/10.1016/j.jappgeo.2010.05.004

98

Krishnamurthy, P. G., DiCarlo, D., & Meckel, T. (2022). Geologic Heterogeneity
Controls on Trapping and Migration of CO». Geophysical Research Letters,
49(16), €2022GL099104. https://doi.org/10.1029/2022GL099104

Larue, D. K., Allen, J., Beeson, D., & Robbins, J. (2023). Fluvial reservoir architecture,
directional heterogeneity and continuity, recognizing incised valley fills, and the
case for nodal avulsion on a distributive fluvial system: Kern River field,
California. A4APG Bulletin, 107(3), 477-513.
https://doi.org/10.1306/09232220163

Li, C., Bhattacharya, S., Alhotan, M. M., & Delshad, M. (2024). Time-lapse geophysical
responses of hydrogen-saturated rock: Implications on subsurface monitoring.
https://doi.org/10.31223/X52985

Lumley, D. (2010). 4D seismic monitoring of CO2 sequestration. The Leading Edge,
29(2), 150-155. https://doi.org/10.1190/1.3304817

Meckel, T., & Trevifio, R. H. (2014). Gulf of Mexico Miocene CO: Site Characterization
Mega Transect Final Scientific/Technical Report (Revised) (DE-FE0001941).
Bureau of Economic Geology, The University of Texas at Austin.
https://www.netl.doe.gov/projects/files/FE0001941 FinalReport 122014.pdf

Pett-Ridge, J., Kuebbing, S., Mayer, A., Hovorka, S., Pilorgé, H., Baker, S., Pang, S.,
Scown, C., Mayfield, K., Wong, A., Aines, R., Ammar, H., Aui, A., Ashton, M.,
Basso, B., Bradford, M., Bump, A., Busch, 1., Calzado, E., ... Zhang, Y. (2023).

Roads to Removal: Options for Carbon Dioxide Removal in the United States

99

(LLNL--TR-852901, 2301853, 1080440; p. LLNL--TR-852901, 2301853,
1080440). https://doi.org/10.2172/2301853

Pevzner, R., Isaenkov, R., Yavuz, S., Yurikov, A., Tertyshnikov, K., Shashkin, P.,
Gurevich, B., Correa, J., Glubokovskikh, S., Wood, T., Freifeld, B., &
Barraclough, P. (2021). Seismic monitoring of a small CO2 injection using a
multi-well DAS array: Operations and initial results of Stage 3 of the CO2CRC
Otway project. International Journal of Greenhouse Gas Control, 110, 103437.
https://doi.org/10.1016/j.1jggc.2021.103437

Pickering, G., Bull, J. M., & Sanderson, D. J. (1996). Scaling of fault displacements and
implications for the estimation of sub-seismic strain. Geological Society, London,
Special Publications, 99(1), 11-26.
https://doi.org/10.1144/GSL.SP.1996.099.01.03

Ramirez-Franco, J. (2024). First commercial CCS plant is in Illinois. It leaks. | Grist.

Romanak, K. D., Wolaver, B., Yang, C., Sherk, G. W., Dale, J., Dobeck, L. M., &
Spangler, L. H. (2014). Process-based soil gas leakage assessment at the Kerr
Farm: Comparison of results to leakage proxies at ZERT and Mt. Etna.
International Journal of Greenhouse Gas Control, 30, 42-57.
https://doi.org/10.1016/j.1jggc.2014.08.008

Smith, T. M., Sondergeld, C. H., & Rai, C. S. (2003). Gassmann fluid substitutions: A
tutorial. GEOPHYSICS, 68(2), 430—-440. https://doi.org/10.1190/1.1567211

Spotlight Earth. (n.d.). Spotlight Earth. Retrieved August 8, 2025, from https://spotlight-

earth.com/

100

UIC. (2013a). Underground Injection Control (UIC) Program Class VI Well Area of
Review Evaluation and Corrective Action Guidance.

UIC. (2013b). Underground Injection Control (UIC) Program Class VI Well Testing and
Monitoring Guidance.

Urosevic, M., Pevzner, R., Shulakova, V., Kepic, A., Caspari, E., & Sharma, S. (2011).
Seismic monitoring of CO2 injection into a depleted gas reservoir—Otway Basin
Pilot Project, Australia. Energy Procedia, 4, 3550-3557.
https://doi.org/10.1016/j.egypro.2011.02.283

U.S. Environmental Protection Agency. (2021). Attachment C: Testing and Monitoring
Plan (Permit Attachment IL-115-6A-0001; Archer Daniels Midland CCS#2 Class
VI Permit Application). U.S. Environmental Protection Agency, Region 5.

Vasco, D. W., Alfi, M., Hosseini, S. A., Zhang, R., Daley, T., Ajo-Franklin, J. B., &
Hovorka, S. D. (2019). The Seismic Response to Injected Carbon Dioxide:
Comparing Observations to Estimates Based Upon Fluid Flow Modeling. Journal
of Geophysical Research: Solid Earth, 124(7), 6880—6907.
https://doi.org/10.1029/2018JB016429

Victor, N., & Nichols, C. (2022). CCUS deployment under the U.S. 45Q tax credit and
adaptation by other North American Governments: MARKAL modeling results.
Computers & Industrial Engineering, 169, 108269.

https://doi.org/10.1016/j.cie.2022.108269

101

White, D. J. (2011). Geophysical monitoring of the Weyburn CO2 flood: Results during
10 years of injection. Energy Procedia, 4, 3628-3635.
https://doi.org/10.1016/j.egypro.2011.02.293

Yurikov, A., Tertyshnikov, K., Yavuz, S., Shashkin, P., Isaenkov, R., Sidenko, E.,
Glubokovskikh, S., Barraclough, P., & Pevzner, R. (2022). Seismic monitoring of
CO2 geosequestration using multi-well 4D DAS VSP: Stage 3 of the CO2CRC
Otway project. International Journal of Greenhouse Gas Control, 119, 103726.
https://doi.org/10.1016/j.1jggc.2022.103726

Zhang, R., Song, X., Fomel, S., Sen, M. K., & Srinivasan, S. (2013). Time-lapse seismic
data registration and inversion for CO2 sequestration study at Cranfield.

GEOPHYSICS, 78(6), B329-B338. https://doi.org/10.1190/ge02012-0386.1

102

Appendix (or Appendices)

APPENDIX A: COMPUTER MODELING GROUP (CMG) SIMULATION INPUT FILE (.SIF)

** TIME =0 2025-Jan-01

RESULTS PROP Gas Saturation Units:

RESULTS PROP Minimum Value: 9.99995E-07 Maximum Value: 1.00007E-06

SG ALL

**K=1,)=1
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06
1E-06 1E-06 1E-06 1E-06 1E-06 1E-06 1E-06

1E-06 1E-06 1E-06

103

APPENDIX B: PYTHON WORKFLOW FOR SPATIAL AND TEMPORAL GAS SATURATION
ANALYSIS

+*In[]:*+

[source, ipython3]

import os

import pandas as pd

from tqdm import tqdm # For progress bar
import numpy as np

import matplotlib

import matplotlib.pyplot as plt

from matplotlib.colors import LinearSegmentedColormap
import re

import datetime

from matplotlib.cm import get cmap

import csv

+*In[]:*+
[source, ipython3]

def find case files(data dir, pattern="Gas Saturation.txt"):

return sorted([f for fin os.listdir(data_dir) if pattern in f])

def parse and max gas map(file path):

104

data =[]
with open(file path, 'r") as file:
year, k_index, j_index, i _index = None, None, None, None
for line in file:
if line.startswith("** TIME ="):
year = line.split()[4].split("-")[0]
elif line.startswith("** K =") and "J =" in line:
k_index = int(line.split("K = ")[1].split(",")[0].strip())
j_index = int(line.split("J = ")[1].strip())
i index =1
elif line.strip() and not line.startswith("**") and
line.startswith("RESULTS"):
try:
for val in map(float, line.split()):
data.append((year, k_index, j index, i_index, val))
1 index +=1
except ValueError:

continue

df = pd.DataFrame(data, columns=["Year", "K", "J", "I", "Gas Saturation"])

not

df max = df.groupby(["Year", "J", "I'"])["Gas Saturation"].max().reset_index()

return df max

def save case gas map(df, label, output_dir):

out_path = os.path.join(output_dir, f"{label}.feather")
df.ito_feather(out path)

105

def batch process gas maps(data_dir, output dir):
os.makedirs(output_dir, exist ok=True)

files = find case files(data dir)

Define your base case pattern (edit if you want a stricter/looser match)
base case pattern = "Case-CW-2-Fullfield-Faults-90degrees-Trans-0.0-Date-
08-05-2024 Gas Saturation.txt"

mapping = []

for 1, fname in enumerate(tqdm(files, desc="Processing cases")):
if fname == base case pattern:
label = "Base Case"
else:
label = f"Case {i+1}"
Save mapping info

mapping.append({"Case Label": label, "Filename": fname})

Process and save
df = parse_and max_gas map(os.path.join(data_dir, fname))

save case gas map(df, label, output dir)

Save mapping as CSV

mapping_path = os.path.join(output_dir, "case file mapping.csv")

pd.DataFrame(mapping).to_csv(mapping_path, index=False)

106

print(f'E4 All max gas maps saved to {output_dir}")

print(f" B4 Mapping saved to {mapping_path}")

--- Usage ---

data_dir="./" # Path to your text files
output_dir = "processed/gas maps"
batch_process gas maps(data_dir, output_dir)

+*In[]:*+

[source, ipython3]

Colormap for gas saturation (blue-green-yellow-red)

cmg_cmap = LinearSegmentedColormap.from_list("cmg", [
(0.0, "blue"), (0.01, "green"), (0.5, "yellow"), (1.0, "red")

D

Colormap for count maps (hot scale)

hot_cmap = LinearSegmentedColormap.from_list("hot thresholded", [
(0.0, "#{TTTfY"), (0.25, "#add8e6"), (0.5, "#{f100"),
(0.75, "#££a500"), (1.0, "#£f0000")

D

107

+*In[]:*+
[source, ipython3]

def natural sort key(s):

return [int(text) if text.isdigit() else text.lower() for text in re.split(r'(\d+)', s)]

+*In[]:*+
[source, ipython3]
Directory with your processed .feather files

gas map_dir = "processed/gas _maps"

Get all feather files, sorted
case_files = [f for f'in os.listdir(gas_map_dir) if f.endswith('.feather")]
case labels = [f.replace('.feather', ").replace(’ ','") for fin case files]

case labels sorted = sorted(case labels, key=natural sort key)
Identify base case (by label containing 'base') and other cases
base case label = [label for label in case labels sorted if 'base’ in label.lower()][0]
other case labels = [label for label in case labels sorted if label !=

base case label]

Load all case data into a dictionary

108

case data= {}

for label in case labels sorted:
path = os.path.join(gas_map_dir, "' {label.replace('',' ')}.feather")
case data[label] = pd.read feather(path)

+*In[]:*+
[source, ipython3]

def get gas grid(df, year):

nmn

Returns a 2D grid (J, I) of gas saturation for a given year.
filtered = df[df["Year"] == year]
if filtered.empty:
return None
1_max = filtered["I"].max()
J_max = filtered["J"].max()
grid = np.full((j_max, i_max), np.nan)
for , row in filtered.iterrows():
grid[int(row["]"]) - 1, int(row["]"]) - 1] = row["Gas Saturation"]

return grid

def get binary grid(gas grid, threshold=0.01):

109

nmn

Converts gas grid to binary: 1 if value > threshold, else 0.
if gas_grid is None:
return None

return (gas_grid > threshold).astype(np.uint8)

+*In[]:*+
[source, ipython3]
def plot_all panels(case data, base case label, other case labels, years, well i,
well_j, threshold=0.01):
n_panels =5
fig, axs = plt.subplots(
n_panels, len(years),
figsize=(len(years)*3.5, n_panels*2.8),
constrained layout=True
)
vmax_gas = (.76 # Can adjust if you want full [0,1] scale

vmax_count = len(other case labels)

for col idx, year in enumerate(years):

--- Base Case Gas Saturation ---

110

base gas = get gas grid(case data[base case label], year)
if base gas is None:
for row in range(n_panels):
axs[row, col idx].axis("off")

continue

--- Stacked Gas Saturation (max across all cases, per cell) ---
stacked gas = np.copy(base gas)
for label in other case labels:

grid = get gas grid(case data[label], year)

if grid is not None:

stacked gas = np.maximum(stacked gas, np.nan_to num(grid, nan=0))

--- Base Binary ---

base bin = get binary grid(base gas, threshold)

--- Stacked Binary: Number of cases with plume ---
stack _bin = np.zeros_like(base bin)
for label in other case labels:

grid = get gas grid(case data[label], year)

if grid is not None:

stack bin += get binary grid(grid, threshold)

--- Additions Only: plume appears in cases but not base ---

additions = np.where((stack_bin > 0) & (base bin == 0), stack bin, 0)

111

--- Panel 1: Base Case Gas Saturation ---

im0 = axs[0, col idx].imshow(base gas, cmap=cmg_cmap, origin="lower",
vmin=0, vmax=vmax_gas)

axs[0, col idx].plot(well i-1, well j-1, marker="+', color='black',
markersize=9, markeredgewidth=2)

axs[0, col idx].set_title(f"Base Gas ({year})", fontsize=9)

axs[0, col idx].set_xticks([]); axs[O0, col idx].set yticks([])

--- Panel 2: Stacked Gas Saturation ---

iml = axs[l, col idx].imshow(stacked gas, = cmap=cmg cmap,
origin="lower", vmin=0, vmax=vmax_gas)

axs[1, col idx].plot(well i-1, well j-1, marker="+, color='black’,
markersize=9, markeredgewidth=2)

axs[1, col idx].set title(f"Stacked Max Gas ({year})", fontsize=9)

axs[1, col idx].set xticks([]); axs[1, col idx].set yticks([])

--- Panel 3: Base Binary (black & white) ---

im2 = axs[2, col idx].imshow(base bin, cmap='gray', origin="lower",
vmin=0, vmax=1)

axs[2, col_idx].plot(well i-1, well j-1, marker="+', color="red', markersize=9,
markeredgewidth=2)

axs[2, col idx].set title(f"Base Binary ({year})", fontsize=9)

axs[2, col idx].set xticks([]); axs[2, col idx].set yticks([])

112

--- Panel 4: Stacked Binary (number of cases) ---

im3 = axs[3, col idx].imshow(stack bin, cmap=hot cmap, origin="lower",
vmin=0, vmax=vmax_count)

axs[3, col idx].plot(well i-1, well j-1, marker="+', color='black’,
markersize=9, markeredgewidth=2)

axs[3, col idx].set_title(f"#Cases Plume ({year})", fontsize=9)

axs[3, col idx].set_xticks([]); axs[3, col idx].set yticks([])

--- Panel 5: Additions Only ---

im4 = axs[4, col idx].imshow(additions, cmap=hot cmap, origin="lower",
vmin=0, vmax=vmax_count)

axs[4, col idx].plot(well i-1, well j-1, marker="+, color='black',
markersize=9, markeredgewidth=2)

axs[4, col idx].set_title(f" Additions ({year})", fontsize=9)

axs[4, col idx].set xticks([]); axs[4, col idx].set yticks([])

--- Row labels ---
row_titles = [
"Base Case Gas", "Stacked Max Gas",

"Base Binary (>1%)", "#Cases with Plume", "Additions Only"
]

for row_idx, label in enumerate(row _titles):

axs[row_idx, O].set_ylabel(label, fontsize=11)

--- Colorbars for each row (right side) ---

113

fig.colorbar(im0, ax=axs[0, :], orientation="vertical', fraction=0.03, pad=0.02,
label="Gas Saturation")

fig.colorbar(im1, ax=axs[1, :], orientation="vertical', fraction=0.03, pad=0.02,
label="Gas Saturation")

fig.colorbar(im2, ax=axs[2, :], orientation="vertical', fraction=0.03, pad=0.02,
label="Binary")

fig.colorbar(im3, ax=axs[3, :], orientation="vertical', fraction=0.03, pad=0.02,
label="# Cases >1%")

fig.colorbar(im4, ax=axs[4, :], orientation="vertical', fraction=0.03, pad=0.02,

label="Additions Only")

plt.show()

+*In[]:*+
[source, ipython3]

Example target years and well location
#target years =[2030, 2035, 2040, 2055, 2225]
target years = ["2030", "2035", "2040", "2055", "2225"]

well 1, well j =84, 54 # Adjust if your well location is different

114

+*In[]:*+
[source, ipython3]

start_time = datetime.datetime.now()

print(f"¢) Plotting started at: {start_time.strftime('%Y-%m-%d %H:%M:%S")}")

plot_all panels(
case data=case data,
base case label=base case label,
other case labels=other case labels,
years=target years,
well _i=well i,
well_j=well j,
threshold=0.01
)
end time = datetime.datetime.now()

print(f'[E4 Plotting ended at: {end_time.strftime('%Y-%m-%d %H:%M:%S")}")

+*In[]:*+
[source, ipython3]

#from tqdm import tqdm # For progress bar

115

def save all panel maps(
case data, base case label, other case labels, years,
well i, well j, output_dir="all panel maps pngs", threshold=0.01,

cmap_gas=None, cmap hot=None

os.makedirs(output_dir, exist ok=True)
panel types =

nn

"base gas", "stacked max gas",
"base binary", "stacked binary", "additions only"
]
if cmap_gas is None:
from matplotlib.colors import LinearSegmentedColormap
cmap_gas = LinearSegmentedColormap.from_list("cmg", [
(0.0, "blue"), (0.01, "green"), (0.5, "yellow"), (1.0, "red")
D
if cmap_hot is None:
from matplotlib.colors import LinearSegmentedColormap
cmap_hot = LinearSegmentedColormap.from_list("hot thresholded", [
(0.0, "#{TTTfY"), (0.25, "#add8e6"), (0.5, "#{ff00"),
(0.75, "#££a500"), (1.0, "#f0000")
D
n_cases = len(other case labels)
vmax_gas =0.76

vmax_count =n_cases

116

def get gas grid(df, year):
filtered = df[df]"Year"] == year]
if filtered.empty:
return None
1_max = filtered["]"].max()
j_max = filtered["]"].max()
grid = np.full((j_max, i_max), np.nan)
for , row in filtered.iterrows():
grid[int(row["]"]) - 1, int(row["I"]) - 1] = row["Gas Saturation"]

return grid

def get binary grid(gas grid, threshold=0.01):
if gas_grid is None:
return None

return (gas_grid > threshold).astype(np.uint8)

progress = tqdm(years, desc="Saving all maps")

for year in progress:
--- Base Gas ---
base gas = get gas grid(case data[base case label], year)
if base gas is None:

continue

--- Stacked Max Gas ---

117

stacked gas = None
for label in other case labels:
grid = get gas grid(case data[label], year)
if grid is not None:
if stacked gas is None:
stacked gas = np.copy(grid)
else:
stacked gas = np.maximum(stacked gas,

nan=0))

--- Base Binary ---

base bin = get binary grid(base gas, threshold)

--- Stacked Binary ---

stack bin = np.zeros_like(base bin)

for label in other case labels:
grid = get gas grid(case data[label], year)
if grid is not None:

stack bin += get binary grid(grid, threshold)

--- Additions Only ---

np.nan_to num(grid,

additions = np.where((stack_bin > 0) & (base bin == 0), stack bin, 0)

--- Save all maps ---

maps_to_save = {

118

"base gas": (base gas, cmap_gas, (0, vmax gas)),
"stacked max gas": (stacked gas, cmap_ gas, (0, vmax gas)),
"base binary": (base bin, '"gray", (0, 1)),
"stacked binary": (stack bin, cmap hot, (0, vmax count)),
"additions only": (additions, cmap_hot, (0, vmax count))

}

for panel_type, (data_map, cmap, (vmin, vmax)) in maps_to_save.items():
fig, ax = plt.subplots(figsize=(4, 4))
im = ax.imshow(data map, cmap=cmap, origin='lower', vmin=vmin,

vmax=vmax)

ax.axis('off")
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
filename = f" {output_dir}/{panel type} {year}.png"
plt.savefig(filename, dpi=300, bbox_inches="tight', pad inches=0)
plt.close(fig)

print(f’ All maps saved to {output_dir}/ (per year and map type)")

+*In[]:*+

[source, ipython3]

save all panel maps(

119

case data=case data,

base case label=base case label,

other case labels=other case labels,

years=target years,

well i=well i,

well j=well j,

output_dir="all panel maps pngs", # Output folder
threshold=0.01

+*In[]:*+
[source, ipython3]
--- Data Loading ---
gas map_dir = "processed/gas _maps"
case_files = [f for fin os.listdir(gas map_dir) if f.endswith('.feather")]
case labels = [f.replace('.feather', ").replace(' ','") for fin case files]
case labels sorted = sorted(
case labels,
key=lambda s: [int(text) if text.isdigit() else text.lower() for text in
re.split(r'(\d+)', s)]
)

120

case data= {}

for label in case labels sorted:
path = os.path.join(gas_map_dir, "' {label.replace('',' ')}.feather")
case data[label] = pd.read feather(path)

--- Plume Migration Calculation (NW direction only) ---
def calculate plume migration(df, well i, well j, threshold):
Calculates the maximum migration distance of the plume
strictly in the NW (upper-left) direction from the injection well.
df = df.copy()
dff"Year"] = df["Year"].astype(int)
migration = []
for year in sorted(df["Year"].unique()):
year df = df[df["Year"] == year]
plume = year df[year df["Gas Saturation"] > threshold].copy()
if not plume.empty:

plume["Distance"] = np.sqrt((plume["T"] - well 1)**2 + (plume["]"] -

well_j)**2)
nw = plume[(plume["]"] < well 1) & (plume["]"] > well j)]
max_dist = nw["Distance"].max() if not nw.empty else 0
else:

max_dist=0

migration.append({"Year": year, "Max Distance": max_dist})

121

return pd.DataFrame(migration)

--- Plotting Function ---
def analyze and plot plume migration(
case data, all case labels, well i, well j,
threshold=0.01, target year=2225, output dir="visualizations",

zoom_first n_years=None, show_since start=True

1. Calculate migration for all cases
case migration = {}
for case in all case labels:
case_migration[case] = calculate plume migration(case data[case], well i,

well_j, threshold)

2. Separate hot/cold cases
hot_cases, cold cases =[], []
for case, dist_df in case migration.items():
final row = dist df[dist df["Year"] == target year]
if final row.empty or case.lower().startswith("base"):
continue
if final row["Max Distance"].values[0] > 40:
hot_cases.append(case)
else:

cold_cases.append(case)

122

plt.figure(figsize=(13, 7))

cold cmap
matplotlib.colormaps.get cmap("Blues").resampled(len(cold cases))#cold cmap
get_cmap("Blues", len(cold cases))

hot cmap
matplotlib.colormaps.get cmap("autumn").resampled(len(hot cases))#hot cmap

et cmap("autumn", len(hot cases)
get_cmap _

3. Find injection start year for x-axis

all years =[]

for case in all case labels:
years = case_data[case]["Year"].astype(int).unique()
all years.extend(years)

min_year = min(all_years)

def extract case number(label):
if label.lower().startswith(""base"):
return -1
match = re.search(r"\d+', label)

return int(match.group()) if match else float('inf)

4. Plot base case
if any("base" in case.lower() for case in case migration):
for base case in [case for case in case migration if "base" in case.lower()]:

base df = case migration[base case]

123

x =base df["Year"] - min_year if show_since_start else base df["Year"]

plt.plot(
X, base df["Max Distance"],

n.n

linestyle="--", color="black", linewidth=1.5, marker='0', markersize=2,

label=base case, zorder=5

5. Plot cold and hot cases
for 1, case in enumerate(sorted(cold_cases, key=extract case number)):
df = case migration[case]
x = df["Year"] - min_year if show_since_start else df["Year"]
plt.plot(
x, df["Max Distance"],
color=cold cmap(i), linewidth=1, marker='0', markersize=1.5,
label=case
)
for 1, case in enumerate(sorted(hot_cases, key=extract case number)):
df = case_migration[case]
x =df["Year"] - min_year if show_since_start else df["Year"]
plt.plot(
x, df["Max Distance"],
color=hot_cmap(i), linewidth=1, marker='0', markersize=1.5,

label=case

124

6. Set axis limits: always x=0, y=0; y-max is local max for zoomed-in, else
auto
if zoom_first n_years is not None:
plt.xlim(0, zoom_first n_years)
Find max y in the zoomed x-range
y vals =[]
for case in all case labels:
df = case migration[case]
x = df["Year"] - min_year if show_since start else df["Year"]
mask = (x >=0) & (x <= zoom_first n_years)
vals = df.loc[mask, "Max Distance"].values
y_vals.extend(vals)
ify vals:
plt.ylim(0, max(y_wvals) * 1.05)
else:
plt.ylim(0, 1)
else:
xmax = max([df["Year"].max() - min_year if show since start else
dff"Year"].max()
for df in case migration.values()])
plt.xlim(0, xmax)

plt.ylim(bottom=0)

7. Labels and title

125

plt.xlabel("Year Since Injection Start" if show since start else "Year",
fontsize=13)

plt.ylabel("Maximum Plume Migration Distance (NW Direction)", fontsize=13)

plt.title("NW Plume Migration Distance from Well Over Time", fontsize=15)

plt.grid(True, linestyle="", linewidth=0.5)

handles, labels = plt.gca().get legend handles labels()

sorted items = sorted(zip(labels, handles), key=lambda X:
extract case number(x[0]))

sorted labels, sorted handles = zip(*sorted_items)

plt.legend(sorted handles, sorted labels, loc="upper left’,

bbox_to anchor=(1.02, 1), fontsize="medium")

plt.minorticks_on()

plt.tight layout()

os.makedirs(output_dir, exist ok=True)

timestamp = datetime.datetime.now().strftime("%Y %m%d_%H%M%S")

plot path = os.path.join(output_dir,
f"plume_migration_hot cold {timestamp}.png")

plt.savefig(plot path, dpi=300, bbox inches="tight")

print(f"[&a] Plot saved to: {plot_path}")

plt.show()

126

+*In[]:*+
[source, ipython3]

Plot full years (e.g., 200 years)
analyze and plot plume migration(
case data=case data,
all case labels=case labels sorted,
well i=84, well j=54,
threshold=0.01,
target year=2225,
output_dir="visualizations",
zoom_first n_years=None, # auto set xlim to full range

show_since start=True

+*In[]:*+
[source, ipython3]

--- Example usages ---

127

Plot first 25 years

analyze and plot plume migration(
case data=case data,
all case labels=case labels sorted,
well i=84, well j=54,
threshold=0.01,
target year=2225,
output_dir="visualizations",
zoom_first n_years=50,

show_since start=True

+*In[]:*+
[source, ipython3]

--- Example usages ---

Plot first 25 years
analyze and plot plume migration(
case_data=case data,

all case labels=case labels sorted,

128

well i=84, well j=54,
threshold=0.01,

target year=2225,
output_dir="visualizations",
zoom_first n_years=25,

show_since_start=True

+*In[]:*+
[source, ipython3]

import types

List of all user-defined function names
functions = [name for name, obj in globals().items()

if isinstance(obj, types.FunctionType) and obj. module ==' main_ ']
print("Functions:", functions)

print("Total functions:", len(functions))

129

+*In[]:*+
[source, ipython3]

import types

List of all user-defined variable names (exclude functions, modules, and built-
ins)
variables = [name for name, obj in globals().items()
if not name.startswith(" ") and
not isinstance(obj, types.FunctionType) and

not isinstance(obj, types.ModuleType)]

print("Variables:", variables)

print("Total variables:", len(variables))

130

APPENDIX C: COMPUTER MODELING GROUP (CMG) GEOSTATISTICAL SOFTWARE
LIBRARY (.GSLIB)

7

i_index
j_index
k_index
x_coord ft
y_coord ft
z_coord ft

Gas_Saturation

11200 5776.73 1e-06

21200 5784.61 1e-06
31200 5792.51 1e-06
41200 5800.4 1e-06
51200 5808.29 1e-06
61200 5816.19 1e-06
71200 5824.24 1e-06
81200 5832.61 1e-06
91200 5841.11 1e-06
10120 7 5849.57 1e-06
11120 7 5858.02 1e-06
12120 7 5866.47 1e-06
13120 7 5874.93 1e-06
14120 7 5883.46 1e-06
15120 7 5892.09 1e-06
16120 7 5900.71 1e-06
17120 7 5909.33 1e-06

18120 75917.96 1e-06

131

APPENDIX D: SEISMIC FORWARD MODELING PYTHON CODE (GAO ET AL.,
UNPUBLISHED)

+*In[]:*+

[source, ipython3]

=== Core Python & Data Handling ===
import os

import time

import glob

import random

from collections import Counter, defaultdict

from typing import Tuple, List

=== Numerical Computing ===

import numpy as np

import pandas as pd

import cupy as cp

from scipy import stats

from scipy.interpolate import griddata
from scipy.spatial import cKDTree

from scipy.ndimage import gaussian_filter

from scipy.stats import pearsonr

=== Visualization ===

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

132

import seaborn as sns
from matplotlib.patches import Patch

from mpl_toolkits.mplot3d import Axes3D

=== Geophysical / Domain-Specific ===
import lasio

import gstools as gs

=== Machine Learning ===
from sklearn.linear model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.model selection import train_test split
from sklearn.impute import KNNImputer
from sklearn.preprocessing import StandardScaler, PolynomialFeatures

from sklearn.pipeline import make pipeline

=== Deep Learning (PyTorch) ===
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DatalLoader, ConcatDataset, random_split,

Subset

=== Utilities ===

from tqdm import tqdm

133

from numba import njit

+*In[]:*+
[source, ipython3]

def plot well logs(las_file, log names, well name):

nmn

Plots the specified well logs vs depth as a 1xn vertical subplot, including facies

tracks.

Parameters:

134

a column

- las_file (str): Path to the LAS file.

- log_names (list of str): List of log names to plot.

Returns:

- Displays a multi-panel plot of well logs vs. depth with facies track.

nmn

Load LAS file
las = lasio.read(las_file)

df=las.df().reset _index() # Convert to DataFrame and reset index to make depth

Extract log units from LAS file

log_units = {curve.mnemonic: curve.unit for curve in las.curves}

Identify facies track(s)

facies cols = [col for col in df.columns if col.startswith("FACIES ")]

Ensure requested logs exist in the file
available logs = [log for log in log names if log in df.columns]
if not available logs:

raise ValueError(f'"None of the requested logs exist in {las file}. Available

logs: {list(df.columns)}")

Define number of subplots (logs + facies track)

135

n_logs = len(available logs) + len(facies_cols)

Set up figure
fig, axes = plt.subplots(1, n_logs, figsize=(n logs * 3, 20), sharey=True,

gridspec_kw={"wspace": 0.1}) # Adjust spacing

Ensure axes is iterable when n_logs=1
ifn_logs == 1:

axes = [axes]

fig.suptitle(f'Well Logs from {las.well['WELL'].value}", fontsize=16,
fontweight='bold")
fig.suptitle(f"Well Logs from {well name}", fontsize=16, fontweight="bold") #

hide well name

Get depth range
depth_min, depth_max = df["DEPT"].min(), df["DEPT"].max()

Plot each log
for 1, log in enumerate(available logs):
ax = axes[i] # Select the correct axis

unit = log_units.get(log, "") # Get unit, default to empty string if not found

if unit =="ohm.m": # Apply logarithmic scale for resistivity

ax.set_xscale("log")

136

ax.plot(dfflog], df["DEPT"], label=f"{log} ({unit})", color="b")

ax.set_xlabel(f"{log} ({unit})", fontsize=14) # Increase axis label font size

ax.set_ylabel("Depth (m)", fontsize=14) if i == 0 else None # Set y-label only
on first subplot

ax.invert_yaxis() # Depth increases downward

ax.grid(True, linestyle="--", alpha=0.5)

ax.legend(fontsize=12) # Increase legend font size

Format depth tick labels to avoid excessive decimal places, hide this
ax.set yticks(np.linspace(depth min, depth max, num=10)) # Set 10
evenly spaced ticks
ax.set_yticklabels([f" {tick:.0f}" for tick in ax.get yticks()], fontsize=14)
Show rounded depths
turn off y-ticks everywhere except the first subplot
for ax in axes:

ax.tick params(axis='y', which='both', left=False, labelleft=False)

axes[0].tick_params(axis='y', which='both', left=True, labelleft=True)
Add facies track if available
for j, facies _col in enumerate(facies_cols):

ax = axes[len(available logs) + j] # Select subplot

Drop NaN facies values before mapping colors

137

facies_values = dffacies_col].dropna().unique()
facies_cmap = sns.color palette("tab10", len(facies values))

facies_dict = {val: facies_cmapl[i] for i, val in enumerate(facies values)}

Convert facies values to categorical numerical representation
dff"Facies Num"] = df[facies col].map({val: 1 for i, wval in

enumerate(facies_values)})

facies_cmap = ListedColormap([facies_dict[val] for val in facies values])
ax.imshow(df["Facies Num"].values|:, np.newaxis|, aspect="auto",

cmap=facies_cmap, extent=[0, 1, depth_max, depth min])

ax.set_xlabel(facies_col, fontsize=14)

ax.set_xlim(0, 1) # Keep facies track aligned

ax.set_xticks([]) # Remove x-ticks

ax.set_yticks(np.linspace(depth min, depth max, num=10)) # Add
depth ticks to facies track

ax.set_yticklabels([f" {tick:.0f}" for tick in ax.get yticks()], fontsize=14)
Format depth labels

ax.set_title(f"Facies Track", fontsize=14, fontweight="bold")

Create a legend
handles = [plt.Line2D([0], [0], color=facies_dict[val], lw=4, label=f"Facies
{int(val)}") for val in facies_values]

ax.legend(handles=handles, title=facies col, fontsize=12, loc="upper right")

138

plt.tight layout(rect=[0, 0, 1, 0.96]) # Adjust layout to fit title
plt.show()

+*In[]:*+

[source, ipython3]

def plot two_layers(
layerl records, layer2 records, plt_title,
layerl title="Layer 1", layer2 title="Layer 2",

_n

property 1="facies", property 2="facies", cmap="viridis", lowper=5,
hiper=95,syn=True
):

nmn

Plot two layers side by side with the specified property.

Parameters:
layerl records (DataFrame): Data for the first layer.
layer2 records (DataFrame): Data for the second layer.

layerl title (str): Title for the first layer plot.

139

layer2 _title (str): Title for the second layer plot.
property _name (str): The column name of the property to plot.
cmap (str): Colormap for the plots.

nmn

Create pivot tables for both layers

layerl pivot layerl records.pivot(index="j index", columns="i index",

values=property 1)

layer2 pivot = layer2 records.pivot(index="j index", columns="i index",
values=property 2)
print(f'layerl pivot')

vs_vals = layer] records[property 1].dropna()
vminl = np.percentile(vs_vals, lowper)
vmax1 = np.percentile(vs_vals, hiper)

if syn==True:

print(f'vminl : {vminl}, vmax1: {vmaxl1}")

vs_vals = layer2 records|[property 2].dropna()
vmin2 = np.percentile(vs_vals, lowper)

vmax2 = np.percentile(vs_vals, hiper)

vmin2 = np.percentile(pd.concat([layer2 records[property 2]]), 1)
vmax2 = np.percentile(pd.concat([layer2 records[property 2]]), 99)
print(f'vmin2 : {vmin2}, vmax2: {vmax2}")

vmin = np.min([vminl, vmin2])

140

vmax = np.max([vmax1, vmax2])

print(f'vmin : {vmin}, vmax: {vmax}")

Set up the figure and axes for subplots

fig, axes = plt.subplots(1, 2, figsize=(16, 8))

Plot the first layer
if syn:
vminl=vmin
vmin2=vmin
vmax | =vmax

vmax2=vmax

im1 = axes[0].imshow(
layerl pivot,
cmap=cmap,
origin="lower",
extent=[
layer]l pivot.columns.min(), layerl pivot.columns.max(),

layer1l pivot.index.min(), layerl pivot.index.max()],vmin=vminl,

vmax=vmax 1l

)
axes[0].set_title(layer] title)
axes[0].set_xlabel("1_index")

axes[0].set_ylabel("; index")

141

fig.colorbar(im1, ax=axes[0], label=property 1.capitalize())

Plot the second layer
im2 = axes[1].imshow(
layer2 pivot,
cmap=cmap,
origin="lower",
extent=[
layer2 pivot.columns.min(), layer2 pivot.columns.max(),
layer2 pivot.index.min(), layer2 pivot.index.max()],
vmin=vmin2, vmax=vmax?2
)
axes[1].set_title(layer2 _title)
axes[1].set_xlabel("i_index")
axes[1].set_ylabel("j_index")

fig.colorbar(im2, ax=axes[1], label=property 2.capitalize())

Show the plots

fig.suptitle(plt_title, fontsize=16, y=0.95)
plt.tight layout()

plt.show()

142

+*In[]:*+
[source, ipython3]
defread las(file, printLogs=False):
las = lasio.read(file)
if printLogs:
for curve in las.curves:

print(f" {curve.mnemonic:10} | {curve.unit:6} | {curve.descr}")

df = las.df().reset_index()
df["WELL"] = file # Track well source

Identify facies columns
facies_cols = [col for col in df.columns if col.startswith(strFaciesPrefix)]
if not facies_cols:

print(f' /A No facies columns found in {file}, skipping.")

return None
Choose facies column with the most non-null values
best facies col = max(facies cols, key=lambda col: df[col].count())

df["FACIES SELECTED"] = df[best facies col]

print(f' B4 Using facies column {best_facies col} in {file}")

return df

143

+*In[]:*+
[source, ipython3]

def predictLog(target log, strFaciesPrefix, zone log, las files, predictors,
plotit=True, normalize=True, method='RF', poly degree=1):
Predicts a given log using available well logs, facies, and depth, grouped by

zones, using Random Forest or Polynomial Regression.

Parameters:

- target log (str or list): Log(s) to predict (e.g., '"VP', 'XVCL', 'XRHOB')

- strFaciesPrefix (str): Facies column prefix (e.g., 'FACIES ")

- zone_log (str): The log that defines geological zones (e.g., 'ZONELOG")

- las_files (list): List of LAS file paths

- predictors (list): List of predictor log names (e.g., [XPORT', 'XRESD', 'XSP',
"XVCL'))

- plotit (bool): Whether to plot the results (default: True)

- normalize (bool): Whether to normalize the predictors before using

RandomForest or Polynomial Regression.

144

- method (str): 'RF' for Random Forest or 'PN' for Polynomial Regression.

- poly degree (int): Degree of the polynomial model (default: 1).

Returns:
- las_df (pd.DataFrame): DataFrame with predicted log added.

nmn

ST —

1. LOG IMPORT
i - —

dfs, used wells =[], []

for fin las_files:
df =read las(f)
if df is not None and any(col in df.columns for col in (target log if
isinstance(target log, list) else [target log])):
dfs.append(df)

used wells.append(f)

if not dfs:

raise ValueError(f'No LAS files contain {target log}. Check available logs.")

print(f" 4] Used LAS files: {used wells}")

las_df = pd.concat(dfs, ignore index=True)

145

- .
2. DETERMINE COMMON LOGS ACROSS USED WELLS
- .

available logs = list(set.intersection(*[set(df.columns) for df in dfs]))

common_logs = [log for log in predictors if log in available logs]
print(f' 4 Common logs across used wells: {common_logs}")

Ensure target log exists

selected log = target log if isinstance(target log, str) else target log[0]

print(f" 4 Using target log: {selected log}")

i - —

3. APPLY LOG TRANSFORMATION TO RESISTIVITY AND Vp
i - .

if 'XRESD' in common_logs:
las_ df['XRESD'] = np.log(las_df['’XRESD']) # Apply logarithm

print("£4 Applied log transformation to XRESD (Resistivity)")

if selected log =="Vp"

obj log="Vp_log'

las_dffobj log] =np.log(las_dffselected log]) # Log-transform Vp
else:

obj_log = selected log

146

- .
4. FILTER DATA & CHECK MISSING VALUES
- .

relevant logs = list(set([obj log, "FACIES SELECTED", zone log, 'DEPT'] +
common_logs))

relevant logs = list(set([obj log, "FACIES SELECTED", 'DEPT'] +
common_logs))

print("Missing values per column before dropna():")

print(las_df[relevant logs].isna().sum())

required_cols = [obj_log, "FACIES SELECTED", "DEPT"] + common_logs #
Columns that must NOT contain NaNs

las df=las dffrelevant logs].dropna(subset=required cols)

print(f' §4] las_df after dropna: {las_df.shape}')

if len(las_df) < 50:
print(f" A\ Warning: Only {len(las_df)} valid data points available!")

facies labels = las df["FACIES SELECTED"].unique()
if plotit:
plt.figure(figsize=(12, 6))

sns.histplot(data=las_df, x=selected log, hue="FACIES SELECTED",

kde=True, bins=30, palette="tab10")

147

plt.xlabel(selected log)

plt.ylabel("Frequency")

plt.title(f"Histogram of {selected log} by Facies (Original Data)")
plt.legend(title="Facies", labels=[f"Facies {int(f)}" for fin facies labels])

plt.show()

selected zones=1(1,3,5,7,9, 11]

fig, axes = plt.subplots(2, 3, figsize=(12, 6), sharex=True, sharey=True)

for 1, zone in enumerate(selected zones):
row, col = divmod(i, 3) # Determine subplot position

zone data =las df[las df[zone log] == zone]

sns.histplot(data=zone data, x=selected log,
hue="FACIES SELECTED", kde=True, bins=30, palette="tab10", ax=axes[row, col])

axes[row, col].set xlabel(selected log)

axes[row, col].set ylabel("Frequency")

axes[row, col].set_title(f"Zone {zone}")

Add a legend inside each subplot

handles = [Patch(facecolor=sns.color palette("tab10")[i], label=f"Facies
{int()}") for 1, f in enumerate(facies labels)]

Set the legend with facies labels

axes[row, col].legend(handles=handles, title="Facies", loc="upper right")

148

plt.tight _layout()
plt.show()

i - .

5. TRAIN & PREDICT ‘target log' USING RANDOM FOREST OR
POLYNOMIAL REGRESSION (GROUPED BY ZONE)
i - —

las df[f"{obj log} Predicted"] =np.nan

for zone in las_df[zone log].unique():
zone data = las dfflas df[zone log] == zone].dropna(subset=[obj log] +
common_logs)
if len(zone data) < 10:
print(f" A\ Skipping zone {zone} (Too few data points: {len(zone data)})")

continue

X =zone_data[common_logs].copy()

y = zone_data[obj log].copy()

Apply normalization if enabled
if normalize:

scaler = StandardScaler()

X scaled = scaler.fit_transform(X)
else:

X scaled=X

149

if method == 'RF": # Random Forest
rf = RandomForestRegressor(n_estimators=100, max_ depth=None,
random_state=42, n_jobs=-1)
rf.fit(X _scaled, y)
las_df.loc[zone data.index, f'{obj log} Predicted"] =
rf.predict(X_scaled)
elif method == "PN'": # Polynomial Regression
poly model = make pipeline(PolynomialFeatures(degree=poly degree),
LinearRegression())

poly_model.fit(X_scaled, y)

las df.loc[zone data.index, f'{obj log} Predicted"]

poly model.predict(X scaled)
if selected log =="Vp"
las_df[f"{selected log} Predicted"] =

np.exp(las_df[f"{obj log} Predicted"]) # Convert back from log

i - .

6. COMPARE ORIGINAL VS. PREDICTED ‘target log® PER FACIES
i - .

original _std = las_df.groupby("FACIES SELECTED")[selected log].std()
predicted_std =
las_df.groupby("FACIES SELECTED")[{"{selected log} Predicted"].std()

150

std_comparison = pd.DataFrame({"Original Std": original std, "Predicted Std":
predicted std})
print(f"\n[]] Standard Deviation of {selected log} by Facies:")

print(std_comparison)

if plotit:

plt.figure(figsize=(12, 6))

sns.histplot(data=las_df, x=f"{selected log} Predicted",
hue="FACIES SELECTED", kde=True, bins=30, palette="tab10")

plt.xlabel(f" {selected log} Predicted")

plt.ylabel("Frequency")

plt.title(f"Histogram of {selected log} by Facies (processed)")

plt.legend(title="Facies", labels=[f"Facies {int(f)}" for fin facies labels])

plt.show()

selected zones=[1,3,5,7,9, 11]

fig, axes = plt.subplots(2, 3, figsize=(12, 6), sharex=True, sharey=True)

for 1, zone in enumerate(selected zones):
row, col = divmod(i, 3) # Determine subplot position
zone data = las_df[las_df[zone log] == zone]
sns.histplot(data=zone data, x=f"{selected log} Predicted",
hue="FACIES SELECTED", kde=True, bins=30, palette="tab10", ax=axes[row, col])
axes[row, col].set_xlabel(f"Predicted {selected log}")

axes[row, col].set_ylabel("Frequency")

151

axes[row, col].set_title(f"Zone {zone}")

Add a legend inside each subplot

handles = [Patch(facecolor=sns.color palette("tab10")[i], label=f"Facies

{int(f)}") for i, f in enumerate(facies_labels)]

Set the legend with facies labels

axes[row, col].legend(handles=handles, title="Facies", loc="upper right")
plt.tight layout()
plt.show()

#

7. COMPUTE MEAN & STD PER FACIES

i - —

predicted mean =
las_df.groupby("FACIES SELECTED")[f"{selected log} Predicted"].mean()
predicted_std =

las_df.groupby("FACIES SELECTED")[{"{selected log} Predicted"].std()

mean_std df = pd.DataFrame({
"Mean": predicted mean,

"Std": predicted std

1)
print(f"\n[l1] Mean & Standard Deviation of {selected log} by Facies:")

print(mean_std df)

return las_df, mean_std df

152

+*In[]:*+
[source, ipython3]
defnan_gaussian_filter corrected(arr, sigma=1.5):
mask = ~np.isnan(arr)
arr_filled = np.where(mask, arr, 0)
smoothed = gaussian_filter(arr_filled, sigma=sigma)
weight = gaussian_filter(mask.astype(np.float32), sigma=sigma)
with np.errstate(invalid='ignore', divide='ignore'):
result = smoothed / weight
result{weight < le-3] = np.nan
return result

153

+*In[]:*+

[source, ipython3]

n1=288 # size of x (ft)
n2=314 # size of'y (ft)
n3=200 # size of z (depth)
18086400 grids

read in facies distribution file, exported from Petrel.
input_file = "FID.gslib"
read the facies data
with open(input_file, "r") as infile:
lines = infile.readlines()
Skip the first 9 lines (format explanation text)

data_lines = lines[9:]

i index, j index, k index =[], [], []

x_coord, y coord, z _coord, facies =[], [], [], []

Process each data line

154

for line in data_lines:
columns = line.split()
if len(columns) == 7: # Ensure there are exactly 7 columns
i_index.append(int(columns[0]))
j_index.append(int(columns[1]))
k_index.append(int(columns[2]))
x_coord.append(float(columns[3]))
y_coord.append(float(columns[4]))
z_coord.append(float(columns[5]))
facies.append(float(columns[6]))
else:
print(f"'Skipping invalid line: {line.strip()}")
read in Sg distribution file, exported from Petrel.
df = pd.DataFrame({
"i_index": 1_index,
";_index":j index,
"k index": k index,
"x_coord": x_coord,
"y coord":y coord,
"z _coord": z_coord,
"facies": facies
1)
dff"facies"] = pd.to_numeric(df]"facies"], errors="coerce"

df["facies"] = df["facies"].replace(-99, np.nan)

155

dff["x_coord", "y coord", "z coord"]] = df[["x _coord", "y coord",

"z_coord"]].replace(-99, np.nan)

Function to load a single .gslib file
def'load gslib(file path):
with open(file path, "r") as infile:
lines = infile.readlines()
Skip header lines
data lines = lines[3:] # Skip the first two lines (header)
Convert the remaining lines into floats
data = [float(line.strip()) for line in data lines if line.strip()]

return data

gslib_files = {
"Sg2024.gslib": "Sg2024",
"Sg2030.gslib": "Sg2030",
"Sg2040.gslib": "Sg2040",
"Sg2050.gslib": "Sg2050",
"Sg2060.gslib": "Sg2060",
"Sg2070.gslib": "Sg2070",
"Sg2080.gslib": "Sg2080",

Create a dictionary to store the properties

propertiesSg = {}

156

Load each .gslib file and store its values in the dictionary
for file path, column_name in gslib_files.items():

propertiesSg[column_name] = load gslib(file path)

Combine the properties with the existing DataFrame
for column_name, values in propertiesSg.items():
df[column_name] = values
dffcolumn_name] = pd.to_numeric(df[column_name], errors="coerce")

dffcolumn_name] = df[column_name].replace(-99, np.nan)

Check the resulting DataFrame

print(df.head())

+*In[]:*+
[source, ipython3]

ikl =1 # First layer index

ik2 =1 # Second layer index

Filter records for each layer

157

layerl property ="y coord"

layer2 property = "facies"

plot_two_layers(
layerl records=df[df["k index"]==ikl1],
layer2 records=df[df["k index"] ==ik2],
plt title = "Petrel data: df’,
layerl _title=f"{layerl property} for k index = {ik1}",
layer2_title=f"{layer2 property} for k index = {ik2}",
property 1=layerl property,property 2=layer2 property, syn=False

+*In[]:*+
[source, ipython3]

ikl = 16 # First layer index

ik2 =16 # Second layer index

layerl property = "facies"

158

layer2 property = "Sg2030"

plot_two_layers(
layerl records=df[df["k index"]==ikl1],
layer2 records=df[df["k index"]==ik2],
plt_title = 'Petrel data: df’,
layerl _title=f"{layerl property} for k index = {ik1}",
layer2_title=f"{layer2 property} for k index = {ik2}",

property 1=layer] property,property 2=layer2 property, syn=False

+*In[]:*+
[source, ipython3]

B
H#HHH#HAH#HA impute X, v ,z coordinates
B

def interpolate coordinates 2d(known_records, missing_records):
Create a copy to store interpolated values

interpolated records = missing_records.copy()

159

Iterate over unique k_index (layers)
i=0
for k in known_records["k index"].unique():
Filter known and missing records for this layer
known_layer = known_records[known_records["k index"] ==k]

missing_layer = missing_records[missing_records["k index"] == k]

if known_layer.empty or missing_layer.empty:

continue # Skip if there are no records for this layer

Prepare input points and values for interpolation
known_points = known_layer[["i_index", "j index"]].values
x_values = known_layer["x coord"].values

y_values = known_layer["y coord"].values

z values = known_layer["z coord"].values

Points where values are missing

n"non;

missing_points = missing_layer[["i_index", "] index"]].values

Perform linear interpolation for x_coord

interpolated x = griddata(
points=known_points,
values=x_values,

Xi=missing_points,

160

method="linear"

Perform linear interpolation for y coord
interpolated y = griddata(
points=known_points,
values=y values,
Xi=missing_points,

method="linear"

Perform linear interpolation for z_coord
interpolated z = griddata(
points=known_points,
values=z_values,
Xi=missing_points,

method="linear"

Store interpolated values in the missing records

interpolated records.loc[interpolated records["k index"] ==k, "x coord"] =
interpolated x

interpolated records.loc[interpolated records["k index"] ==k, "y coord"] =

interpolated y

161

interpolated records.loc[interpolated records["k index"] ==k, "z coord"] =
interpolated z
print(f'layer {k} fills {len(interpolated x)} values')

i=it+1

return interpolated records, known_points, known layer, interpolated x

known_records = df[df[["x_coord", "y coord", "z coord"]].notna().all(axis=1)]
known_coords = known_records[["i_index", "j index", "k index"]].values
known_values = known_records[["x coord", "y coord", "z _coord"]].values
missing_records = df[df[["x_coord", "y coord", "z coord"]].isna().any(axis=1)]
missing_coords = missing_records[["i_index", "j index", "k index"]].values
print("Shape of all records:", df.shape) # (18065200, 7)

print("Shape of known records:", known_records.shape) # (18065200, 7)
print("Shape of missing records:", missing_records.shape) # (21200, 7)

interpolated missing_records,known_points, known layer, interpolated x =

interpolate coordinates 2d(known_records, missing_records)

Combine known and interpolated records if needed

complete xyzrecords = pd.concat([known_records,

n"non;

interpolated missing_records]).sort values(by=["k index", "j index", "i_index"])

+*In[]:*+

162

[source, ipython3]

HHHHHHHHHHHIH I
HHHEHHIHHAHE Impute facies #H#HHH
HHHHHHHHHHHIH I

def fill_missing values layerwise(

known_records, missing_records, property name, method="linear"

nmn

Fill missing values for a given property in a layer-wise manner using 2D

interpolation.

Parameters:

known_records (DataFrame): DataFrame containing known values for the

property.

missing_records (DataFrame): DataFrame containing missing values for the
property.

property name (str): The name of the property column to fill (e.g., "x_coord",
"y coord", "z coord", "facies").

method (str): Interpolation method ("linear" or "nearest"). Default is "linear".
Returns:

DataFrame: The missing_records DataFrame with the interpolated property

values filled in.

163

nmn

filled values =[]

for k in known_records["k index"].unique():
Filter known and missing records for this layer
known_layer = known_records[known_records["k index"] ==k]

missing_layer = missing_records[missing_records["k index"] == k]

if known_layer.empty or missing_layer.empty:

continue # Skip if there are no records for this layer

Prepare input points and values for interpolation
"o ong

known_points = known_layer[["i_index", "j index"]].values

property values = known_layer[property name].values

Points where values are missing

n"non;

missing_points = missing_layer[["i_index", "] index"]].values

Perform interpolation

interpolated values = griddata(
points=known_points,
values=property values,
Xi=missing_points,

method=method

164

Append results as a DataFrame for this layer
filled layer = missing_layer.copy()
filled layer[property name] = interpolated values

filled values.append(filled layer)

Combine all filled layers into a single DataFrame
filled records = pd.concat(filled values, ignore index=True)

return filled records

known_records = df[df[["facies"]].notna().all(axis=1)]
known_coords = known_records[["i_index", "j index", "k index"]].values
known_values = known_records[["facies"]].values
missing_records = df[df["facies"]].isna().any(axis=1)]
missing_coords = missing_records[["i_index", "] index", "k index"]].values
print("Shape of all records:", df.shape) # (18065200, 7)
print("Shape of known records:", known_records.shape) # (18065200, 7)
print("Shape of missing records:", missing_records.shape) # (21200, 7)
filled missing facies = fill missing values layerwise(
known_records=known_records,
missing_records=missing_records,

property name="facies",

method="nearest"

165

complete faciesrecords = pd.concat([known_records,
"non: nmn

filled missing_facies]).sort_values(by=["k index","j index", "i_index"])

+*In[]:*+

[source, ipython3]

S B I
HiHHHIHHIH I combine to get imputed facies
S B I

Merge the two DataFrames, prioritizing facies from ‘complete faciesrecords’
complete data = pd.merge(
complete xyzrecords,

"non:

complete faciesrecords[["1 index", "j index", "k index", "facies"]],
"non;

on=["1_index", "] index", "k index"],

how="left"

Fill missing facies values (from facies x) with facies y
complete data["facies"] -

complete data["facies x"].combine first(complete data["facies y"])

Drop the temporary columns facies x and facies_y

166

complete data.drop(columns=["facies x", "facies y"], inplace=True)

Check for remaining NaN values in the “facies’” column
nan_facies count = complete data["facies"].isna().sum()

print(f"Number of rows with missing facies after merge: {nan_facies count}")

+*In[]:*+

[source, ipython3]

S B I
HiHEHEHHHHAHI# impute Sg #HHEHIHE
B

properties = ["Sg2024", "Sg2030", "Sg2040", "Sg2050","Sg2060","Sg2070"]
for property name in properties:
known_records = df[df[[property name]].notna().all(axis=1)]

missing_records = df[df[[property name]].isna().any(axis=1)]

method = "nearest"
filled missing_values = fill_missing_ values layerwise(
known_records=known_records,

missing_records=missing_records,

167

property name=property name,

method=method

Combine known and interpolated records for the current property

complete property records =
filled missing_values]).sort values(

nn

by=["k index", "j index", "i_index"]

complete data = pd.merge(
complete data,

complete property records[["i index",

property namel]],

"non;

on=["1_index", "] index", "k index"],

how="left"

+*In[]:*+
[source, ipython3]

168

pd.concat([known_records,

j_index",

"k _index",

old zone intervals = {
"L Miocene Shale - L Miocene A": (1, 10),
"L Miocene A - AMPB_SAND": (11, 30),
"AMPB_SAND - L Miocene B": (31,40),
"L Miocene B -L Miocene C": (41, 60),
"L Miocene C - TOP_LMIO INJ ZONE": (61,70),
"TOP_LMIO INJ ZONE - LMIO _INJ 5": (71, 90),
"LMIO_INJ 5-LMIO_INJ 4":(91,110),
"LMIO _INJ 4 -LMIO _INJ 3":(111,130),
"LMIO INJ 3 -LMIO INJ 6": (131,150),
"LMIO_INJ 6 - LMIO_INJ 2": (151,170),
"LMIO INJ 2 - Anahuac": (171, 190),
"Anahuac - Anahuac_Sand Top": (191, 200)

+*In[]:*+

[source, ipython3]

to find out z ranges for last zone:

k1Lastzone = old_zone_intervals["Anahuac - Anahuac_Sand Top"][0]
k2Lastzone = old_zone_intervals["Anahuac - Anahuac_Sand Top"][1]
z1 = df[df["k_index"] == k1Lastzone]["z_coord"].agg(["min", "max"])

print(f'z_coord range for k_index = {k1Lastzone}:", z1.to_dict())

169

z2 = df[df["k_index"] == k2Lastzone]["z_coord"].agg(["min", "max"])

print(f'z_coord range for k_index = {k2Lastzone}:", z2.to_dict())

+*In[]:*+
[source, ipython3]

klast=420
zdfss = dfss[dfss["k index"] == klast]["z_coord"].agg(["min", "max"])

print(f'z_coord range for k_index = {klast}:", zdfss.to_dict())

+*In[]:*+
[source, ipython3]

Define LAS files

las_files = ["welldata/well0.1as", "welldata/welll.las", "welldata/well2.las"]
facies: SP, GR, GR

strPor = ['XPORT'] # Porosity

strtRt = ['XRESD'] # Resistivity

170

strSP = ['XSP'] # SP

strVclay = ['XVCL'] # VClay

strtVp =['VP'] # Velocity

strVs = ['VS']

strFaciesPrefix = "FACIES " # Facies log starts with this prefix

strRhob = ['XRHOB']

dfs = [read las(file) for file in las_files]

Merge all data into a single dataframe

las_df = pd.concat(dfs, ignore_index=False)

print(las_df.shape)
Find common logs across all wells
common_logs = set(dfs[0].columns)
for dfi in dfs[1:]:

common_logs &= set(dfi.columns)

common_logs.discard("DEPT") # Keep depth separate

print("Common Logs Across Wells:", common_logs)

predictors = strPor + strRt + strSP + strVclay # Predictor logs

print(predictors)

171

+*In[]:*+

[source, ipython3]
print(dfs[0]['DEPT'].min())
print(dfs[0]['DEPT'].max())
print(dfs[1]['DEPT'].min())
print(dfs[1]['DEPT'].max())
print(dfs[2]['DEPT'].min())
print(dfs[2]['DEPT'].max())

+*In[]:*+

[source, ipython3]

las file =las_files[1]

log names = ['XRHOB', 'XPORT", 'XRESD', 'XSP',
"XVCL',’XVLIME'"XVSAND',"XDT'",'’XDTS','’XPEF', "XNPHIL',XTHOR',
'FACIES_SELECTED', 'ZONELOG','VP','VS'] # Specify logs to plot

plot well logs(las files[0], log _names,'well0 (depth hided)')

plot well logs(las files[1], log names,'welll (depth hided)')

172

+*In[]:*+
[source, ipython3]

plot_well logs(las_files[2], log names,'well2 (depth hided)")

+*In[]:*+
[source, ipython3]

zone log ="ZONELOG" # Name of the geological zone log

+*In[]:*+
[source, ipython3]

zone log = "Zonelog" # Name of the geological zone log

173

predictors = ["XPORT', 'XRESD', 'XVCL',XVLIME''XDT','XDTS',"XPEF",
"XNPHIL','XTHOR']

lasfile = las_files[2]

df =read las(lasfile)

zone=0

selected log=strRhob

zone data = df[df['ZONELOG'] == zone].dropna(subset=['XRHOB'] + predictors)

X =zone data[predictors].copy(deep=True)
y =zone_data['XRHOB'].copy(deep=True)

rf = RandomForestRegressor(
n_estimators=100, # Number of trees in the forest
max_depth=None, # No maximum depth (fully grown trees)
min_samples_split=2, # Minimum samples to split an internal node
min_samples_leaf=1, # Minimum samples per leaf
random_state=42, # Set a random seed for reproducibility

n_jobs=-1 # Use all CPU cores for training

rf = RandomForestRegressor(n_estimators=50, max_depth=10,

min_samples_split=4, min_samples_leaf=2,random_state=42, n_jobs=-1)

rf fit(X,y)

174

feature importances = rf.feature importances

feature names = X.columns # Features used in training

Sort features by importance

sorted idx = np.argsort(feature_importances)

plt.figure(figsize=(10, 5))

plt.barh(range(len(sorted idx)), feature importances[sorted idx], align="center")
plt.yticks(range(len(sorted idx)), np.array(feature names)[sorted idx])
plt.xlabel("Feature Importance")

plt.title("Feature Importance in Predicting XRHOB")

plt.show()

+*In[]:*+
[source, ipython3]

predictors = ['XPORT', 'XVCL', 'XVLIME']

updatedRhobLas = predictLog(strRhob, "FACIES ", zone log, las files,
predictors, plotit=False, normalize=True, method='RF")

[updatedRhobLas, mean std Rhob] = predictLog(strRhob, "FACIES ", zone log,

las_files, predictors, plotit=True, normalize=True, method="PN', poly degree=1)

175

+*In[]:*+

[source, ipython3]

zone log = "Zonelog" # Name of the geological zone log
predictors = strPor + strRt + strVclay # Predictor logs

predictors = ["XPORT', 'XRESD', 'XVCL',XVLIME', XRHOB']

lasfile = las_files[2]

df =read las(lasfile)

zone=0

selected log=strRhob

zone data = df[df['ZONELOG'] == zone].dropna(subset=["VP'] + predictors)

zone data = las dfflas df[zone log] == zone].dropna(subset=["] +
common_logs)

X =zone_data[predictors].copy(deep=True)

y = zone_data['VP'].copy(deep=True)

rf = RandomForestRegressor(

n_estimators=100, # Number of trees in the forest

176

max_depth=None, # No maximum depth (fully grown trees)
min_samples_split=2, # Minimum samples to split an internal node
min_samples_leaf=1, # Minimum samples per leaf
random_state=42, # Set a random seed for reproducibility

n_jobs=-1 # Use all CPU cores for training

rf = RandomForestRegressor(n_estimators=50, max_depth=10,

min_samples_split=4, min_samples_leaf=2,random_state=42, n_jobs=-1)

rf fit(X,y)

feature importances = rf.feature importances

feature names = X.columns # Features used in training

Sort features by importance

sorted idx = np.argsort(feature importances)

plt.figure(figsize=(10, 5))

plt.barh(range(len(sorted idx)), feature importances[sorted idx], align="center")
plt.yticks(range(len(sorted idx)), np.array(feature names)[sorted idx])
plt.xlabel("Feature Importance")

plt.title("Feature Importance in Predicting VP")

plt.show()

177

+*In[]:*+
[source, ipython3]

zone log ="ZONELOG" # Name of the geological zone log
predictors = ['XPORT', 'XRESD', 'XVCL',XVLIME', XRHOB']
[updatedVpLas, mean std Vp] = predictLog(strVp, "FACIES ", zone log,

las_files, predictors, plotit=True, normalize=True, method='"PN', poly degree=1)

+*In[]:*+

[source, ipython3]

zone log = "Zonelog" # Name of the geological zone log

predictors = strPor + strRt + strVclay # Predictor logs

predictors = ['XPORT', 'XRESD', 'XVCL', 'XVLIME', 'XPEF', 'XNPHIL',
"XTHOR',XGR',"XPOTA',’XRHOB',’XURA",XVSAND']

lasfile = las_files[2]
df = read las(lasfile)

178

zone=0
selected log=strRhob
zone data = df[df['ZONELOG'] == zone].dropna(subset=["VS'] + predictors)

X = zone data[predictors].copy(deep=True)

y = zone_data['VS'].copy(deep=True)

rf = RandomForestRegressor(
n_estimators=100, # Number of trees in the forest
max_depth=None, # No maximum depth (fully grown trees)
min_samples_split=2, # Minimum samples to split an internal node
min_samples_leaf=1, # Minimum samples per leaf
random_state=42, # Set a random seed for reproducibility

n_jobs=-1 # Use all CPU cores for training

rf = RandomForestRegressor(n_estimators=50, max_depth=10,

min_samples_split=4, min_samples_leaf=2,random_state=42, n_jobs=-1)

rf fit(X,y)

feature importances = rf.feature importances

feature names = X.columns # Features used in training

Sort features by importance

179

sorted _idx = np.argsort(feature_importances)

plt.figure(figsize=(10, 5))

plt.barh(range(len(sorted idx)), feature importances[sorted idx], align="center")
plt.yticks(range(len(sorted idx)), np.array(feature names)[sorted idx])
plt.xlabel("Feature Importance")

plt.title("Feature Importance in Predicting VS")

plt.show()

+*In[]:*+

[source, ipython3]

zone log ="ZONELOG" # Name of the geological zone log

strVs ="VS"

predictors = ['XPORT', 'XRESD', 'XVCL', 'XVLIME', 'XPEF', 'XNPHIL',
'XTHOR',"XGR',XPOTA"XRHOB',’XURA','XVSAND']

[updatedVsLas, mean std Vs] = predictLog(strVs, "FACIES ", zone log,

las_files, predictors, plotit=True, normalize=True, method="PN', poly degree=1)

180

+*In[]:*+
[source, ipython3]

SR B L
#iH### Fit a polynomial for each facies, removing extreme values (outliers)

DAL S L S BB B s SRS L SR
facies_col = [col for col in las_df.columns if col.startswith("FACIES ")][0]

facies_list = las_dfffacies col].unique()

facies_fit= {}

for facies_val in facies_list:

subset = las_df[(las_dfffacies col] == facies val)

(las_df'DEPT']<10000)].copy()

print(f" {facies_val},{len(subset)}")

Skip if too few points

if len(subset) < 10:

continue

x = subset["DEPT"].values

y = subset["VP"].values

181

Remove top and bottom 1% of velocity values to exclude outliers
lower bound = np.percentile(y, 1) # Bottom 0.5%
upper_bound = np.percentile(y, 99) # Top 99.5%

mask = (y >=lower_bound) & (y <= upper_bound)

x_filtered = x[mask]

y_filtered = y[mask]

if len(x_filtered) < 10:

print(f" /A Facies {facies val} has too few data points after filtering,

skipping.")

continue

coefs = np.polyfit(x_filtered, y_filtered, deg=1)
poly func = np.polyld(coefs)

Compute residuals -> measure scatter around the fitted curve
y_pred =poly func(x_filtered)

residuals =y _filtered - y pred

residual std = np.std(residuals)

facies fit[facies val] = (coefs, residual std)

print(" 4] Polynomial fits updated after filtering extreme values.")

182

+*In[]:*+
[source, ipython3]
colors = sns.color_palette("tab10", n_colors=len(facies_list))

plt.figure(figsize=(8, 6))

for i, facies val in enumerate(facies_list):
subset = las_dfflas df[facies col] == facies_val]
if facies val not in facies_fit:

continue # Skip if not enough points

coefs, residual std = facies_fit[facies val]

poly func = np.polyld(coefs)

Plot scatter for this facies
plt.scatter(subset["DEPT"], subset["VP"], alpha=0.2, color=colors][i],

label=f"Facies {facies val} data")

Plot polynomial trend line

depth range = np.linspace(subset["DEPT"].min(), subset["DEPT"].max(), 100)

vp_fit = poly func(depth range)

183

plt.plot(depth _range, wvp fit, color=colors[i], linewidth=2, label=f"Facies

{facies val} fit")

Improved Error Bar Visibility
if facies val in mean_std Vp.index:
vp_mean = mean_std Vp.loc[facies val, "Mean"]

vp_std =mean_std Vp.loc[facies val, "Std"]

Find depth where poly trend = vp_mean

depth_best = depth_range[np.abs(vp_fit - vp_mean).argmin()]

Plot error bar with strong visibility

'

plt.errorbar(depth_best, vp_mean, yerr=vp_std, fmt='s', color="black",
markersize=10, capsize=5, capthick=3, elinewidth=2,
markeredgecolor="white", markeredgewidth=2, label=f"Facies

{facies_val} Mean + Std")

plt.gca().invert yaxis() # if depth increases downward
plt.xlabel("Depth (m)")

plt.ylabel("Vp (m/s)")

plt.title("Vp vs. Depth Polynomial Fit per Facies with Mean & Std")
plt.legend()

plt.show()

184

+*In[]:*+
[source, ipython3]

HHHEHHHHHHRHHH P
HERHEHHEHHIHHE use this I
HHHEHHHHHHAHHH P

facies fitVs = {}

poly order =1 # Polynomial degree

las Vs =las files[2]

las_dfVs = lasio.read(las_Vs).df().reset index()

las dfVs =las_dfVs.dropna(subset=["VS"])

facies col = [col for col in las_dfVs.columns if col.startswith("FACIES ")][0]

facies list =las dfVs[facies col].unique()

for facies_val in facies_list:

subset = las_dfVs[las_dfVs[facies col] == facies_val].copy()

Skip if too few points

if len(subset) < 10:

185

continue

print(f"Facies {facies val} has {len(subset)} points")

x = subset["DEPT"].values

y = subset["VS"].values

x_filtered = x

y_filtered =y

if len(x_filtered) < 10:
print(f" /A Facies {facies val} has too few data points after filtering,
skipping.")

continue

Fit a polynomial of chosen order
coefs = np.polyfit(x_filtered, y_filtered, deg=poly order)
poly func = np.polyld(coefs)

Compute residuals -> measure scatter around the fitted curve
y_pred =poly func(x_filtered)
residuals =y _filtered - y pred

residual std = np.std(residuals)

Store in dictionary

facies fitVs[facies val] = (coefs, residual std)

186

print(" &4 Polynomial fits updated after filtering extreme values.")

facies_fitVs

+*In[]:*+
[source, ipython3]

colors = sns.color_palette("tab10", n_colors=len(facies_list))

plt.figure(figsize=(8, 6))

for i, facies val in enumerate(facies_list):
subset = las_dfVs[las_dfVs[facies col] == facies val]
if facies_val not in facies_fitVs:

continue # Skip if not enough points

coefs, residual std = facies_fitVs[facies val]

poly func = np.polyld(coefs)
Plot scatter for this facies

plt.scatter(subset["DEPT"], subset["VS"], alpha=0.2, color=colors][i],

label=f"Facies {facies val} data")

187

Plot polynomial trend line

depth_range = np.linspace(subset["DEPT"].min(), subset["DEPT"].max(), 100)
vp_fit =poly func(depth range)

plt.plot(depth_range, vp fit, color=colors[i], linewidth=2, label=f"Facies

{facies val} fit")

Improved Error Bar Visibility
if facies val in mean_std Vs.index:
vp_mean = mean_std Vs.loc[facies val, "Mean"]

vp_std = mean_std Vs.loc[facies val, "Std"]

Find depth where poly trend = vp_mean

depth_best = depth_range[np.abs(vp_fit - vp_mean).argmin()]

Plot error bar with strong visibility

'

plt.errorbar(depth_best, vp_mean, yerr=vp_std, fmt='s', color="black",
markersize=10, capsize=5, capthick=3, elinewidth=2,
markeredgecolor="white", markeredgewidth=2, label=f"Facies

{facies_val} Mean + Std")

plt.gca().invert yaxis() # if depth increases downward
plt.xlabel("Depth (m)")

plt.ylabel("Vs (m/s)")

plt.title("Vs vs. Depth Polynomial Fit per Facies with Mean & Std")
plt.legend()

188

plt.show()

+*In[]:*+

[source, ipython3]

S B I
HiHHEHHHH## predict Vp

S B I

Suppose facies_fit is from the polynomial fitting:

facies_fit[facies val] = (poly_ coefs, residual_std)

Where:

poly coefs -> array of polynomial coefficients for that facies

residual std -> float standard deviation of residual for that facies

1. Create a dictionary of polynomial functions for quick evaluation
poly dict= {}
std_dict = {}
for £, (coefs, std) in facies_fit.items():
poly_dict[f] = np.polyld(coefs) # polynomial function

std_dict[f] = std # store std separately

189

print(coefs)

print(std)

2. Compute DepthPos if needed (assuming negative z => positive depth)

dff"DepthPos"] = -df["z_coord"] # only if z_coord is negative downward

3. Evaluate the polynomial trend for each cell: VpTrend=Vp(depth, facies)
dff"VpTrend"] = np.nan
for fin poly dict.keys():

mask = df["facies"] == f

df.loc[mask, "VpTrend"] = poly_dict[f](df.loc[mask, "DepthPos"])

4. Generate random Vp around that trend
For each facies, add random noise ~ N(0, std_fac)
df["VpRandom"] = np.nan
for f in poly_dict.keys():
mask = df["facies"] == f
noise = np.random.normal(loc=0.0, scale=std dict[f], size=mask.sum())

df.loc[mask, "VpRandom"] = df.loc[mask, "VpTrend"] + noise

+*In[]:*+

190

[source, ipython3]

df.head()

+*In[]:*+
[source, ipython3]

HHHIHHHHHHRHHH P

HHHEH IR predict Vs
HHHIHHHHHHRHHH P

Suppose facies_fit is from your polynomial fitting:

facies_fit[facies val] = (poly_ coefs, residual_std)

Where:

poly coefs -> array of polynomial coefficients for that facies

residual std -> float standard deviation of residual for that facies

1. Create a dictionary of polynomial functions for quick evaluation

poly dict= {}
std_dict = {}

for £, (coefs, std) in facies_fitVs.items():

191

poly dict[f] = np.polyld(coefs) # polynomial function
std_dict[f] = std # store std separately
print(coefs)

print(std)

2. Compute DepthPos if needed (assuming negative z => positive depth)

df["DepthPos"] = -df["z_coord"] # only if z_coord is negative downward

3. Evaluate the polynomial trend for each cell: VpTrend=Vp(depth, facies)
df["VsTrend"] = np.nan
for fin poly dict.keys():

mask = df["facies"] == f

df.loc[mask, "VsTrend"] = poly_dict[f](df.loc[mask, "DepthPos"])

4. Generate random Vp around that trend
For each facies, add random noise ~ N(0, std_fac)
df["VsRandom"] = np.nan
for f in poly_dict.keys():
mask = df["facies"] == f
noise = np.random.normal(loc=0.0, scale=std dict[f], size=mask.sum())
noise = np.random.normal(loc=0.0, scale=std_dict[f] * 0.3, size=mask.sum()) #

or 0.4, 0.3, etc.

df.loc[mask, "VsRandom"] = df.loc[mask, "VsTrend"] + noise

192

+*In[]:*+

[source, ipython3]

HHBHHHHEHHHHHERR R
HEHHEHHIHHHEE use this #HHHHEHHEHH predict Rhob
HHBHHHEHHHH R

Initialize RbRandom column

df["RbRandom"] = np.nan

Loop through each facies and generate random density values
for f in mean_std Rhob.index: # Iterate through facies in mean std Rhob
if fin mean_std Rhob.index: # Ensure facies exists in the dataset
rb_mean = mean_std Rhob.loc[f, "Mean"]

rb_std = mean std Rhob.loc([f, "Std"]

mask = df["facies"] == f # Select only this facies
noise = np.random.normal(loc=0.0, scale=rb _std, size=mask.sum()) #
Generate random noise

df.loc[mask, "RbRandom"] =rb_mean + noise # Assign random values

193

print(" £4] RbRandom generated for each facies.")

+*In[]:*+
[source, ipython3]

df.head()

+*In[]:*+
[source, ipython3]

complete data.head()

+*In[]:*+

[source, ipython3]

194

ikl =1 # First layer index
ik2 =1 # Second layer index
known_records = df[df[["facies"]].notna().all(axis=1)]

non:

known_coords = known_records[["i index", "j index", "k index"]].values

known_values = known_records[["facies"]].values

Filter records for each layer

layerl records =known records[known records["k index"]=

layer2 records = known records[known_records["k index"] =

—_n

layerl property ="y coord"
layer2 property = "facies"
Plot facies for the two layers
plot_two_layers(
layerl records=layerl records,
layer2 records=layer2 records,
plt title="Petrel data',
layerl title=f"{layer]l property} for k index = {ik1}",
layer2 title=f"{layer2 property} for k index = {ik2}",

property 1=layerl property,property 2=layer2 property

#1k1 =2 # First layer index

#1k2 =2 # Second layer index

— ik1]

layer]l records = complete data[complete data["k index"]==1kl1]

195

layer2 records = complete data[complete data["k index"] == ik2]
plot_two_layers(
layerl records=layerl records,
layer2 records=layer2 records,
plt_title='complete data’,
layerl title=f"{layerl property} for k index = {ik1}",
layer2_title=f"{layer2 property} for k index = {ik2}",

property 1=layerl property,property 2=layer2 property

+*In[]:*+
[source, ipython3]

Filter the points at the upper-left and lower-left corners

upper left = complete data[(complete data["i index"]
(complete data["j index"]==1)]

lower left = complete data[(complete data["i index"]

(complete data["j index"]==314)]

Filter the points at the upper-right and lower-right corners

196

1)

1)

upper_right = complete data[(complete data["i index"] =
complete data["i index"].max()) & (complete data["j index"] ==1)]
lower right = complete data[(complete data["i index"] =

complete data["i index"].max()) & (complete data["j index"] ==314)]

Extract x_coord values
x_upper_left = upper left["x coord"].values[0] if not upper left.empty else None

x_lower left = lower left["x coord"].values[0] if not lower left.empty else None

x_upper_right = upper_right["x_coord"].values[0] if not upper right.empty else
None
x_lower right = lower right["x coord"].values[0] if not lower right.empty else

None

Calculate differences

diff left = None if x upper left is None or x lower left is None else
abs(x_upper left - x_lower left)

diff right = None if x upper right is None or x lower right is None else

abs(x_upper_right - x_lower right)

Output results

print(f'Upper-Left x_coord: {x_upper left}, Lower-Left x _coord: {x_lower left},
Difference: {diff left}")

print(f"Upper-Right x coord: {x upper right}, Lower-Right x coord:
{x_lower right}, Difference: {diff right}")

197

+*In[]:*+
[source, ipython3]

def check rhomboid(data, dx, dy):

nmn

Check if the grid forms a perfect rectangle or a rhomboid.

Parameters:
data (DataFrame): A DataFrame containing x_coord and y_coord columns.
dx (float): The regular grid spacing in the x direction.

dy (float): The regular grid spacing in the y direction.

Returns:

bool: True if the grid forms a rhomboid, False if it forms a rectangle.

nmn

Extract unique x and y coordinates
x_coords = np.sort(data["x_coord"].unique())

y_coords = np.sort(data["y coord"].unique())

Calculate the range and ensure it's divisible by dx/dy

198

x_range = np.ptp(x_coords) # Peak-to-peak range of x coordinates

y_range = np.ptp(y_coords) # Peak-to-peak range of y coordinates

Check if the ranges are divisible by dx and dy
is_thomboid x = not np.isclose(x_range % dx, 0, atol=1e-6)

is_thomboid y = not np.isclose(y_range % dy, 0, atol=1e-6)

if is_rhomboid x or is_rhomboid y:
print("The grid forms a rhomboid due to irregular spacing.")
return True

else:
print("The grid forms a perfect rectangle.")

return False

check rhomboid(complete data,dx=250, dy=250)

+*In[]:*+
[source, ipython3]

199

Define fixed grid spacing

dx, dy, dz =250, 250, 5

Get the bounding box of the data

X_min, Xx_max = complete data['x coord'].min(), complete data['x _coord'].max()
y_min, y_max = complete data['y coord'].min(), complete data['y coord'].max()

z _min, z_max = complete_data['z_coord'].min(), complete data['z coord'].max()

Create a 3D meshgrid for the regular grid
Generate regular x, y grid
x_regular = np.arange(x_min, Xx_max + dx, dx)

y_regular = np.arange(y_min, y max + dy, dy)

Create meshgrid for the horizontal plane
x_grid, y_grid = np.meshgrid(x_regular, y_regular, indexing="j")

Interpolate z_surface to the regular grid

Calculate the surface data

surface data = complete data.groupby(['x_coord',
'y_coord'])['z_coord'].max().reset_index()

surface data.rename(columns={'z _coord": 'z_surface'}, inplace=True)

btm data = complete data.groupby(['x_coord',
'y_coord'])['z_coord'].min().reset_index()

btm_data.rename(columns={'z_coord": 'z bottom'}, inplace=True)

print(btm_data.shape)

1. Calculate thickness map

200

surface btm_data = pd.merge(surface data, btm data, on=['x_coord', 'y coord'])

surface btm_data['thickness map'] = surface btm data['z_surface'] -
surface btm_data['z_bottom']

print(surface btm data.head()) # Display a few rows of the combined data

print(surface btm_data['thickness map'].describe()) # Show thickness statistics

Interpolate z_surface to the regular grid
z surface grid = griddata(
points=surface data[['x_coord','y coord']].values,
values=surface data['z_surface'].values,
xi=(x_grid, y_grid),
method="linear' # Interpolate to regular x, y grid
)
2. Determine the thickest point and compute nz
max_thickness = surface _btm_data['thickness_map'].max()
nz = int(np.ceil(max_thickness / dz)) # Number of layers required

print(f"Maximum Thickness: {max_thickness}, Number of Layers: {nz}")

3. Generate 3D grid

z_layers = np.arange(0, nz * dz, dz) # Vertical grid levels

z 3d grid =z surface grid[:, :, np.newaxis] - z_layers[np.newaxis, np.newaxis, :|
Extend depth-wise

print(z_3d_grid.shape)

nz =z 3d grid.shape[2] # Number of vertical layers

201

Create 3D grids for x and y by broadcasting
x_3d grid =x_grid[:, :, np.newaxis].repeat(nz, axis=2) # Extend along z-axis

y _3d grid =y grid[:, :, np.newaxis].repeat(nz, axis=2)

Combine grids into a DataFrame
grid_points = pd.DataFrame({
'x_coord": x_3d grid.ravel(),
'y coord:y 3d grid.ravel(),
'z _coord": z 3d grid.ravel()

1)
Print details for confirmation
print(f"Regular grid created with shape: {x 3d grid.shape}")

print(f"Number of grid points: {grid points.shape[0]}")

Optional: Save the grid points as a CSV file

grid points.to_csv("regular grid with surface.csv", index=False)

Output summary

grid_points.head()

+*In[]:*+

202

[source, ipython3]

make sure it is constant dx, dy, dz

def check constant spacing(x grid, y_grid, z 3d_grid):

nmn

Check if the grid has constant spacing in x, y, and z directions.

Parameters:
x_grid (ndarray): 2D array of x-coordinates for the grid.
y_grid (ndarray): 2D array of y-coordinates for the grid.

z 3d_grid (ndarray): 3D array of z-coordinates for the grid.

Returns:
bool: True if dx, dy, and dz are constant; False otherwise.
dict: Contains the values of dx, dy, dz, and flags for each direction.
Calculate spacings in X, y, and z directions
dx_values = np.diff(x_grid[:, 0], axis=0) # Differences along x-axis
dy values = np.diff(y_grid[O0, :], axis=0) # Differences along y-axis
dz_values = np.diff(z 3d grid[0, 0, :], axis=0) # Differences along z-axis

(vertical)

Check if the spacings are constant

is_dx_constant = np.allclose(dx_values, dx values[0])

203

is_dy constant = np.allclose(dy values, dy values[0])

is_dz_constant = np.allclose(dz_values, dz_values[0])

Collect the results

result = {
"dx": dx_values[0] if is_dx constant else "Variable",
"dy": dy values[0] if is_dy constant else "Variable",
"dz": dz_values[0] if is_dz constant else "Variable",
"is_dx_constant": is_dx_constant,
"is_dy constant": is_dy constant,

"is_dz constant": is_dz constant,

Print detailed results

print("Spacing Results:")

print(f'dx: {result['dx']} (Constant: {result['is dx constant']})")
print(f'dy: {result['dy']} (Constant: {result['is dy constant']})")

print(f'dz: {result['dz']} (Constant: {result['is dz constant']})")

Return overall result

return is_dx_constant and is_dy constant and is_dz constant, result

Example Usage

is_constant, results = check constant spacing(x_grid, y grid, z 3d_grid)

if is_constant:

204

print("The grid has constant dx, dy, and dz.")
else:

print("The grid does not have constant spacing.")

+*In[]:*+

[source, ipython3]

def plot original complete data(complete data):
fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection="3d")

Scatter plot of the original data points
sc = ax.scatter(
complete data["x coord"],
complete data["y coord"],
complete data["z coord"],
c=complete data["facies"],
cmap="viridis",
alpha=0.7,

s=5, # Size of the points

205

edgecolor="none"

Add colorbar to represent facies values
cbar = plt.colorbar(sc, ax=ax, shrink=0.5, pad=0.1)

cbar.set label("Facies")
Set axis labels
ax.set_xlabel("X (ft)")

ax.set_ylabel("Y (ft)")
ax.set_zlabel("Z (ft)")

ax.set_title("Facies on original grid completed data")

plt.tight layout()
plt.show()

Call the function to plot the data

plot original complete data(complete data)

206

+*In[]:*+

[source, ipython3]

Save the 3D visualization as an image file for inspection
fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection="3d")

Plot each vertical "slice" in the x direction
Loop through layers of z 3d_grid for the vertical slices
for k in range(0, z_3d_grid.shape[2], 10): # Adjust step for clarity
ax.plot_surface(
x_grid, y grid, z 3d grid[:, :, k],

alpha=0.4, cmap="viridis', edgecolor="none'

Plot the surface
ax.plot_surface(
x_grid, y grid, z surface grid,

alpha=0.7, cmap="terrain', edgecolor="k', rstride=5, cstride=5

Set axis labels
ax.set_xlabel('X (m)")

ax.set_ylabel('Y (m)')

207

ax.set_zlabel('Z (m)")

ax.set_title("3D Grid with Topography (Vertical X, Y, and Horizontal Z)")
plt.show()

Save the figure

file path ="3D Grid with Topography.png"

plt.savefig(file path)

plt.close(fig)

+*In[]:*+
[source, ipython3]

def assign layers to new grid layerwise gpu(x 3d grid, y 3d grid, z 3d grid,

complete data, dz, debug=False):

nnn

Assign each layer in the new grid to a corresponding old layer based on depth

using GPU.

208

Parameters:
x_3d grid, y 3d grid, z 3d grid (array): Regularized 3D grid coordinates
(NumPy arrays).
complete data (DataFrame): Original data with 'x coord’, 'y coord’,
'z _coord’, and 'k _index’.
dz (float): Vertical spacing in the new grid.

debug (bool): Whether to print debug information.

Returns:
assigned layers (array): 3D array where each layer is assigned the most
frequent old "k _index".
Convert grids to CuPy arrays for GPU processing
x_3d grid gpu = cp.asarray(x_3d grid)
y_3d grid gpu = cp.asarray(y 3d grid)
z 3d grid gpu = cp.asarray(z_3d_grid)try

Convert complete data to CuPy arrays

x_coord gpu = cp.asarray(complete data["x coord"].values)
y_coord gpu = cp.asarray(complete data["y coord"].values)
z_coord gpu = cp.asarray(complete data["z coord"].values)

k index gpu = cp.asarray(complete data["k index"].values)

Initialize assigned layers

assigned layers = cp.full(z_3d grid.shape[2], fill value=-1, dtype=cp.int32)

209

zup gpu=1z 3d grid gpu+ 0.5 * dz
zbtm gpu=z 3d grid gpu-0.5*dz

for k in tqdm(range(z_3d_grid.shape[2]), desc="Processing layers"):
start_time = time.time() # Start timing for this layer

layer assignments = []try

if debug:

print(f'Processing new grid layer: {k}")

Perform GPU filtering for all points in parallel
for i in range(z_3d_grid.shape[0]): # x-dimension
for j in range(z_3d_grid.shape[1]): # y-dimension
z value=z 3d grid gpuli, j, k]

Select vertical points for the current (i, j)

mask = (x_coord gpu==x_3d grid gpuli, j, 0]) &\
(y_coord gpu==y 3d grid gpuli,j, 0]) &\
(z_coord gpu >=zbtm gpuli, j, k]) &\
(z_coord_gpu <=zup_gpuli, J, k])

matching k gpu =k index gpu[mask]

if matching_k gpu.size > 0:

210

Find the closest layer to z_value
closest idx = cp.argmin(cp.abs(z_coord gpu[mask] - z value))

layer assignments.append(matching k gpu[closest idx].item())

Assign the most common layer
if layer assignments:
most_common_layer =
Counter(layer assignments).most_common(1)[0][0]

assigned_layers[k] = most common_layer

end time = time.time() # End timing for this layer
if debug:
elapsed_time = end_time - start_time
print(f'Layer {k}: Assigned to old layer {most common layer} | Time
taken: {elapsed time:.2f} seconds")
if k>3:
break

Convert back to NumPy array

return cp.asnumpy(assigned layers)

assigned layers = assign layers to new_grid layerwise gpu(

x_3d grid,y 3d grid, z 3d grid, complete data, dz=5, debug=True

211

print("Assigned Layers:", assigned layers)

assigned layersO=assigned layers.copy()

+*In[]:*+
[source, ipython3]

with open("assignedLayersOld2NewGrid.txt", "r") as file:

content = file.read()

Replace commas with spaces and split into a list of numbers
layermappings = np.array(content.replace(",", " ").split(), dtype=int)
assigned layers = layermappings

plt.plot(assigned_layers)

plt.xlabel('new layers')

plt.ylabel('old layers')

+*In[]:*+
[source, ipython3]

212

the new layer mapped from the old one need be smoothed

def smooth _and enforce non decreasing(assigned layers, window_size=10):
mnmnn
Smooth assigned layers using moving average and enforce non-decreasing

integers.

Parameters:
assigned layers (array): Original layer assignments.

window_size (int): Size of the moving average window.

Returns:

smoothed layers (array): Smoothed and non-decreasing layer assignments.
Step 1: Smooth using moving average
smoothed = np.convolve(

assigned layers, np.ones(window_size) / window_size, mode="same"

Step 2: Round to nearest integers

smoothed = np.round(smoothed).astype(int)

Step 3: Enforce non-decreasing values

for 1 in range(1, len(smoothed)):

smoothed[i] = max(smoothed[i], smoothed[i - 1])

213

return smoothed

Example Usage
window_size = 10 # Set the window size for smoothing
smoothed layers = smooth and enforce non_ decreasing(assigned_layers,

window_size=window_size)

Plotting

plt.figure(figsize=(5, 3))

plt.plot(range(len(assigned layers)), assigned layers, label="Original Assigned
Layers", alpha=0.6, linewidth=2)

plt.plot(range(len(smoothed layers)), smoothed layers, label=f"Smoothed Layers
(Window = {window_size})", linewidth=2, color="red")

plt.title("Smoothing and Enforcing Non-Decreasing Assigned Layers")

plt.xlabel("New Grid Layer (k)")

plt.ylabel("Old Grid Layer")

plt.legend()

plt.show()

+*In[]:*+

[source, ipython3]

214

Create a dictionary: old layer -> list of new layers

old to new layers = defaultdict(list)

for new_layer, old layer in enumerate(smoothed layers, start=1):

old to new layers[old layer].append(new_layer)

+*In[]:*+
[source, ipython3]

New zone mapping

new_layer zone = {}

for zone name, (old_start, old end) in old zone intervals.items():
Collect all new layers that correspond to any old layer in this range
new_layers =[]
for old_layer in range(old_start, old end + 1):

if old layer in old to new layers:

215

new_layers.extend(old to new layers[old layer]) # Add mapped new

layers

Store min/max new layers for the zone
if new layers:

new_layer zone[zone name] = (min(new_layers), max(new_layers))

Convert to DataFrame

zone df = pd.DataFrame([
{"zone": zone, "new_layer start": start, "new layer end": end}
for zone, (start, end) in new_layer zone.items()

D

print(zone_df)

+*In[]:*+
[source, ipython3]

zonelayers dfss = {zone: end - start + 1 for zone, (start, end) in

new_layer zone.items()}

print(zonelayers_dfss)

216

layer counts = np.array([end - start + 1 for start, end in new_layer zone.values()])
print(layer counts)

+*In[]:*+
[source, ipython3]

def interpolate properties layer by layer with assignment(

x_3d grid,y 3d grid, z 3d grid, assigned layers, complete data, properties

nmn

Interpolate multiple property values onto the new grid using layer assignments.

Parameters:
x_3d grid,y 3d grid, z 3d grid (array): Regularized grid coordinates.
assigned layers (array): Original layer assignments for each point in the new
grid.
complete data (DataFrame): Original data with properties ("facies’, 'Rhob’,
"Vp', etc.).

properties (list of str): List of property names to interpolate.

Returns:

217

property grids (dict): Dictionary where keys are property names and values
are 3D grids.
Initialize a dictionary to store the 3D grids for each property
property grids = {prop: np.full like(z 3d grid, fill value=np.nan) for prop in

properties}

Iterate over unique assigned layers (original 'k index")
for original layer in np.unique(assigned layers):
if original layer == -1:

continue # Skip unassigned points

Extract points in the current original layer
layer data = complete data[complete data["k index"] == original layer]

print(f'Original layer: {original layer}. Layer data: {layer data.shape}')

Prepare points for interpolation

known _points = layer data[["x coord", "y coord"]].values

if len(known_points) == 0:

continue # Skip if no data for this layer

Interpolate for all points in the new grid assigned to this layer

for k, layer assignment in enumerate(assigned layers):

if layer_assignment != original layer:

218

continue # Skip if the current new grid layer is not assigned to the current

old layer

Extract the 2D slice for this new grid layer
new_points = np.column_stack([x 3d_grid[:, :, k].ravel(), y 3d grid[:, :,
k].ravel()])

Interpolate each property
for prop in properties:
if prop=='facies":
method = 'nearest'
else:
method = 'linear’
known_values = layer data[prop].values
if len(known_values) == 0:

continue # Skip if no data for this property

Perform nearest-neighbor interpolation
interpolated values = griddata(
points=known_points,
values=known_values,
Xi=new_points,
method=method

).reshape(x_3d_grid.shape[:2])

219

Assign interpolated values to the 3D grid for the property

property grids[prop][:, :, k] = interpolated values

return property grids

Define the properties to interpolate

properties = ["facies", "Rhob", "Vp", "Vs", "Sg_final"]

properties = ["facies","RbRandom","VpRandom", "VsRandom"]

properties = ["RbRandom"]

Perform the interpolation

property grids = interpolate properties layer by layer with assignment(

x_3d grid,y 3d grid, z 3d grid, smoothed layers, complete data, properties

Access the individual grids

facies 3d grid = property grids["facies"]
rhob 3d grid = property grids["RbRandom"]
vp_3d_grid = property grids["VpRandom"]
vs 3d grid = property grids["VsRandom"]

+*In[]:*+

220

[source, ipython3]

propertiesSg = ["Sg_final","Sg2024","Sg2030","Sg2040", "Sg2050",
"Sg2060","Sg2070"]
Perform the interpolation
Sg grids = interpolate_properties_layer by layer with assignment(
x _3d grid, y 3d grid, z 3d grid, smoothed layers, complete data,
propertiesSg
)

Access the individual grids

sg final grid = Sg grids["Sg_final"]
Sg2024 grid = Sg_grids["Sg2024"]
Sg2030 grid = Sg_grids["Sg2030"]
Sg2040 grid = Sg_grids["Sg2040"]
Sg2050 grid = Sg_grids["Sg2050"]
Sg2060 grid = Sg_grids["Sg2060"]
Sg2070 grid = Sg_grids["Sg2070"]

+*In[]:*+
[source, ipython3]

def merge dicts concat arrays(dictl, dict2, axis=0):

221

merged dict = {}
for key in dictl:
if key in dict2:
Concatenate arrays along the specified axis
merged_dict[key] = np.concatenate((dictl[key], dict2[key]), axis=axis)
else:
raise KeyError(f'Key '{key}' found in dictl but not in dict2.")

return merged dict

Merge the dictionaries along the first axis (axis=0)

merged prop = property grids | Sg_grids

Example: Shape of arrays after merging
for key, array in merged prop.items():
print(f" {key}: {array.shape}")

+*In[]:*+
[source, ipython3]

def generate dataframe from grids(x 3d grid, y_3d_grid, z 3d grid,

property grids):

nnn

Generate a DataFrame from 3D grids and property values.

222

Parameters:
x 3d grid, y 3d grid, z 3d grid (array): Regularized 3D grids for
coordinates.

property grids (dict): Dictionary of 3D property grids.

Returns:
DataFrame: Combined DataFrame with ‘i index’, 'j index’, 'k index,
coordinates, and properties.
nnn
Get grid dimensions

ni, nj, nk =x_3d_grid.shape

Flatten the grids
1_index = np.repeat(np.arange(1l, ni + 1), nj * nk)
J_index = np.tile(np.repeat(np.arange(1, nj + 1), nk), ni)

k index = np.tile(np.arange(1, nk + 1), ni * nj)

x_coords =x_3d grid.ravel()
y_coords =y 3d_grid.ravel()

z _coords =z 3d grid.ravel()

Create a dictionary for DataFrame

data dict = {

"i_index":1_index,

223

"j_index": j index,
"k index": k index,
"x_coord": x_coords,

"y _coord":y coords,

"z coord": z_coords,

Add properties to the dictionary
for prop, grid in property grids.items():

data_dict[prop] = grid.ravel()

Create and return the DataFrame

return pd.DataFrame(data_dict)
Generate the DataFrame
combined data = generate dataframe from grids(x 3d grid, y 3d grid,

z 3d grid, merged prop)

Preview the DataFrame

print(combined data.head())

224

+*In[]:*+
[source, ipython3]

df sorted = combined data.sort values(by=["k index", "j index", "i index"],

ascending=[False, True, True])

df sorted.head()

+*In[]:*+
[source, ipython3]

df cropped = df sorted[(df sorted["k index"] >= 1) & (df sorted["k index"] <=
420)]
df cropped.head()

+*In[]:*+
[source, ipython3]

we have almost every facies, but only 5 core facies. Below is to clean the facies

dfss = df cropped.copy()

225

Define the mapping function
def map facies(facies value):
if facies value in [2, 4, 12, 18, 30]:
return facies value
elif facies value in [0, 1]:
return 2
elif facies value == 3:
return np.random.choice([2, 4])
elif facies value in [5, 6, 7]:
return 4
elif facies value == 8:
return np.random.choice([4, 12])
elif facies value in [9, 10, 11]:
return 12
elif facies value in [13, 14, 15, 16, 17]:
return 12
elif facies_value in [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]:
return 18
else:

return facies value # Default case, though all should be covered

Apply the mapping function to create a new column

dfss['faciesCorr'] = dfss['facies'].apply(map_facies)

unique_facies = dfss["faciesCorr"].unique()

226

print(unique_facies)

+*In[]:*+

[source, ipython3]

save for Petrel

propertiesList = ["faciesCorr",
"Rb0", "Rb2030","Rb2050","Rb2070",
"Vp0", "Vp2030","Vp2050","Vp2070",
"Vs0", "Vs2030","Vs2050","Vs2070"]

with open("MyProperties.gslib", "w") as f:
GSLIB-style header
f.write("MyPropertiesFile\n")

f.owrite("13\n") # number of variables below

f.write("faciesCorr\nRb0\nRb2030\nRb2050\nRb2070\n VpO\nVp2030\nVp2050\nVp207
0\nVs0\nVs2030\nVs2050\nVs2070\n")
Now write one row per cell

for row in dfss[propertiesList].values:

227

f.write(" ".join(map(str, row)) + "\n")

+*In[]:*+
[source, ipython3]
propertiesList = ["Rb0","RbRandom",
"Rb2030","Rb2030Random","Rb2050","Rb2050Random","Rb2070","Rb2070Random",
"Vp0","VpRandom",
"Vp2030","Vp2030Random","Vp2050","Vp2050Random","Vp2070","Vp2070Random",
"Vs0","VsRandom",
"Vs2030","Vs2030Random","Vs2050","Vs2050Random","Vs2070","Vs2070Random"]

Save each property into a separate file
for prop in propertiesList:
filename = {" {prop}.txt"
with open(filename, "w") as f:
for row in dfss.itertuples(index=False): # df cropped
f.write(f" {row.i_index} {row.] index} {row.k index} "
f'"{row.x_coord:.8f} {row.y coord:.8f} {row.z coord:.8f} "

" { getattr(row, prop):.6f}\n")

228

+*In[]:*+
[source, ipython3]

Plotting histogram of facies in "complete data’ and “facies 3d grid’

ikl =1

facies_original = complete data[complete data["k index"] =
ik1]["facies"].values
ik2=1

facies_regularized = facies 3d grid[:, :, ik2].ravel()

fig, axes = plt.subplots(1, 2, figsize=(14, 6))

Original facies histogram

axes[0].hist(facies_original, bins=30, color="blue', alpha=0.7, edgecolor="black’)
axes[0].set_title(f"Histogram of Facies in Original Data (Layer {ik1})")
axes[0].set_xlabel("Facies Value")

axes[0].set_ylabel("Frequency")

Regularized facies histogram

axes[1].hist(facies_regularized, bins=30, color='green’, alpha=0.7,

edgecolor="black’)

229

axes[1].set_title(f"Histogram of Facies in Regularized Data (Layer {ik2})")
axes[1].set_xlabel("Facies Value")

axes[1].set_ylabel("Frequency")

plt.tight _layout()
plt.show()

+*In[]:*+
[source, ipython3]

Plotting histogram of facies in "complete data’ and “facies 3d grid’

Extract facies data from complete data

facies_original = complete data["facies"]

Flatten the facies 3d grid for histogram comparison

facies_regularized = facies 3d_grid.ravel()

Plot histograms

fig, axes = plt.subplots(1, 2, figsize=(14, 6))

230

Original facies histogram

axes[0].hist(facies_original, bins=30, color="blue', alpha=0.7, edgecolor='black")
axes[0].set_title("Histogram of Facies in Original Data")
axes[0].set_xlabel("Facies Value")

axes[0].set_ylabel("Frequency")

Regularized facies histogram

axes[1].hist(facies_regularized, bins=30, color="green’, alpha=0.7,
edgecolor="black’")

axes[1].set_title("Histogram of Facies in Regularized Data")

axes[1].set_xlabel("Facies Value")

axes[1].set_ylabel("Frequency")

Adjust layout and show
plt.tight layout()
plt.show()

+*In[]:*+
[source, ipython3]

231

phi_¢c=0.36
tho overburden = 1600 # kg/m3
g=938

Mineral properties

K quartz, K clay =39, 21 # GPa
mu_quartz, mu_clay =45, 6.85 # GPa
rho_quartz, rho_clay = 2.65, 2.60 # g/cm3

Fluid properties
K brine, K co2=2.2,0.1 # GPa
rho_brine, tho co2 =1.03, 0.65 # g/cm3

Mixing rule exponent (Brie model)

brie exp =3

Facies to Vsh and porosity mappings
facies vsh = {2.0: 0.65, 4.0: 0.4, 12.0: 0.25, 18.0: 0.1, 30.0: 0.0} # Limestone is
clean

facies phi = {2.0: 0.05, 4.0: 0.217, 12.0: 0.30, 18.0: 0.24, 30.0: 0.11}

--- Functions ---
def vrh_average(vsh):
K vrh=0.5* ((1 - vsh) * K _quartz + vsh * K clay +1/((1 - vsh) / K_quartz +

vsh /K clay))

232

mu_vrh = 0.5 * ((1 - vsh) * mu_quartz + vsh * mu clay + 1 / ((1 - vsh) /
mu_quartz + vsh / mu_clay))

return K _vrh, mu_vrh

def poisson_ratio(K, mu):

return 3 * K -2 *mu) /(6 * K+ 2 * mu)

def effective pressure(depth):

return rho_overburden * g * depth / 1e9 # GPa

def hertz_mindlin(K_vrh, mu_vrh, nu, depth):
p_eff = effective_pressure(depth)
C=2.8/phi c
Kc = ((C**2 * (1 - phi_c)**2 * mu_vrh**2 * p _eff) / (18 * np.pi**2 * (1 -
nu)**2))**(1/3)
muc=((5-4*nu)/ (10 -5 * nu)) * ((3 ¥ C**2 * (1 - phi_c)**2 * mu_vrh**2 *
p_eff) / (2 * np.pi**2 * (1 - nu)**2))**(1/3)

return Kc, muc

defdry frame K(phi, Kc, muc, K vrh):
xi=muc/6* (9 * Kc+ 8 *muc)/(Kc+ 2 * muc)
term1 = phi/ phi_c/ (Kc + 4/3 * muc)
term2 = (1 - phi/ phi_c)/ (K _vrh +4/3 * muc)

return 1/ (term1 + term?2) - 4/3 * muc

233

def K fluid(Sg):

return (K_brine - K co2) * (1 - Sg)**brie_exp + K co2

def rho matrix(vsh):

return (1 - vsh) * rho_quartz + vsh * rho_clay

defrho fluid(Sg):

return Sg * rho_co2 + (1 - Sg) * tho_brine

def rho sat(phi, rho m, rho f):

return (1 - phi) * tho m + phi * tho f

def K sat(K dry, K vrh, Kf, phi):
num = (1 - K dry /K _vrh)**2
denom = phi/ Kf+ (1 - phi) / K_vrh - (K_dry / K_vrh**2)

return K _dry + num / denom

def compute velocities(Ksat, mu, rho):
Vp =np.sqrt((Ksat + 4/3 * mu) / rho) * 3280.84 # ft/s
Vs =np.sqrt(mu / tho) * 3280.84 # ft/s

return Vp, Vs

Apply randomization with noise based on standard deviations

Vp0 = np.full(len(dfss), np.nan)
Vs0 = np.full(len(dfss), np.nan)

234

RbO0 = np.full(len(dfss), np.nan)

Vp = np.full(len(dfss), np.nan)
Vs0 = np.full(len(dfss), np.nan)
RbO0 = np.full(len(dfss), np.nan)

Vp2030 = np.full(len(dfss), np.nan)
Vs2030 = np.full(len(dfss), np.nan)
Rb2030 = np.full(len(dfss), np.nan)

Vp2030Random = np.full(len(dfss), np.nan)
Vs2030Random = np.full(len(dfss), np.nan)
Rb2030Random = np.full(len(dfss), np.nan)

Vp2050 = np.full(len(dfss), np.nan)
V52050 = np.full(len(dfss), np.nan)
Rb2050 = np.full(len(dfss), np.nan)
Vp2050Random = np.full(len(dfss), np.nan)
Vs2050Random = np.full(len(dfss), np.nan)
Rb2050Random = np.full(len(dfss), np.nan)

Vp2070 = np.full(len(dfss), np.nan)
Vs2070 = np.full(len(dfss), np.nan)
Rb2070 = np.full(len(dfss), np.nan)
Vp2070Random = np.full(len(dfss), np.nan)

235

Vs2070Random = np.full(len(dfss), np.nan)
Rb2070Random = np.full(len(dfss), np.nan)

for f in faciesModelList:
mask = dfss["faciesCorr"] ==
depth = -dfss.loc[mask, "z _coord"].values
vsh = facies vsh[f]

phi = facies_phi[f]

K vrh, mu_vrh =vrh_average(vsh)
nu = poisson_ratio(K_ vrh, mu_vrh)
Kc, muc = hertz_mindlin(K_vrh, mu_vrh, nu, depth)

Kdry = dry_frame K(phi, Kc, muc, K vrh)

Before injection (all brine)

Kf0 = np.full _like(phi, K brine)

rho f0 =np.full like(phi, rho_brine)

rho m =rho matrix(vsh) # scalar

rho 0 =rho_sat(phi, rho m, rho f0)

Ksat0 = K _sat(Kdry, K vrh, Kf0, phi)

vp0, vsO = compute velocities(Ksat0, muc, rho 0)
RbO[mask] =rho 0

VpO[mask] = vp0

Vs0[mask] = vs0

236

vp_std = facies_fit[f][1]
vs_std = facies fitVs[f][1]
rb_std =mean_std Rhob.loc[f, "Std"]

dvp = np.random.normal(0.0, vp_std, size=vp0.shape)
dvs = np.random.normal(0.0, vs_std, size=vs0.shape)

drb = np.random.normal(0.0, rb_std, size=rho_0.shape)

dfss.loc[mask, "VpRandom"] = vp0 + dvp
dfss.loc[mask, "VsRandom"] = vsO + dvs

dfss.loc[mask, "RbRandom"] = rho 0 + drb

After injection

Sg2030 = dfss.loc[mask, "Sg2030"].values
Kf=K fluid(Sg2030)

rho f=rho fluid(Sg2030)

rho 2030 =rho_sat(phi, tho m, rho f)

Ksat = K sat(Kdry, K vrh, Kf, phi)
Vp2030[mask], Vs2030[mask] = compute velocities(Ksat, muc, rho 2030)
Rb2030[mask] = rho 2030
Rb2030Random[mask] = Rb2030[mask] + drb
Vp2030Random[mask] = Vp2030[mask]+ dvp
Vs2030Random[mask] = Vs2030[mask]+ dvs

237

Sg2050 = dfss.loc[mask, "Sg2050"].values

Kf=K fluid(Sg2050)

rho f=rho fluid(Sg2050)

rho 2050 =rho_sat(phi, rho_m, rho f)

Ksat =K sat(Kdry, K vrh, Kf, phi)

Vp2050[mask], Vs2050[mask] = compute velocities(Ksat, muc, rho 2050)
Rb2050[mask] = rho 2050

Rb2050Random[mask] = Rb2050[mask] + drb

Vp2050Random[mask] = Vp2050[mask]+ dvp

Vs2050Random[mask] = Vs2050[mask]+ dvs

Sg2070 = dfss.loc[mask, "Sg2070"].values

Kf=K fluid(Sg2070)

rho f=rho fluid(Sg2070)

rho 2070 =rho_sat(phi, tho m, rho f)

Ksat = K sat(Kdry, K vrh, Kf, phi)

Vp2070[mask], Vs2070[mask] = compute velocities(Ksat, muc, rho 2070)
Rb2070[mask] = rho 2070

Rb2070Random[mask] = Rb2070[mask] + drb

Vp2070Random[mask] = Vp2070[mask]+ dvp

Vs2070Random[mask] = Vs2070[mask]+ dvs

dfss["Vp0"] = Vp0O
dfss["Vs0"] = Vs0

238

dfss["Rb0"] = RbO

dfss["Vp2030"] = Vp2030
dfss["Vs2030"] = Vs2030
dfss["Rb2030"] = Rb2030
dfss["Vp2030Random"] = Vp2030Random
dfss["Vs2030Random"] = Vs2030Random
dfss["Rb2030Random"] = Rb2030Random

dfss["Vp2050"] = Vp2050

dfss["Vs2050"] = Vs2050

dfss["Rb2050"] = Rb2050
dfss["Vp2050Random"] = Vp2050Random
dfss["Vs2050Random"] = Vs2050Random
dfss["Rb2050Random"] = Rb2050Random
dfss["Vp2070"] = Vp2070

dfss["Vs2070"] = Vs2070

dfss["Rb2070"] = Rb2070
dfss["Vp2070Random"] = Vp2070Random
dfss["Vs2070Random"] = Vs2070Random
dfss["Rb2070Random"] = Rb2070Random
Display sample stats

dfss[["Vp0", "VpRandom",

"VsRandom","Vs2030", "Vs2030Random",

239

"Vp2030","Vp2030Random","Vs0",

HRbO”’
"RbRandom","Rb2030","Rb2030Random","Vp2050","Vp2050Random"]].describe()

+*In[]:*+
[source, ipython3]
def plot volume slices(dfss, layer index top=100, layer index side=100,
propertyname="faciesCorr"):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

import numpy as np

fig = plt.figure(figsize=(14, 10))

ax = fig.add_subplot(111, projection="3d")

Full scatter plot

sc = ax.scatter(

dfss["x_coord"],

240

dfss["y coord"],
dfss["z_coord"],
c=dfss[propertyname],
cmap="viridis",
alpha=0.1,

s=2,

edgecolor="none"

=== TOP SLICE (fixed k_index === layer_index top) ===
top = dfss[dfss["k _index"] == layer index top]
ax.scatter(

top["x_coord"],

top["y_coord"],

top["z_coord"],

c=top[propertyname],

cmap="viridis",

s=15,

edgecolor="none"

=== SIDE SLICE (e.g., fixed i_index === layer_index side) ===
side = dfss[dfss["1_index"] == layer index_side]
ax.scatter(

side["x_coord"],

241

side["y_coord"],
side["z_coord"],
c=side[propertyname],
cmap="viridis",

s=15,

edgecolor="none"

Add colorbar
cbar = plt.colorbar(sc, ax=ax, shrink=0.5, pad=0.1)

cbar.set label(propertyname)

ax.set_xlabel("X (m)")
ax.set_ylabel("Y (m)")
ax.set_zlabel("Z (m)")
ax.set_title(f"CO2 Saturation in 2030 with Top Layer {layer index top} and

Side Layer {layer index side}")

plt.tight layout()
plt.show()

plot volume_slices(dfss, layer index top=363, layer index side=150,

propertyname="Sg2030")

242

+*In[]:*+
[source, ipython3]

plot_volume_slices(dfss, layer index top=363, layer index side=150,

propertyname="Vp2050")

+*In[]:*+
[source, ipython3]

def plot_saturation_slice(df, layer k=300):

import matplotlib.pyplot as plt

slice_df = df[df["k index"] == layer k]

fig, ax = plt.subplots(figsize=(10, 8))
sc = ax.scatter(
slice_df["x_coord"],
slice_df["y_coord"],
c=slice_df["Sg2030"],

cmap="viridis",

243

s=10,
alpha=1.0,

edgecolors="none"

ax.set_title(f"CO: Saturation at k_index = {layer k}")
ax.set_xlabel("X (m)")
ax.set_ylabel("Y (m)")
cbar = plt.colorbar(sc, ax=ax)
cbar.set label("Sg2030")
plt.grid(True)
plt.tight layout()
plt.show()
def plot vertical slice(df, i_target=150):
slice_df = df[df["1_index"] ==1_target]

fig, ax = plt.subplots(figsize=(10, 8))
sc = ax.scatter(
slice df["j index"],
slice_df["z_coord"],
c=slice df["Sg2030"],
cmap="viridis",
s=10,
alpha=1.0,

edgecolors="none"

244

ax.set_title(f"Vertical Cross Section ati_index = {i_target}")
ax.set_xlabel("j_index")

ax.set_ylabel("Depth (Z, m)")

ax.invert_yaxis()

cbar = plt.colorbar(sc, ax=ax)

cbar.set label("Sg2030")

plt.grid(True)

plt.tight layout()

plt.show()

def plot_3d layer(df, k target=300, thickness=5):
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection="3d")

mask = (df["k index"] >= k_target - thickness) & (df["k index"] <=k _target +
thickness)
subset = df[mask]

subset = subset.sort values(by="Sg2030")

sc = ax.scatter(

subset["x coord"],

subset["y _coord"],

245

subset["z_coord"],
c=subset["Sg2030"],
cmap="viridis",
vmin=0,vmax=0.5,
alpha=0.8,

s=5

ax.set_title(f"3D CO: Plume at k_index =~ {k target}")
ax.set_xlabel("X (m)")

ax.set_ylabel("Y (m)")

ax.set_zlabel("Z (m)")

ax.view_init(elev=20, azim=-120) # adjust view

cbar = plt.colorbar(sc, ax=ax, shrink=0.5, pad=0.1)
cbar.set label("Sg2030")

plt.tight_layout()

plt.show()

plot 3d layer(dfss, k target=363, thickness=5)

+*In[J:*+

246

[source, ipython3]

def plot_co2 plume(df, sg_col="Sg2030", vmin=0, vmax=0.5):
Only keep points with nonzero saturation
plume = df[df[sg_col] > 0.01].copy()

print(plume.shape)

Sort so high-Sg is not hidden under low-Sg

plume = plume.sort _values(by=sg col)

fig = plt.figure(figsize=(12, 9))

ax = fig.add_subplot(111, projection='3d")

sc = ax.scatter(
plume["x_coord"],
plume["y coord"],
plume["z coord"],
c=plume[sg_col],
cmap="viridis",
vmin=vmin,
vmax=vmax,
alpha=0.9,
s=5

247

Axes and colorbar
cbar = plt.colorbar(sc, ax=ax, pad=0.1, shrink=0.5)

cbar.set_label(sg_col)

ax.set _title(f"3D CO: Plume Visualization ({sg_col})")
ax.set_xlabel("X (m)")
ax.set_ylabel("Y (m)")
ax.set_zlabel("Z (m)")

ax.view_init(elev=20, azim=120) # Adjust camera angle if needed

plt.tight layout()
plt.show()

plot_co2 plume(dfss, sg_col="Sg2030", vmin=0, vmax=0.4)
plot co2 plume(dfss, sg_col="Sg2050", vmin=0, vimax=0.4)
plot co2 plume(dfss, sg_col="Sg2070", vimin=0, vimax=0.4)

248

+*In[]:*+

[source, ipython3]

datadir ="../processing'

filenames = ['Seis.bin', 'Seis2030.bin', 'Seis2070.bin']

titles = ['Baseline (Seis)', 2030 (Seis2030)', 2070 (Seis2070)']

nz, nx, ny =420, 288, 314

iz =353 # index for the depth slice (Z-axis)

def save to gslib(df, filename, property name="property"):
with open(filename, 'w') as f:

f.write("GSLIB format file\n")

f.owrite("4\n")

f.write("1_index\n")

fowrite("j_index\n")

f.write("k index\n")

f.write(f" {property name}\n")

dfito_csv(f, sep="'", header=False, index=False, float format='%.6f")

Create 1, j, k indices

1_index, j_index, k index = np.meshgrid(
np.arange(l,nx + 1), #1:1 to 288
np.arange(l,ny +1), #j:1to314

np.arange(nz, 0, -1), #k: 420 to 1 (descending)

249

indexing="ij'

datasets =[]
for filename in filenames:
datafile = os.path.join(datadir, filename)
data = np.fromfile(datafile, dtype=np.float32)
Fix reshape for correct order
data_reshaped = data.reshape((ny, nx, nz)) # (ny, nx, nz)

data_reshaped = np.transpose(data_reshaped, (1, 0, 2)) # (nx, ny, nz)

df = pd.DataFrame({

"i_index": i index.flatten(order="F"),
"j_index": j index.flatten(order="F"),
"k index": k_index.flatten(order="F"),

"property": data_reshaped.flatten(order="F")
)

name = os.path.splitext(filename)[0]

print(name)

save to gslib(df, f"{name}.gslib", property name=name)*

250

+*In[]:*+
[source, ipython3]

filenames = ['AVO_d10.bin', '"AVO_d25.bin', 'AVO_d55.bin']
nz, nx, ny =420, 288, 314

1z = 353 # index for the depth slice (Z-axis)

ix=100

dfss1=dfss[dfss['i_index']—=ix]

dfssl _sorted = dfssl.sort_values(by=['j index', 'k index'])
ymin = np.min(dfss1_sorted['y _coord'])

ymax = np.max(dfssl_sorted['y coord'])

Reshape to (ny, nz)

z matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)
zmin = np.min(z_matrix)

zmax = np.max(z_matrix)

top_z =z matrix[:, 0]

bottom_z =z matrix][:, -1]

dz=5

First, compute the required number of samples to pad above and below

start gaps = np.round((zmax - top_z) / dz).astype(int) # shape (ny,)

251

nz)

stop_gaps = np.round((bottom_z - zmin) / dz).astype(int) # shape (ny,)

Total padded depth is always: top padding + seismic + bottom padding
nzfill = int(np.max(start_gaps + nz + stop_gaps)) # max across all traces
fig, axes = plt.subplots(1, 3, figsize=(20, 6))
datasets =[]
for i, fname in enumerate(filenames):

Load binary file

filepath = os.path.join(datadir, fname)

data = np.fromfile(filepath, dtype=np.float32)

data_reshaped = data.reshape((ny, nx, nz)).transpose(1, 0, 2) # to shape (nx, ny,

avostr = fname.split('.")[0]

Extract vertical slice along y-z at fixed x=ix
seismic_slice = data_reshaped|[ix, :, :]

filled_slice = np.full((ny, nzfill), -99.0, dtype=np.float32)

Fill the values into the padded array
for j in range(ny):
start idx = start_gaps[j]
end idx = start_idx + nz
if end_i1dx > nzfill:
end idx = nzfill

seismic_len = nzfill - start_idx

252

filled slice[j, start idx:end idx] = seismic_slice[j, :seismic_len]
else:
filled slice[j, start idx:end_idx] = seismic_slice[j, :]
datasets.append(filled_slice)
Plot
im = axes[i].imshow(filled_slice.T,
extent=[ymin, ymax, zmax, zmin]|,
cmap='seismic’,
aspect=15,
vmin=np.nanmin(filled_slice[filled slice > -99]), # exclude -99 from color
scaling
vmax=np.nanmax(filled_slice[filled_slice > -991]))
axes[i].set_title(avostr)
axes[i].set xlabel('Y index")
axes[i].set_ylabel('Z index (depth)’)

plt.colorbar(im, ax=axes[1], shrink=0.6)

plt.tight layout()
plt.show()

+*In[]:*+
[source, ipython3]

253

ix=200

dfss1=dfss[dfss['i_index']==ix]

dfss1_sorted = dfssl.sort_values(by=['j_index', 'k index'])

ymin = np.min(dfss1_sorted['y coord'])

ymax = np.max(dfssl_sorted['y coord'])

Reshape to (ny, nz)

z_matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)

zmin = np.min(z_matrix)

zmax = np.max(z_matrix)

top_z =z matrix][:, 0]

bottom z =z matrix[:, -1]

dz=35

First, compute the required number of samples to pad above and below
start_gaps = np.round((zmax - top _z) / dz).astype(int) # shape (ny,)

stop_gaps = np.round((bottom_z - zmin) / dz).astype(int) # shape (ny,)

Total padded depth is always: top padding + seismic + bottom padding
nzfill = int(np.max(start_gaps + nz + stop_gaps)) # max across all traces
fig, axes = plt.subplots(1, 3, figsize=(20, 6))
datasets = []
for 1, fname in enumerate(filenames):

Load binary file

filepath = os.path.join(datadir, fname)

data = np.fromfile(filepath, dtype=np.float32)

254

nz)

data_reshaped = data.reshape((ny, nx, nz)).transpose(1, 0, 2) # to shape (nx, ny,

avostr = fname.split('.")[0]

Extract vertical slice along y-z at fixed x=ix
seismic_slice = data_reshaped][ix, :, :]

filled_slice = np.full((ny, nzfill), -99.0, dtype=np.float32)

Fill the values into the padded array
for j in range(ny):
start_idx = start_gaps[j]
end idx = start_idx + nz
ifend idx > nzfill:
end idx = nzfill
seismic_len = nzfill - start_idx
filled slice[j, start idx:end idx] = seismic_slice[j, :seismic_len]
else:
filled_slice[j, start_idx:end idx] = seismic_slice[j, :]
datasets.append(filled slice)
Plot
im = axes[i].imshow(filled slice.T,
extent=[ymin, ymax, zmax, zmin],
cmap='seismic',

aspect=15,

255

scaling

nz)

vmin=np.nanmin(filled_slice[filled slice > -99]), # exclude -99 from color

vmax=np.nanmax(filled_slice[filled slice > -99]))
axes[i].set_title(avostr)

axes[i].set xlabel('Y index")

axes[i].set_ylabel('Z index (depth)’)

plt.colorbar(im, ax=axes[i], shrink=0.6)

plt.tight layout()
plt.show()

+*In[]:*+
[source, ipython3]

filenames1 = ['"AV02070_d10.bin','AV02070_d25.bin', 'AV0O2070_d55.bin']
fig, axes = plt.subplots(1, 3, figsize=(20, 6))

for 1, fname in enumerate(filenames]1):
Load binary file
filepath = os.path.join(datadir, fname)
data = np.fromfile(filepath, dtype=np.float32)

data_reshaped = data.reshape((ny, nx, nz)).transpose(1, 0, 2) # to shape (nx, ny,

256

avostr = fname.split('.")[0]
Extract vertical slice along y-z at fixed x=ix
seismic_slice = data_reshaped][ix, :, :]
filled_slice = np.full((ny, nzfill), -99.0, dtype=np.float32)
for j in range(ny):
start_idx = start_gaps[j]
end idx = start_idx + nz
ifend idx > nzfill:
end idx = nzfill
seismic_len = nzfill - start_idx
filled_slice[j, start idx:end idx] = seismic_slice[j, :seismic_len]
else:
filled slice[j, start_idx:end_idx] = seismic_slice[j, :]
datasets.append(filled_slice)
im = axes[i].imshow(filled slice.T,
extent=[ymin, ymax, zmax, zmin],
cmap='seismic',
aspect=15,
vmin=np.nanmin(filled_slice[filled slice > -99]), # exclude -99 from color
scaling
vmax=np.nanmax(filled_slice[filled slice > -99]))
axes[i].set_title(avostr)
axes[i].set xlabel('Y index')
axes[i].set_ylabel('Z index (depth)’)

plt.colorbar(im, ax=axes[1], shrink=0.6)

257

plt.tight _layout()
plt.show()

+*In[]:*+
[source, ipython3]

np.random.seed(0)

Prepare the required slices

AVO_d10 = datasets[0]

AVO_d25 diff = datasets[1] - datasets[0]
AVO_d55 diff = datasets[2] - datasets[0]
AVO02070 d10 = datasets[3]- datasets[0]
AVO02070 d25 diff = datasets[4] - datasets[1]
AVO02070 d55_diff = datasets[5] - datasets[2]

titles = [
"AVO_d10 (baseline)",
"AVO_d25 - AVO d10",
"AVO_d55 - AVO_d10",
"AV02070 d10- AVO_dl10",

258

"AV02070 d25- AVO_d25",
"AV02070_d55-AVO_d55"

images = [
AVO_dl0,
AVO_d25 diff,
AVO_d55 diff,
AVO02070 d10,
AVO02070 d25 diff,
AVO02070 d55 diff

fig, axes = plt.subplots(2, 3, figsize=(18, 8))
for 1, ax in enumerate(axes.flat):

image=images][i]

im = ax.imshow(image.T, cmap='"seismic', aspect=15,
vmin=np.nanmin(image[image > -99]),vmax=np.nanmax(image[image > -
99]),extent=[ymin, ymax, zmax, zmin])

ax.set_title(titles[1])

ax.set_xlabel("Y index')

ax.set_ylabel('Z index'")

plt.colorbar(im, ax=ax, shrink=0.7)

259

plt.tight _layout()
plt.show()

+*In[]:*+
[source, ipython3]
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
for ax, data, label in zip(axes, [Vp_low, Vs low, Rb low], ['Vp_low', 'Vs_low',
'Density low']):
image=data
im = ax.imshow(image.T, cmap='"seismic', aspect=15,
vmin=np.nanmin(image),vmax=np.nanmax(image),extent=[ymin, ymax, zmax, zmin])
ax.set_title(label)

fig.colorbar(im, ax=ax, shrink=0.7)

plt.tight layout()

260

plt.show()

+*In[]:*+
[source, ipython3]

Modified HCTNet2D with added dropout
class HCTNet2D(nn.Module):
def init_ (self, in_channels=3, hidden dim=64, dropout rate=0.1):
super(HCTNet2D, self). init ()
self.encoder = nn.Sequential(
nn.Conv2d(in_channels, hidden dim, kernel size=3, padding=1),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(),
nn.Dropout2d(dropout_rate),
nn.Conv2d(hidden dim, hidden dim*2, kernel size=3, padding=1),
nn.BatchNorm2d(hidden dim*2),

261

nn.ReLU(),

nn.Dropout2d(dropout_rate)

self.shared rep = nn.Sequential(
nn.Conv2d(hidden dim*2, hidden dim*4, kernel size=3, padding=1),
nn.ReLU(),
nn.Conv2d(hidden dim*4, hidden dim*2, kernel size=3, padding=1),
nn.ReL.U()

def head block():
return nn.Sequential(
nn.Conv2d(hidden dim*2, 32, kernel size=3, padding=1),
nn.ReLU(),

nn.Conv2d(32, 1, kernel size=1)

self.head vp =head block()
self.head vs =head block()
self.head rho =head block()

def forward(self, x):

x = self.encoder(x)

x = self.shared rep(x)

262

return self.head vp(x), self.head vs(x), self.head rho(x)

Updated training loop with early stopping and loss plotting
def train_model(model, train loader, wval loader, epochs=100, Ir=Ie-3,
patience limit=5, device='cuda' if torch.cuda.is_available() else 'cpu'):
model = model.to(device)

optimizer = torch.optim.AdamW (model.parameters(), lr=Ir)

train_losses, val losses =[], []
best val loss = float('inf")
patience =0

best model state = None

for epoch in range(epochs):
model.train()
total train loss =0
for batch in train_loader:
x = batch['seismic'].to(device)
vp = batch['vp'].to(device)
vs = batch(['vs'].to(device)
rho = batch|['rho'].to(device)

mask = batch['mask'].to(device)

pred_vp, pred vs, pred rho = model(x)

263

loss = masked mse(pred vp, vp, mask) +\
masked mse(pred vs, vs, mask) +\

masked mse(pred rho, rho, mask)

optimizer.zero_grad()
loss.backward()
optimizer.step()

total train_loss += loss.item()

avg train_loss = total train loss / len(train_loader)

train_losses.append(avg_train loss)

model.eval()

total val loss =0

with torch.no grad():

for batch in val loader:

x = batch['seismic'].to(device)
vp = batch['vp'].to(device)
vs = batch['vs'].to(device)
rho = batch['rho'].to(device)
mask = batch['mask'].to(device)
mask single = mask][:, :1]
pred_vp, pred vs, pred rho = model(x)

loss = masked mse(pred_vp, vp, mask single) +\

264

masked mse(pred vs, vs, mask single) +\
masked mse(pred rho, rho, mask single)

total val loss += loss.item()

avg val loss =total val loss/len(val loader)

val_losses.append(avg val loss)

print(f"Epoch {epoch+1} - Train Loss: {avg train loss:.4f} - Val Loss:

{avg val loss:.4f}")

Early stopping
if avg val loss <best val loss:
best val loss =avg val loss
patience =0
best model state = model.state dict()
else:
patience += 1
if patience >= patience limit:
print("Early stopping triggered.")
break

Restore best model

if best model_state:

model.load state dict(best model state)

265

Plot loss curves

plt.figure(figsize=(10, 5))

plt.plot(train_losses, label="Train Loss'")

plt.plot(val losses, label="Val Loss")
plt.xlabel("Epoch')

plt.ylabel('Loss")

plt.title('Training and Validation Loss Over Epochs')
plt.legend()

plt.grid(True)

plt.show()

return model

+*In[]:*+
[source, ipython3]

class SeismicElasticPatchDataset(Dataset):
def init_ (self,

seismic_volume, # (H, W, 3)

266

vp, vp_low, #(H, W)
vs, vs_low, #(H, W)
rho, rho low, # (H, W)
patch_size=(50, 100),
stride=(25, 50),
nan_threshold=0.1,
slice_id=None):
seismic_volume: numpy array HxWx3
vp, vp_low, vs, vs_low, rtho, rho low: numpy arrays HxW
self.seismic = seismic_volume
selfvp =wvp
self.vp_low =vp low
self.vs =vs
self.vs low =vs low
self.tho =rho

self.rho low =rho_low
self.ph, self.pw = patch_size
self.sh, self.sw = stride

self.nan_threshold = nan_threshold

self.indices = self. compute valid patch indices()

self.slice id = slice id

267

l|)

print(f"[DATASET] init: seismic={seismic_volume.shape} vp={vp.shape}

[DATASET] init: seismic=(314, 698, 3) vp=(314, 698)

def compute valid patch indices(self):
H, W = self.seismic.shape[:2]
inds =[]
for i in range(0, H - self.ph + 1, self.sh):
for j in range(0, W - self.pw + 1, self.sw):
patch = self.seismic[i:i+self.ph, j:j+self.pw, :]
valid_fraction = np.count_nonzero(~np.isnan(patch)) / patch.size
if valid_fraction >= 1.0 - self.nan_threshold:
inds.append((i, j))

return inds

def len (self):

return len(self.indices)

def getitem (self, idx):

1, j = self.indices[idx]

--- seismic patch & mask ---

patch_seis np = self.seismic[i:i+self.ph, j:j+self.pw, :] # shape (ph, pw, 3)

268

build a single-channel mask from channel 0 (they're all NaN in the same

spots)

mask2d = ~np.isnan(patch_seis_np|..., 0]) # shape (ph, pw)

replace NaNs with zero before sending to the network

patch _seis np =np.nan_to num(patch_seis_np).astype(np.float32)

to torch: seismic (3, ph, pw), mask (1, ph, pw)

patch_seis = torch.from numpy(patch_seis np).permute(2, 0, 1) # (3, ph,

pw)

mask =torch.from numpy(mask2d.astype(np.float32)).unsqueeze(0) # (1,

ph, pw)

--- elastic patches (all already float32, no channel dimension) ---

patch_vp
J:jtself.pw]).astype(np.float32)
patch_vp low
J:jtself.pw]).astype(np.float32)
patch_vs
J:jtself.pw]).astype(np.float32)
patch vs low
J:jtself.pw]).astype(np.float32)
patch_rho
J:jtself.pw]).astype(np.float32)
patch rho low=

J:jtself.pw]).astype(np.float32)

= np.nan_to num(self.vp[i:i+self.ph,

np.nan_to num(self.vp low([i:i+self.ph,

= np.nan_to num(self.vs[i:i+self.ph,

np.nan_to_num(self.vs_low[i:i+self.ph,

= np.nan_to_num(self.rho[i:i+self.ph,

np.nan_to_num(self.rho_low[i:i+self.ph,

269

to torch: each becomes (1, ph, pw)

vp = torch.from numpy(patch vp).unsqueeze(0)
vp_low = torch.from numpy(patch vp low).unsqueeze(0)
vs =torch.from numpy(patch vs).unsqueeze(0)
vs_low =torch.from numpy(patch vs low).unsqueeze(0)
rho = torch.from numpy(patch rho).unsqueeze(0)

rho low = torch.from numpy(patch _rho low).unsqueeze(0)

print(f"[DATASET] seismic={patch_seis.shape} mask={mask.shape} "

f'vp={vp.shape} vs={vs.shape} rho={rho.shape}")

[DATASET] seismic=torch.Size([3, 50, 100]) mask=torch.Size([1, 50,
100]) vp=torch.Size([1, 50, 100]) vs=torch.Size([1, 50, 100]) rho=torch.Size([1, 50, 100])

return {
"seismic": patch_seis, # (3, ph, pw)
"mask": mask, # (1, ph, pw)

n "

vp": VP, # (1, ph, pw)
"vp_low": vp low, #(1, ph, pw)

n "

vs'": Vs, # (1, ph, pw)

"vs low": vs_low, #(1, ph, pw)
"rho": rho, # (1, ph, pw)
"rho_low": tho low, # (1, ph, pw)

"origin": (1, j),

270

"slice id": torch.tensor(self.slice id, dtype=torch.long)

+*In[]:*+
[source, ipython3]
def evaluate model on test dynamic(model,
test loader,
slice_metadata,
patch_size=(50,100),
device='cuda'):
model.eval()
model.to(device)

ph, pw = patch_size
1) Build one canvas per slice

canvases = {}

for md in slice_metadata:

271

sid = md['slice id']

ny, nzf = md['shape']

canvases[sid] = {
"vp_true": np.zeros((ny, nzf), dtype=np.float32),
"vs_true": np.zeros((ny, nzf), dtype=np.float32),
"rho_true": np.zeros((ny, nzf), dtype=np.float32),
"vp_pred": np.zeros((ny, nzf), dtype=np.float32),
"vs pred": np.zeros((ny, nzf), dtype=np.float32),
"rho_pred": np.zeros((ny, nzf), dtype=np.float32),

"weight": np.zeros((ny, nzf), dtype=np.int32),

2) Accumulate patch-by-patch
for batch in test loader:
**UNPACK EVERYTHING YOU RETURNED IN __ getitem _ **
seismic = batch["seismic"].to(device) # (B,3,ph,pw)
vp_t = batch["vp"].squeeze(1).cpu().numpy() # (B,ph,pw)
vs t = batch["vs"].squeeze(1).cpu().numpy()
rho t = batch["rho"].squeeze(1).cpu().numpy()
vp_p, VS_p, rho_p = model(seismic) # forward pass
vp. p =vp_ p.squeeze(l).detach().cpu().numpy()
vs p =vs_p.squeeze(]l).detach().cpu().numpy()
rho p =rho p.squeeze(1).detach().cpu().numpy()
mask b = batch["mask"].cpu().numpy() # (B,1,ph,pw)

origins = batch["origin"] # tuple of (10 tensor, jO tensor)

272

for b in range(vp_t.shape[0]):
Get patch position
sid = slice_metadata[b]['slice id']

10, jO = slice_metadata[b]["shape"]

Get the canvas for this slice

¢ = canvases[sid]

Create mask for valid indices
rows = np.arange(patch_size[0])

cols = np.arange(patch_size[1])

Calculate valid indices that don't exceed canvas boundaries
valid_rows = rows[rows + 10 < c["vp_true"].shape[0]]

valid_cols = cols[cols + jO < c["vp_true"].shape[1]]

Only use valid indices for adding to canvas
if len(valid_rows) > 0 and len(valid_cols) > 0:
c["vp_true"][10 + wvalid rows[:, None], jO + wvalid cols] +=
vp_t[b][valid rows[:, None], valid cols]
c["vp_pred"][i0 + wvalid rows[:, None], jO + wvalid cols] +=
vp_p[b][valid _rows[:, None], valid_cols]
c["vs true"][10 + wvalid rows[:, None], jO + wvalid cols] +=

vs_t[b][valid rows[:, None], valid cols]

273

Add similar lines for

3) Divide out the weights and mask out zeros — NaN
for md in slice_metadata:
sid = md['slice id']
ny, nzfill = md["shape"]
¢ = canvases[sid]
w = c["weight"]
zero = (w ==0)
for key in ("vp_true","vs_true","rho_true","vp pred","vs pred","rho pred"):
c[key] = np.divide(
cfkey],
W,
out=np.zeros_like(c[key],dtype=np.float32),
where=w>0

)

c[key][zero] = np.nan

return canvases

+*In[]:*+

[source, ipython3]

274

def evaluate model on_test dynamic(model, test loader,
patch_size=(50,100), device='cuda'):
model.eval()
model.to(device)

ph, pw = patch_size

1) Build canvases exactly as you had it:

canvases = { md['slice_id']: {
"vp_true": np.zeros(md['shape'],dtype=np.float32),
"vs_true": np.zeros(md['shape'],dtype=np.float32),
"rho_true": np.zeros(md['shape'],dtype=np.float32),
"vp_pred": np.zeros(md['shape'],dtype=np.float32),
"vs_pred": np.zeros(md['shape'],dtype=np.float32),
"rho_pred": np.zeros(md['shape'],dtype=np.float32),
"weight": np.zeros(md['shape'],dtype=np.int32),

}

for md in slice_metadata }

2) Accumulate patch-by-patch

for batch in test loader:
seismic = batch["seismic"].to(device) # (B,3,ph,pw)
vp_t = batch["vp"].squeeze(]l).cpu().numpy() # (B,ph,pw)
vs_t =batch["vs"].squeeze(1).cpu().numpy()

rho t = batch["rho"].squeeze(1).cpu().numpy()

275

slice_metadata,

forward

with torch.no_grad():
Vvp_p, vs_p, rho_p = model(seismic)
vp_p = vp_p.squeeze(l).detach().cpu().numpy()
vs_p = vs_p.squeeze(1).detach().cpu().numpy()
rho p=rho p.squeeze(1).detach().cpu().numpy()

mask b = batch["mask"].cpu().numpy()[:,0] # (B,ph,pw)
origins = batch["origin"] # tuple of (i0 tensor, jO tensor)

slice ids = batch["slice id"] #(B,)

B =vp_t.shape[0]
for b in range(B):
sid = slice_ids[b].item() # <— pull the right canvas
10, jO = origins[0][b].item(), origins[1][b].item()
m2d = mask b[b]>0.5
rows, cols = np.nonzero(m2d)

¢ = canvases|[sid]
accumulate only valid cells
c["vp_true"][10+rows, jO+cols | += vp_t[b][rows, cols]

c["vp_pred"][10+rows, jO+cols] += vp_p[b][rows, cols]

c["vs_true"][i0+rows, jO+cols | +=vs_t[b][rows, cols]

276

c["vs_pred"][i0+rows, jO+cols | +=vs_p[b][rows, cols]

c["rho_true"][i0+rows, jO+cols] +=rho_t[b][rows, cols]

c["rho pred"][i0+rows, jO+cols] +=rho_p[b][rows, cols]

c["weight"][10+rows, jO+cols | +=1

3) normalize & mask
for md in slice_metadata:
sid = md['slice_id']
¢ = canvases[sid]
w =c["weight"]
zero = (w ==0)

nn nn

,"vs_true",

nn

for key in ("vp_true rho_true","vp pred","vs pred","rho pred"):
c[key] = np.divide(

c[key], w,

out=np.zeros_like(c[key],dtype=np.float32),

where=w>0

)

c[key][zero] = np.nan

return canvases

277

+*In[]:*+
[source, ipython3]
def train_model(model, train loader, wval loader, epochs=100, Ir=Ie-3,
patience limit=5, device='cuda' if torch.cuda.is_available() else 'cpu'):
model = model.to(device)

optimizer = torch.optim.AdamW (model.parameters(), lr=Ir)

train_losses, val losses =[], []
best val loss = float('inf")
patience =0

best model state = None

for epoch in range(epochs):
model.train()
total train loss =0
for batch in train_loader:
x = batch['seismic'].to(device)
vp = batch['vp'].to(device)
vs = batch['vs'].to(device)
rho = batch['tho'].to(device)

mask = batch['mask'].to(device)

278

pred vp, pred vs, pred rho = model(x)

print(f"[TRAIN] x={x.shape} pred vp={pred vp.shape}
vp={vp.shape} mask={mask.shape}")

[TRAIN] x=torch.Size([16, 3, 50, 100]) pred vp=torch.Size([16, 1, 50,
100]) vp=torch.Size([16, 1, 50, 100]) mask=torch.Size([16, 1, 50, 100])

loss = masked mse(pred vp, vp, mask) +\
masked mse(pred vs, vs, mask) +\
masked mse(pred rho, rho, mask)

optimizer.zero_grad()

loss.backward()

optimizer.step()

total train_loss += loss.item()

avg train_loss = total train_loss / len(train_loader)

train_losses.append(avg_train_loss)

model.eval()
total val loss =0
with torch.no grad():
for batch in val loader:
x = batch['seismic'].to(device)
vp = batch['vp'].to(device)
vs = batch['vs'].to(device)

rho = batch['tho'].to(device)

279

mask = batch['mask'].to(device)

mask_single = mask[:, :1]

pred vp, pred vs, pred rho = model(x)

loss = masked mse(pred vp, vp, mask single) +\
masked mse(pred vs, vs, mask single) +\
masked mse(pred rho, rho, mask single)

total val loss += loss.item()

avg val loss =total val loss/len(val loader)

val_losses.append(avg val loss)

print(f"Epoch {epoch+1} - Train Loss: {avg train loss:.4f} - Val Loss:
{avg_val loss:.4f}")

Early stopping
ifavg val loss <best val loss:
best val loss =avg val loss
patience =0
best model state = model.state dict()
else:
patience += 1
if patience >= patience limit:
print("Early stopping triggered.")
break

280

Restore best model
if best model _state:

model.load state dict(best model state)

Plot loss curves

plt.figure(figsize=(10, 5))

plt.plot(train_losses, label="Train Loss'")
plt.plot(val_losses, label="Val Loss")
plt.xlabel("Epoch')

plt.ylabel('Loss")

plt.title('Training and Validation Loss Over Epochs')
plt.legend()

plt.grid(True)

plt.show()

return model

+*In[]:*+

281

[source, ipython3]
random_ix = sorted(random.sample(range(10, nx - 10), num_slices))

random_ix

+*In[]:*+
[source, ipython3]

nz, nx, ny =420, 288, 314

num_slices =20

random_ix = sorted(random.sample(range(10, nx - 10), num_slices))
filenames = ['AVO_d10.bin', '"AVO_d25.bin', 'AVO_d55.bin']

datadir ="../processing'

dz=5

slice_dataset = []

slice_metadata = []

Vp_maxlist = np.zeros(num_slices, dtype=np.float32)
Vs_maxlist = np.zeros(num_slices, dtype=np.float32)

Rb_maxlist = np.zeros(num_slices, dtype=np.float32)

282

z_maxlist = np.zeros(num_slices, dtype=np.float32)
z minlist = np.zeros(num_slices, dtype=np.float32)
ymin, ymax is the same for all ix

ymin, ymax = np.min(dfss['y_coord']), np.max(dfss['y coord'])

for idx, ix in enumerate(random_ix):

dfss1 = dfss[dfss['i_index'] == ix]
dfssl_sorted = dfssl.sort _values(by=['j _index', 'k index'])
z matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)
zmin, zmax = np.min(z_matrix), np.max(z_matrix)
z_minlist[idx], z_ maxlist[idx] = zmin, zmax
top_z =z matrix][:, 0]
bottom z =z matrix[:, -1]
start gaps = np.round((zmax - top_z) / dz).astype(int)
stop_gaps = np.round((bottom_z - zmin) / dz).astype(int)
nzfill = int(np.max(start_gaps + nz + stop_gaps))
slice_metadata.append({

"slice 1d": idx,

"inline": 1ix,

"shape": (ny, nzfill)
1)
seismic_stack = np.full((ny, nzfill, 3), np.nan, dtype=np.float32)
Vp_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Vs_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Rb_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)

283

for i, fname in enumerate(filenames):
filepath = os.path.join(datadir, fname)
data = np.fromfile(filepath, dtype=np.float32)
data_reshaped = data.reshape((ny, nx, nz)).transpose(1, 0, 2)
seismic_slice = data_reshaped][ix, :, :]
for j in range(ny):
start_idx = start_gaps[j]
end idx = start_idx + nz
ifend idx > nzfill:
length = nzfill - start_idx
seismic_stack[j, start idx:end idx, i] = seismic_slice[j, :length]
Vp_padded][j, start_idx:end idx]
dfss1_sorted['Vp0'].values.reshape(ny, nz)[j, :length]
Vs_padded]j, start_idx:end idx]
dfssl_sorted['Vs0'].values.reshape(ny, nz)[j, :length]
Rb_padded[j, start_idx:end idx]
dfssl_sorted['Rb0'].values.reshape(ny, nz)[j, :length]
else:
seismic_stack[j, start_idx:end idx, 1] = seismic_slice[], :]
Vp_padded][j, start_idx:end idx]
dfssl_sorted["Vp0'].values.reshape(ny, nz)[j, :]
Vs_padded]j, start_idx:end idx]

dfssl_sorted['Vs0'].values.reshape(ny, nz)[j, :]

284

Rb_padded][j, start_idx:end idx]
dfss1_sorted['Rb0'].values.reshape(ny, nz)[j, :]

Apply normalization + smoothing

seismic_stack = seismic_stack / np.nanmax(np.abs(seismic_stack))
Vp_low =nan_gaussian_filter corrected(Vp padded, sigma=5)
Vs_low =nan_gaussian_filter corrected(Vs padded, sigma=5)

Rb low =nan_gaussian filter corrected(Rb_padded, sigma=5)

Normalize properties

Vp_maxlist[idx] = np.nanmax(np.abs(Vp_padded))

Vp _norm = Vp padded / Vp_maxlist[idx]

print(Vp_maxlist[idx])

Vs _maxlist[idx] = np.nanmax(np.abs(Vs_padded))
Vs norm = Vs_padded / Vs_maxlist[idx]
print(Vs_maxlist[1dx])

Rb_maxlist[idx] = np.nanmax(np.abs(Rb_padded))
Rb norm =Rb padded / Rb_maxlist[idx]
print(Rb_maxlist[1dx])

Vp_low norm = Vp low / Vp maxlist[idx]

Vs _low _norm = Vs _low / Vs maxlist[idx]

Rb low norm =Rb low /Rb_maxlist[idx]

285

slice dataset.append((seismic_stack, Vp norm, Vp low norm, Vs norm,

Vs _low _norm, Rb norm, Rb_low norm))

ishow=0
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
for ax, data, labelmaxv in zip(axes, [slice dataset[ishow][1],
slice dataset[ishow][3], slice dataset[ishow][5]], ['Vp', 'Vs',
'Density'],[Vp_maxlist[ishow],Vs_maxlist[ishow],Rb_maxlist[ishow]]):
print(maxv)
image=data.copy()*maxv
im = ax.imshow(image.T, cmap='seismic', aspect=15,
vmin=np.nanmin(image),vmax=np.nanmax(image),extent=[ymin, ymax,
z_maxlist[ishow], z minlist[ishow]])
ax.set_title(label)
fig.colorbar(im, ax=ax, shrink=0.7)
plt.tight layout()
plt.show()

fig, axes = plt.subplots(1, 3, figsize=(18, 6))
for ax, data, label,maxv in zip(axes, [slice dataset[ishow][2],
slice_dataset[ishow][4], slice_dataset[ishow][6]], ['Vplow', 'Vslow',
'Densitylow'],[Vp_maxlist[ishow],Vs maxlist[ishow],Rb maxlist[ishow]]):
print(maxv)

image=data.copy()*maxv

286

im = ax.imshow(image.T, cmap='seismic', aspect=15,
vmin=np.nanmin(image),vmax=np.nanmax(image),extent=[ymin, ymax,
z_maxlist[ishow], z minlist[ishow]])

ax.set_title(label)

fig.colorbar(im, ax=ax, shrink=0.7)

plt.tight _layout()
plt.show()

+*In[]:*+
[source, ipython3]
all datasets =[]
for slice idx, s in enumerate(slice dataset): # <-- Now slice i1dx is defined
dataset = SeismicElasticPatchDataset(
seismic_volume=s[0], # (ny, nzfill, 3)
vp=s[1], vp_low=s[2],
vs=s[3], vs_low=s[4],

rho=s[5], rho_low=s[6],

287

patch_size=(50, 100),
stride=(10, 25),
nan_threshold=0.15,
slice_id = slice_idx
)
dataset.slice id = slice idx # <-- This is now valid

all datasets.append(dataset)

full dataset = ConcatDataset(all datasets)

n = len(full dataset)

print(n)

train_size = int(0.7 * n)

val_size = int(0.15 * n)

test_size =n - train_size - val size

train_set, val set, test set = random split(full dataset, [train size, val size,

test size])

288

+*In[]:*+

[source, ipython3]

slice id map =]

for sid, ds in enumerate(full dataset.datasets):
slice_id map += [sid] * len(ds)

slice id map = np.array(slice_id_map, dtype=int)

2) Grab the subset indices from the torch.utils.data.Subset objects
train_idx = np.array(train_set.indices, dtype=int)
val _idx =np.array(val_set.indices, dtype=int)

test_idx = np.array(test_set.indices, dtype=int)

3) Tally up
records =[]
for sid, inline in enumerate(random_ix):
total = np.sum(slice_id map == sid)
train = np.sum(slice_id map([train_idx] == sid)
val =np.sum(slice id map[val 1dx] == sid)
test =np.sum(slice id map|[test idx] == sid)
records.append({
"slice id": sid,
"inline_number": inline,

"total patches": total,

289

"train": train,
"val": val,
"test": test,

"test frac": test/total if total else np.nan

1)

df counts = pd.DataFrame(records)
print(df counts.to_string(index=False))

df counts is DataFrame of per-slice patch counts

Locate the row with the largest “test” count

best row = df counts.loc[df counts['test'].idxmax()]

Extract its slice_id and inline number
best sid = int(best row['slice id'])
best_inline = best row['inline_number']

best n_test = best row|['test']

print(f'Slice ID with most test patches: {best sid}")

print(f'inline number {best inline} has {best n_test} test patches")

find the slice _id for the inline you're interested in
sid = random_ix.index(best_inline) # e.g. inline k=150
print(sid)

get the dataset and its shape

290

ny nzf = full dataset.datasets[sid].seismic.shape[:2]

initialize coverage

coverage = np.zeros((ny_nzf[0], ny_nzf[1]), dtype=bool)

mark each test patch
for idx in test_set.indices: # train_set test set
if slice_id map[idx] != sid:
continue
convert global idx — (row_in_slice dataset) by subtracting cumulative lengths
offset = idx - sum(len(ds) for ds in full dataset.datasets[:sid])
10, jO = full dataset.datasets[sid].indices[offset] # origin of that patch

coverage[i0:10+50, j0:j0+100] = True

plt.figure(figsize=(6,8))

plt.imshow(coverage.T, origin="lower', aspect="auto', cmap='gray r')
plt.title(f"Test-patch coverage on inline {best inline}")
plt.xlabel("Crossline index")

plt.ylabel("Depth index")

plt.show()

291

+*In[]:*+
[source, ipython3]

train_loader Datal.oader(train_set, batch_size=16, shuffle=True,
num_workers=4)
val loader = Datal.oader(val_set, batch size=16, shuffle=False, num_workers=2)
test_loader = DatalLoader(test_set, batch_size=16, shuffle=False, num_workers=2)

model = HCTNet2D(in_channels=3, hidden dim=64, dropout rate=0.1)

trained model = train_model(model, train_loader, val loader, epochs=50)

+*In[]:*+
[source, ipython3]

slice_1d map =[]
for sid, ds in enumerate(full dataset.datasets):
slice_1d map += [sid] * len(ds)

slice_id_map = np.array(slice id map, dtype=int)

292

2) Grab the subset indices from the torch.utils.data.Subset objects
train_idx = np.array(train_set.indices, dtype=int)
val _idx =np.array(val_set.indices, dtype=int)

test_idx = np.array(test_set.indices, dtype=int)

3) Tally up
records =[]
for sid, inline in enumerate(random_ix):
total = np.sum(slice id map == sid)
train = np.sum(slice_id map|[train_idx] == sid)
val =np.sum(slice_id map[val idx] == sid)
test =np.sum(slice id map[test idx] == sid)
records.append({
"slice id": sid,
"inline_number": inline,

"total patches": total,

"train": train,
"val": val,
"test": test,

"test frac": test/total if total else np.nan

1)

df counts = pd.DataFrame(records)

print(df counts.to_string(index=False))

293

df counts is DataFrame of per-slice patch counts

Locate the row with the largest “test” count

best row = df counts.loc[df counts['test'].idxmax()]

Extract its slice_id and inline number
best sid = int(best row['slice id'])
best inline = best_row['inline_number']

best n_test = best row|'test']

print(f'Slice ID with most test patches: {best sid}")

print(f'inline number {best inline} has {best n_test} test patches")

find the slice_id for the inline you're interested in

sid = random_ix.index(best_inline) # e.g. inline k=150
print(sid)

get the dataset and its shape

ny nzf= full dataset.datasets[sid].seismic.shape[:2]

1) figure out which slice ids actually appear in test set
test_slice ids = set()
for idx in test_set.indices:
full dataset[1dx] returns a dict with 'slice id": torch.Tensor(...)
sid = full_dataset[idx]['slice 1d']

it might be a tensor, so:

294

test_slice ids.add(int(sid))

2) filter your slice_metadata down to only those
test _slice metadata = [md for md in slice_metadata

if md['slice_id'] in test slice ids]

3) now build only those canvases
canvases = evaluate model on_test dynamic(
trained model,
test_loader,
test_slice_metadata, # <-- pass *this*, not the full list
patch_size=(50,100),

device='cuda'

4) now ‘canvases[best sid] will only exist if best sid € test slice ids,
and since you picked best_sid as the inline with the most test patches,
1t will have nonzero weight.

¢ = canvases[best_sid]

print("weight sum:", c['weight'].sum())

zmin, zmax = z_minlist[best sid], z maxlist[best sid]

3) pull the *input* low-frequency fields from slice dataset

295

_, Vp_norm, Vp_low_norm, Vs_norm, Vs_low _norm, Rb_norm, Rb_low norm =

slice dataset[best sid]

and de-normalize them using your per-slice max lists
Vp low =Vp low norm * Vp maxlist[best sid]
Vs low =Vs low norm * Vs maxlist[best sid]

Rb low =Rb low norm * Rb_maxlist[best sid]

4) pull the *true* and *predicted* canvases that you built in
evaluate model on test dynamic

¢ = canvases|best_sid]

Vp_true = Vp_norm * Vp maxlist[best sid]

Vs _true = Vs norm * Vs_maxlist[best sid]

Rb _true =Rb_norm * Rb_maxlist[best_sid]

Vp pred =c['vp_pred'] * Vp_maxlist[best sid]

Vs pred = c['vs_pred'] * Vs_maxlist[best sid]
Rb pred = c['tho pred'] * Rb_maxlist[best sid]

Vp _pred filled = np.where(np.isnan(Vp_pred), Vp_low, Vp pred)
Vs pred_filled = np.where(np.isnan(Vs_pred), Vs_low, Vs pred)
Rb pred filled = np.where(np.isnan(Rb_pred), Rb_low, Rb_pred)

Vp pred crop = np.where(np.isnan(Vp_true), Vp true, Vp pred filled)

296

Vs _pred crop = np.where(np.isnan(Vs_true), Vs true, Vs _pred filled)
Rb_pred crop = np.where(np.isnan(Rb_true), Rb_true, Rb_pred filled)

unpack your three rows

vp_rows =[Vp low, Vp pred filled, Vp_true]
vs rows =[Vs low, Vs pred filled, Vs_true]
rho rows =[Rb low, Rb pred filled, Rb true]

compute shared scales
vmin_vp, vimax_vp = np.nanmin(vp_rows), np.nanmax(vp_rows)
vmin_vs, vimax_vs = np.nanmin(vs_rows), np.nanmax(vs_rows)

vmin_rho, vmax_rho = np.nanmin(rho_rows), np.nanmax(rho_rows)

5) now plot a 3x3 grid: rows = [Input, Pred, True], cols = [Vp, Vs, p]

fig, axes = plt.subplots(3, 3, figsize=(15, 12), sharex=True, sharey=True)
row_data =]
([Vp_low, Vs low, Rb low], "Input"),

([Vp_pred crop, Vs pred crop, Rb pred crop], "Predicted"),

([Vp_true, Vs true, Rb true], "True")

props = ["Vp", "Vs", "Density"]

297

for i, (data_row, row_label) in enumerate(row_data):
for j, (img, prop) in enumerate(zip(data_row, props)):
ax = axes|1, j]
if j==0: # first column is Vp
vmn, vinx = vmin_vp, vmax_vp
elif j == 1: # second is Vs
vmn, vinx = vmin_vs, vmax_vs
else: # third is p

vmn, vmx = vmin_rho, vmax_rho

im = ax.imshow(
img.T,
origin="upper’,
extent=[ymin, ymax, zmax, zmin],
VMin=vmn, vinax=vmx,
aspect="auto',

cmap="viridis'

)
ifi==0:

ax.set_title(prop, fontsize=14)
if j==0:

ax.set_ylabel(row_label, fontsize=14)

fig.colorbar(im, ax=ax, shrink=0.75)

fig.supxlabel("Crossline (Y)")

298

fig.supylabel("Depth (2)")
plt.tight _layout()
plt.show()

+*In[]:*+

[source, ipython3]

random_ix2070 = random_ix

filenames = ['AV02070_d10.bin', '"AVO2070_d25.bin','AV02070 d55.bin']
datadir ="../processing'

dz=5

slice_dataset2070 =[]

slice_metadata2070 =[]

Vp_maxlist = np.zeros(num_slices, dtype=np.float32)
Vs_maxlist = np.zeros(num_slices, dtype=np.float32)
Rb_maxlist = np.zeros(num_slices, dtype=np.float32)
z_maxlist = np.zeros(num_slices, dtype=np.float32)
z_minlist = np.zeros(num_slices, dtype=np.float32)

ymin, ymax is the same for all ix

299

ymin, ymax = np.min(dfss['y_coord']), np.max(dfss['y_coord'])

for idx, ix in enumerate(random_ix2070):

dfss1 = dfss[dfss['i_index'] == ix]
dfss1_sorted = dfssl.sort_values(by=['j_index', 'k index'])
z_matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)
zmin, zmax = np.min(z_matrix), np.max(z_matrix)
z_minlist[idx], z_ maxlist[idx] = zmin, zmax
top_z =z matrix][:, 0]
bottom z =z matrix[:, -1]
start gaps = np.round((zmax - top_z) / dz).astype(int)
stop_gaps = np.round((bottom_z - zmin) / dz).astype(int)
nzfill = int(np.max(start_gaps + nz + stop_gaps))
slice_metadata2070.append({

"slice 1d": idx,

"inline": 1ix,

"shape": (ny, nzfill)
1)
seismic_stack = np.full((ny, nzfill, 3), np.nan, dtype=np.float32)
Vp_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Vs_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Rb_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)

for 1, fname in enumerate(filenames):

filepath = os.path.join(datadir, fname)

300

data = np.fromfile(filepath, dtype=np.float32)
data_reshaped = data.reshape((ny, nx, nz)).transpose(1, 0, 2)
seismic_slice = data reshaped][ix, :, :]
for j in range(ny):
start_idx = start_gaps[j]
end idx = start idx + nz
ifend idx > nzfill:
length = nzfill - start_idx
seismic_stack[j, start idx:end idx, i] = seismic_slice[j, :length]
Vp_padded][j, start_idx:end idx]
dfssl_sorted['Vp2070'].values.reshape(ny, nz)[j, :length]
Vs padded][j, start_idx:end idx]
dfssl_sorted['Vs2070'].values.reshape(ny, nz)[j, :length]
Rb_padded][j, start_idx:end idx]
dfssl_sorted['Rb2070"].values.reshape(ny, nz)[j, :length]
else:
seismic_stack[j, start_idx:end idx, 1] = seismic_slice[], :]
Vp_padded][j, start_idx:end idx]
dfssl_sorted["Vp2070'].values.reshape(ny, nz)[j, :]
Vs_padded]j, start_idx:end idx]
dfssl_sorted['Vs2070'].values.reshape(ny, nz)[j, :]
Rb_padded[j, start_idx:end idx]
dfssl_sorted['Rb2070'].values.reshape(ny, nz)[j, :]

Apply normalization + smoothing

301

seismic_stack = seismic_stack / np.nanmax(np.abs(seismic_stack))
Vp_low =nan_gaussian_filter corrected(Vp padded, sigma=5)
Vs _low =nan_gaussian_filter corrected(Vs padded, sigma=5)

Rb low =nan_gaussian filter corrected(Rb_padded, sigma=5)

Normalize properties

Vp_maxlist[idx] = np.nanmax(np.abs(Vp_padded))

Vp norm = Vp padded / Vp_maxlist[idx]

Vs _maxlist[idx] = np.nanmax(np.abs(Vs_padded))
Vs norm = Vs_padded / Vs _maxlist[idx]

Rb_maxlist[idx] = np.nanmax(np.abs(Rb_padded))
Rb norm =Rb padded / Rb_maxlist[idx]

Vp_low norm = Vp low / Vp maxlist[idx]

Vs _low norm =Vs_low / Vs maxlist[idx]

Rb low norm =Rb low /Rb_maxlist[idx]
slice_dataset2070.append((seismic_stack, Vp norm, Vp_low norm, Vs norm,

Vs _low_norm, Rb_norm, Rb_low norm))

all datasets =[]
for slice idx, s in enumerate(slice dataset2070): # <-- Now slice idx is defined
dataset = SeismicElasticPatchDataset(
seismic_volume=s[0], # (ny, nzfill, 3)

vp=s[1], vp_low=s[2],

302

vs=s[3], vs_low=s[4],
rho=s[5], tho low=s[6],
patch_size=(50, 100),
stride=(10, 25),
nan_threshold=0.15,
slice_id = slice_idx
)
dataset.slice id = slice_idx # <-- This is now valid

all datasets.append(dataset)

full dataset2070 = ConcatDataset(all datasets)

n = len(full dataset2070)
print(n)

train_size = int(0.7 * n)
val_size = int(0.15 * n)

test_size =n - train_size - val size

train_set2070, val set2070, test set2070 = random_split(full dataset2070,

[train_size, val_ size, test size])

303

train_loader2070 = Datal.oader(train_set2070, batch size=16, shuffle=True,
num_workers=4)

val_loader2070

DatalLoader(val set2070, batch size=16, shuffle=False,
num_workers=2)

test loader2070

DatalLoader(test_set2070, batch size=16, shuffle=False,
num_workers=2)

model = HCTNet2D(in_channels=3, hidden dim=64, dropout rate=0.1)

trained model2070 = train model(model, train loader2070, wval loader2070,

epochs=50)

+*In[]:*+

[source, ipython3]

z_maxlist = np.zeros(num_slices, dtype=np.float32)
z_minlist = np.zeros(num_ slices, dtype=np.float32)
ymin, ymax is the same for all ix

ymin, ymax = np.min(dfss['y_coord']), np.max(dfss['y_coord'])

for idx, 1x in enumerate(random_ix2070):
dfssl = dfss[dfss['l_index'] == ix]
dfssl_sorted = dfssl.sort_values(by=['j index', 'k index'])

z matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)

304

zmin, zmax = np.min(z_matrix), np.max(z_matrix)

z_minlist[idx], z_ maxlist[idx] = zmin, zmax

slice id map =]
for sid, ds in enumerate(full dataset2070.datasets):
slice_id map += [sid] * len(ds)

slice id map = np.array(slice_id_map, dtype=int)

2) Grab the subset indices from the torch.utils.data.Subset objects
train_idx = np.array(train_set2070.indices, dtype=int)
val _idx =np.array(val set2070.indices, dtype=int)

test_idx = np.array(test set2070.indices, dtype=int)

3) Tally up
records =[]
for sid, inline in enumerate(random_1x2070):
total = np.sum(slice_id map == sid)
train = np.sum(slice_id map[train_idx] == sid)
val =np.sum(slice id map[val 1dx] == sid)
test =np.sum(slice id map|[test idx] == sid)
records.append({
"slice id": sid,
"inline_number": inline,

"total patches": total,

305

"train": train,
"val": val,
"test": test,

"test frac": test/total if total else np.nan

1)

df counts = pd.DataFrame(records)
print(df counts.to_string(index=False))

df counts is DataFrame of per-slice patch counts

Locate the row with the largest “test” count

best row = df counts.loc[df counts['test'].idxmax()]

Extract its slice id and inline number
best sid = int(best row['slice id'])
best_inline = best row['inline_number']

best n_test = best row|['test']

print(f'Slice ID with most test patches: {best sid}")

print(f'inline number {best inline} has {best n_test} test patches")

find the slice _id for the inline you're interested in
sid = random_ix2070.index(best_inline) # e.g. inline k=150
print(sid)

get the dataset and its shape

306

ny nzf = full dataset2070.datasets[sid].seismic.shape[:2]

initialize coverage

coverage = np.zeros((ny_nzf[0], ny_nzf[1]), dtype=bool)

mark each test patch
for idx in test_set2070.indices: # train_set test set
if slice_id map[idx] != sid:
continue
convert global idx — (row_in_slice dataset) by subtracting cumulative lengths
offset = idx - sum(len(ds) for ds in full dataset2070.datasets[:sid])
10, jO = full dataset2070.datasets[sid].indices[offset] # origin of that patch
coverage[i0:10+50, j0:j0+100] = True

plt.figure(figsize=(6,8))

plt.imshow(coverage.T, origin="lower', aspect="auto', cmap='gray r')
plt.title(f"Test-patch coverage on inline {best inline}")
plt.xlabel("Crossline index")

plt.ylabel("Depth index")

plt.show()

test_slice ids = set()
for idx in test_set2070.indices:

full dataset[1dx] returns a dict with 'slice id": torch.Tensor(...)

307

sid = full dataset2070[idx]['slice id']
it might be a tensor, so:

test_slice ids.add(int(sid))

2) filter your slice_metadata down to only those
test_slice_ metadata2070 = [md for md in slice_metadata2070

if md['slice_id'] in test slice ids]

3) now build only those canvases
canvases2070 = evaluate_model on_test dynamic(
trained _model2070,
test_loader2070,
test_slice_metadata2070, # <-- pass *this*, not the full list
patch_size=(50,100),

device='cuda’

best sid=6

4) now ‘canvases[best sid] will only exist if best sid € test slice ids,
and since you picked best_sid as the inline with the most test patches,
1t will have nonzero weight.

¢ = canvases2070[best_sid]

print("weight sum:", c['weight'].sum())

308

best sid=6

zmin, zmax = z_minlist[best_sid], z_maxlist[best sid]

3) pull the *input* low-frequency fields from slice dataset
_, Vp_norm, Vp_low_norm, Vs_norm, Vs_low _norm, Rb_norm, Rb_low norm =

slice dataset2070[best_sid]

and de-normalize them using your per-slice max lists
Vp low =Vp low norm * Vp maxlist[best sid]
Vs low = Vs low norm * Vs maxlist[best sid]

Rb low =Rb _low norm * Rb_maxlist[best sid]

4) pull the *true* and *predicted* canvases that you built in
evaluate model on_test dynamic

Vp true = Vp norm * Vp maxlist[best sid]

Vs _true = Vs _norm * Vs maxlist[best sid]

Rb_true =Rb norm * Rb_maxlist[best sid]
Vp pred = c['vp_pred'] * Vp_maxlist[best sid]
Vs pred = c['vs_pred'] * Vs_maxlist[best sid]

Rb pred = c['rtho pred'] * Rb_maxlist[best sid]

Vp pred filled = np.where(np.isnan(Vp_pred), Vp_low, Vp pred)
Vs pred_filled = np.where(np.isnan(Vs_pred), Vs_low, Vs pred)

309

Rb pred filled = np.where(np.isnan(Rb_pred), Rb_low, Rb_pred)

Vp_pred crop = np.where(np.isnan(Vp_true), Vp_true, Vp pred filled)
Vs _pred crop = np.where(np.isnan(Vs_true), Vs true, Vs _pred filled)
Rb pred crop = np.where(np.isnan(Rb_true), Rb_true, Rb_pred filled)

Vp_low_crop = np.where(np.isnan(Vp_true), Vp_true, Vp _low)
Vs _low_crop = np.where(np.isnan(Vs_true), Vs true, Vs _low)

Rb _low crop = np.where(np.isnan(Rb_true), Rb_true, Rb_low)

unpack your three rows

vp_rows =[Vp low, Vp pred filled, Vp_true]

vs rows =[Vs low, Vs pred filled, Vs_true]

rho rows =[Rb low, Rb pred filled, Rb true]

compute shared scales

vmin_vp, vimax_vp = np.nanmin(vp_rows), np.nanmax(vp rows)
vmin_vs, vmax_vs = np.nanmin(vs_rows), np.nanmax(vs_rows)

vmin_rho, vmax_rho = np.nanmin(rho_rows), np.nanmax(rho_rows)

5) now plot a 3x3 grid: rows = [Input, Pred, True], cols = [Vp, Vs, p]

fig, axes = plt.subplots(3, 3, figsize=(15, 12), sharex=True, sharey=True)
row_data = [

([Vp_low _crop, Vs low crop, Rb low crop], "Input"),

([Vp_pred crop, Vs pred crop, Rb pred crop], "Predicted"),

310

([Vp_true, Vs true, Rb true], "True")

props = ["Vp", "Vs", "Density"]

for i, (data_row, row_label) in enumerate(row_data):
for j, (img, prop) in enumerate(zip(data_row, props)):
ax = axes|[1, j]
if j==0: # first column is Vp
vmn, vimx = vmin_vp, vmax_vp
elif j == 1: # second is Vs
vmn, vinx = vmin_vs, vmax_vs
else: # third is p

vmn, vmx = vmin_rho, vmax_rho

im = ax.imshow(
img.T,
origin="upper’,
extent=[ymin, ymax, zmax, zmin],
Vmin=vmn, vinax=vmx,
aspect="auto',
cmap="viridis'

)

ifi=0:

ax.set_title(prop, fontsize=14)

311

ifj==0:
ax.set_ylabel(row_label, fontsize=14)

fig.colorbar(im, ax=ax, shrink=0.75)

fig.supxlabel("Crossline (Y)")
fig.supylabel("Depth (2)")
plt.tight layout()

plt.show()

+*In[]:*+
[source, ipython3]

nz, nx, ny =420, 288, 314

num_slices =20

random_ix2030 = random_ix

filenames = ['AV0O2030_d10.bin','"AV02030 d25.bin', '"AV02030_d55.bin']
datadir ="../processing'

dz=5

312

slice dataset2030 =[]

slice_ metadata2030 = []

Vp_maxlist = np.zeros(num_slices, dtype=np.float32)
Vs maxlist = np.zeros(num_slices, dtype=np.float32)
Rb_maxlist = np.zeros(num_slices, dtype=np.float32)
z_maxlist = np.zeros(num_slices, dtype=np.float32)
z_minlist = np.zeros(num_slices, dtype=np.float32)

ymin, ymax is the same for all ix

ymin, ymax = np.min(dfss['y_coord']), np.max(dfss['y_coord'])

for idx, ix in enumerate(random_ix2030):

dfss1 = dfss[dfss['i_index'] == ix]
dfssl _sorted = dfssl.sort values(by=['j index', 'k index'])
z matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)
zmin, zmax = np.min(z_matrix), np.max(z_matrix)
z_minlist[1dx], z maxlist[idx] = zmin, zmax
top_z =z matrix[:, 0]
bottom_z =z matrix][:, -1]
start gaps = np.round((zmax - top_z) / dz).astype(int)
stop_gaps = np.round((bottom_z - zmin) / dz).astype(int)
nzfill = int(np.max(start_gaps + nz + stop_gaps))
slice_metadata2030.append({

"slice id": idx,

"inline": ix,

"shape": (ny, nzfill)

313

1)
seismic_stack = np.full((ny, nzfill, 3), np.nan, dtype=np.float32)

Vp_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Vs padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Rb_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)

for i, fname in enumerate(filenames):
filepath = os.path.join(datadir, fname)
data = np.fromfile(filepath, dtype=np.float32)
data_reshaped = data.reshape((ny, nx, nz)).transpose(1, 0, 2)
seismic_slice = data reshaped][ix, :, :]
for j in range(ny):
start_idx = start_gaps[j]
end idx = start_idx + nz
if end_1dx > nzfill:
length = nzfill - start_idx
seismic_stack[j, start idx:end idx, 1] = seismic_slice[], :length]
Vp_padded][j, start_idx:end idx]
dfssl_sorted["Vp2030'].values.reshape(ny, nz)[j, :length]
Vs_padded]j, start_idx:end idx]
dfssl_sorted['Vs2030'].values.reshape(ny, nz)[j, :length]
Rb_padded[j, start_idx:end idx]
dfss1_sorted['Rb2030'].values.reshape(ny, nz)[j, :length]
else:

seismic_stack[j, start_idx:end idx, 1] = seismic_slice[], :]

314

Vp_padded][j, start_idx:end idx]
dfss1_sorted['Vp2030'].values.reshape(ny, nz)[j, :]

Vs_padded][j, start_idx:end idx]
dfss1_sorted['Vs2030'].values.reshape(ny, nz)[j, :]

Rb padded][j, start_idx:end idx]
dfss1_sorted['Rb2030'].values.reshape(ny, nz)[j, :]

Apply normalization + smoothing

seismic_stack = seismic_stack / np.nanmax(np.abs(seismic_stack))
Vp_low =nan_gaussian_filter corrected(Vp_ padded, sigma=5)
Vs _low =nan_gaussian_filter corrected(Vs padded, sigma=5)

Rb low =nan_gaussian filter corrected(Rb_padded, sigma=5)

Normalize properties

Vp_maxlist[idx] = np.nanmax(np.abs(Vp_padded))

Vp norm = Vp padded / Vp_maxlist[idx]

print(Vp_maxlist[idx])

Vs_maxlist[idx] = np.nanmax(np.abs(Vs_padded))
Vs norm = Vs_padded / Vs_maxlist[idx]
print(Vs_maxlist[1dx])

Rb_maxlist[idx] = np.nanmax(np.abs(Rb_padded))

Rb norm =Rb padded / Rb_maxlist[idx]
print(Rb_maxlist[idx])

315

Vp _low norm = Vp low / Vp_ maxlist[idx]

Vs _low norm = Vs _low / Vs maxlist[idx]

Rb low norm =Rb low /Rb maxlist[idx]

slice dataset2030.append((seismic_stack, Vp norm, Vp low norm, Vs norm,

Vs _low _norm, Rb norm, Rb_low norm))

all datasets =[]
for slice idx, s in enumerate(slice dataset2030): # <-- Now slice idx is defined
dataset = SeismicElasticPatchDataset(
seismic_volume=s[0], # (ny, nzfill, 3)
vp=s[1], vp_low=s|[2],
vs=s[3], vs_low=s[4],
rho=s[5], tho low=s[6],
patch_size=(50, 100),
stride=(10, 25),
nan_threshold=0.15,
slice_1d = slice_idx
)
dataset.slice _id = slice idx # <-- This is now valid

all datasets.append(dataset)

full dataset2030 = ConcatDataset(all datasets)

n = len(full dataset2030)

316

print(n)
train_size = int(0.7 * n)
val_size = int(0.15 * n)

test_size =n - train_size - val_size

train_set2030, val set2030, test set2030 = random_split(full dataset2030,

[train_size, val size, test size])

train_loader2030 = Datal.oader(train_set2030, batch size=16, shuffle=True,
num_workers=4)

val loader2030 = Dataloader(val set2030, batch size=16, shuffle=False,
num_workers=2)

test loader2030 = Dataloader(test set2030, batch size=16, shuffle=False,
num_workers=2)

model = HCTNet2D(in_channels=3, hidden dim=64, dropout_rate=0.1)

trained model2030 = train_model(model, train loader2030, wval loader2030,

epochs=50)
slice_1d map =[]
for sid, ds in enumerate(full dataset2030.datasets):
slice_1d map += [sid] * len(ds)

slice_id map = np.array(slice id_map, dtype=int)

2) Grab the subset indices from the torch.utils.data.Subset objects

317

train_idx = np.array(train_set2030.indices, dtype=int)
val idx =np.array(val set2030.indices, dtype=int)

test_idx = np.array(test set2030.indices, dtype=int)

3) Tally up
records =[]
for sid, inline in enumerate(random_ix2030):
total = np.sum(slice id map == sid)
train = np.sum(slice_id map[train_idx] == sid)
val =np.sum(slice_id map[val idx] == sid)
test =np.sum(slice id map[test idx] == sid)
records.append({
"slice id": sid,
"inline_number": inline,

"total patches": total,

"train": train,
"val": val,
"test": test,

"test frac": test/total if total else np.nan

1)

df counts = pd.DataFrame(records)
print(df counts.to_string(index=False))

df counts is DataFrame of per-slice patch counts

318

Locate the row with the largest “test” count

best row = df counts.loc[df counts['test'].idxmax()]

Extract its slice_id and inline number
best sid = int(best row['slice id'])
best inline = best_row['inline_number']

best n test = best row|'test']

print(f'Slice ID with most test patches: {best sid}")

print(f'inline number {best inline} has {best n_test} test patches")

find the slice_id for the inline you're interested in

sid = random_ix2030.index(best_inline) # e.g. inline k=150
print(sid)

get the dataset and its shape

ny nzf= full dataset2030.datasets[sid].seismic.shape[:2]

initialize coverage

coverage = np.zeros((ny_nzf[0], ny nzf[1]), dtype=bool)

mark each test patch
for idx in test_set2030.indices: # train_set test set
if slice_id map[idx] !=sid:
continue

convert global idx — (row_in_slice dataset) by subtracting cumulative lengths

319

offset = idx - sum(len(ds) for ds in full dataset2030.datasets[:sid])
10, jO = full dataset2030.datasets[sid].indices[offset] # origin of that patch
coverage[i0:10+50, j0:j0+100] = True

plt.figure(figsize=(6,8))

plt.imshow(coverage.T, origin="lower', aspect="auto', cmap='gray r')
plt.title(f"Test-patch coverage on inline {best inline}")
plt.xlabel("Crossline index")

plt.ylabel("Depth index")

plt.show()

test_slice ids = set()

for idx in test_set2030.indices:
full dataset[1dx] returns a dict with 'slice id": torch.Tensor(...)
sid = full dataset2030[idx]['slice_id']
it might be a tensor, so:

test_slice ids.add(int(sid))
2) filter your slice_metadata down to only those
test_slice metadata2030 = [md for md in slice metadata2030

if md['slice id'] in test_slice ids]

3) now build only those canvases

canvases2030 = evaluate_model on_test dynamic(

320

trained_model2030,

test loader2030,

test_slice_metadata2030, # <-- pass *this*, not the full list
patch_size=(50,100),

device='cuda'

4) now "canvases[best sid]" will only exist if best_sid € test slice ids,
and since you picked best_sid as the inline with the most test patches,
it will have nonzero weight.

¢ = canvases2030[best_sid]

print("weight sum:", ¢['weight'].sum())

zmin, zmax = z_minlist[best sid], z maxlist[best sid]

3) pull the *input* low-frequency fields from slice dataset
_, Vp_norm, Vp_low_norm, Vs norm, Vs _low _norm, Rb_norm, Rb low norm =

slice_dataset2030[best_sid]

and de-normalize them using your per-slice max lists
Vp low =Vp low norm * Vp maxlist[best sid]
Vs low =Vs low norm * Vs maxlist[best sid]

Rb low =Rb low norm * Rb_maxlist[best sid]

321

4) pull the *true* and *predicted* canvases that you built in

evaluate_ model on_test dynamic

Vp_true = Vp_norm * Vp_maxlist[best_sid]
Vs _true = Vs norm * Vs _maxlist[best sid]

Rb _true =Rb_norm * Rb_maxlist[best_sid]

Vp pred =c['vp_pred'] * Vp_maxlist[best sid]
Vs _pred = ¢['vs_pred'] * Vs_maxlist[best sid]
Rb pred = c['tho _pred'] * Rb_maxlist[best sid]

Vp pred_filled = np.where(np.isnan(Vp_pred), Vp_low, Vp_pred)
Vs _pred_filled = np.where(np.isnan(Vs_pred), Vs_low, Vs_pred)
Rb pred filled = np.where(np.isnan(Rb_pred), Rb_low, Rb_pred)

Vp_pred crop = np.where(np.isnan(Vp_true), Vp true, Vp pred filled)
Vs _pred crop = np.where(np.isnan(Vs_true), Vs _true, Vs _pred filled)
Rb pred crop = np.where(np.isnan(Rb_true), Rb_true, Rb_pred filled)
Vp_low_crop = np.where(np.isnan(Vp_true), Vp_true, Vp_low)

Vs _low_crop = np.where(np.isnan(Vs_true), Vs _true, Vs _low)

Rb_low crop =np.where(np.isnan(Rb_true), Rb_true, Rb_low)

unpack your three rows

322

vp_rows =[Vp low, Vp pred filled, Vp_true]

vs rows =[Vs low, Vs pred filled, Vs_true]

rho rows =[Rb low, Rb pred filled, Rb true]

compute shared scales

vmin_vp, vinax_vp = np.nanmin(vp_rows), np.nanmax(vp_rows)
vmin_vs, vmax_vs = np.nanmin(vs_rows), np.nanmax(vs_rows)

vmin_rho, vmax_rho = np.nanmin(rho_rows), np.nanmax(rho_rows)

5) now plot a 3x3 grid: rows = [Input, Pred, True], cols = [Vp, Vs, p]

fig, axes = plt.subplots(3, 3, figsize=(15, 12), sharex=True, sharey=True)

row_data =
([Vp_low crop, Vs low crop, Rb low crop], "Input"),
([Vp_pred crop, Vs pred crop, Rb pred crop], "Predicted"),

([Vp_true, Vs true, Rb true], "True")

props = ["Vp", "Vs", "Density"]

for 1, (data_row, row_label) in enumerate(row_data):
for j, (img, prop) in enumerate(zip(data_row, props)):
ax = axes[1, j]
ifj==0: # first column is Vp
vmn, vimx = vmin_vp, vimax_vp

elif j==1: # second is Vs

323

vmn, vimx = vmin_vs, vmax_vs
else: # third is p

vmn, vmx = vmin_rho, vmax_rho

im = ax.imshow(
img.T,
origin="upper’,
extent=[ymin, ymax, zmax, zmin],
vmMin=vmn, vmax=vmx,
aspect="auto',

cmap="viridis'

)
ifi==0:

ax.set_title(prop, fontsize=14)
ifj==0:

ax.set_ylabel(row_label, fontsize=14)

fig.colorbar(im, ax=ax, shrink=0.75)
fig.supxlabel("Crossline (Y)")
fig.supylabel("Depth (Z)")

plt.tight layout()
plt.show()

324

+*In[]:*+
[source, ipython3]

+*In[]:*+

[source, ipython3]

z_maxlist = np.zeros(num_slices, dtype=np.float32)
z_minlist = np.zeros(num_slices, dtype=np.float32)
ymin, ymax is the same for all ix

ymin, ymax = np.min(dfss['y_coord']), np.max(dfss['y _coord'])

for idx, 1x in enumerate(random_ix2030):
dfssl = dfss[dfss['1_index'] == ix]
dfssl_sorted = dfssl.sort values(by=['j index', 'k index'])
z matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)
zmin, zmax = np.min(z_matrix), np.max(z_matrix)

z_minlist[idx], z maxlist[idx] = zmin, zmax

slice_1d map =[]

325

for sid, ds in enumerate(full dataset2030.datasets):
slice_id_map += [sid] * len(ds)

slice id map = np.array(slice_id map, dtype=int)

2) Grab the subset indices from the torch.utils.data.Subset objects
train_idx = np.array(train_set2030.indices, dtype=int)
val idx =np.array(val set2030.indices, dtype=int)

test_idx = np.array(test set2030.indices, dtype=int)

3) Tally up
records =[]
for sid, inline in enumerate(random_ix2030):
total = np.sum(slice id map == sid)
train = np.sum(slice_id map([train_idx] == sid)
val =np.sum(slice id map[val 1dx] == sid)
test =np.sum(slice id map|[test idx] == sid)
records.append({
"slice id": sid,
"inline_number": inline,

"total patches": total,

"train": train,
"val": val,
"test": test,

"test frac": test/total if total else np.nan

1)

326

df counts = pd.DataFrame(records)
print(df counts.to_string(index=False))

df counts is DataFrame of per-slice patch counts

Locate the row with the largest “test” count

best row = df counts.loc[df counts['test'].idxmax()]

Extract its slice id and inline number
best sid = int(best row['slice id'])
best inline = best_row['inline_number']

best n_test = best row|['test']

print(f'Slice ID with most test patches: {best sid}")

print(f'inline number {best inline} has {best n_test} test patches")

find the slice _id for the inline you're interested in

sid = random_1x2030.index(best inline) # e.g. inline k=150
print(sid)

get the dataset and its shape

ny nzf= full dataset2030.datasets[sid].seismic.shape[:2]

initialize coverage

coverage = np.zeros((ny_nzf[0], ny nzf[1]), dtype=bool)

327

mark each test patch
for idx in test_set2030.indices: # train_set test set
if slice_id map[idx] != sid:
continue
convert global idx — (row_in_slice dataset) by subtracting cumulative lengths
offset = idx - sum(len(ds) for ds in full dataset2030.datasets[:sid])
10, jO = full dataset2030.datasets[sid].indices[offset] # origin of that patch
coverage[i0:10+50, j0:j0+100] = True

plt.figure(figsize=(6,8))

plt.imshow(coverage.T, origin="lower', aspect="auto', cmap='gray r')
plt.title(f"Test-patch coverage on inline {best inline}")
plt.xlabel("Crossline index")

plt.ylabel("Depth index")

plt.show()

test_slice ids = set()

for idx in test_set2030.indices:
full dataset[1dx] returns a dict with 'slice id": torch.Tensor(...)
sid = full dataset2030[idx]['slice_id']
it might be a tensor, so:

test_slice ids.add(int(sid))

2) filter your slice_metadata down to only those

328

test_slice metadata2030 = [md for md in slice_metadata2030

if md['slice_id'] in test slice ids]

3) now build only those canvases
canvases2030 = evaluate_model on_test dynamic(
trained_model2030,
test_loader2030,
test_slice_metadata2030, # <-- pass *this*, not the full list
patch_size=(50,100),
device='cuda'
)
best sid=7
4) now "canvases[best sid]" will only exist if best_sid € test slice ids,
and since you picked best_sid as the inline with the most test patches,
1t will have nonzero weight.

¢ = canvases2030[best_sid]

print("weight sum:", c['weight'].sum())

zmin, zmax = z_minlist[best sid], z maxlist[best sid]

3) pull the *input* low-frequency fields from slice dataset

_, Vp_norm, Vp_low_norm, Vs norm, Vs _low _norm, Rb_norm, Rb low norm =

slice_dataset2030[best_sid]

329

and de-normalize them using your per-slice max lists
Vp low =Vp low norm * Vp maxlist[best sid]
Vs low =Vs low norm * Vs _maxlist[best sid]

Rb low =Rb low norm * Rb_maxlist[best sid]

4) pull the *true* and *predicted* canvases that you built in

evaluate model on test dynamic

Vp_true = Vp_norm * Vp_ maxlist[best sid]
Vs _true = Vs norm * Vs_maxlist[best sid]

Rb _true =Rb_norm * Rb_maxlist[best_sid]

Vp pred =c['vp_pred'] * Vp_maxlist[best sid]

Vs pred = c['vs_pred'] * Vs_maxlist[best sid]
Rb pred = c['tho pred'] * Rb_maxlist[best sid]

Vp _pred filled = np.where(np.isnan(Vp_pred), Vp_low, Vp pred)
Vs pred_filled = np.where(np.isnan(Vs_pred), Vs_low, Vs pred)
Rb pred filled = np.where(np.isnan(Rb_pred), Rb_low, Rb_pred)

Vp pred crop = np.where(np.isnan(Vp_true), Vp true, Vp pred filled)

330

Vs _pred crop = np.where(np.isnan(Vs_true), Vs true, Vs _pred filled)
Rb_pred crop = np.where(np.isnan(Rb_true), Rb_true, Rb_pred filled)

Vp_low_crop = np.where(np.isnan(Vp_true), Vp_true, Vp_low)
Vs _low_crop = np.where(np.isnan(Vs_true), Vs true, Vs _low)

Rb_low crop = np.where(np.isnan(Rb_true), Rb_true, Rb_low)

unpack your three rows

vp_rows =[Vp low, Vp pred filled, Vp_true]

vs rows =[Vs low, Vs pred filled, Vs_true]

rho rows =[Rb low, Rb pred filled, Rb true]

compute shared scales

vmin_vp, vimax_vp = np.nanmin(vp_rows), np.nanmax(vp_rows)
vmin_vs, vimax_vs = np.nanmin(vs_rows), np.nanmax(vs_rows)

vmin_rho, vmax_rho = np.nanmin(rho_rows), np.nanmax(rho_rows)

5) now plot a 3x3 grid: rows = [Input, Pred, True], cols = [Vp, Vs, p]

fig, axes = plt.subplots(3, 3, figsize=(15, 12), sharex=True, sharey=True)

row_data =
([Vp_low _crop, Vs low crop, Rb low crop], "Input"),
([Vp_pred crop, Vs pred crop, Rb pred crop], "Predicted"),

([Vp_true, Vs true, Rb true], "True")

331

props = ["Vp", "Vs", "Density"]

for i, (data_row, row_label) in enumerate(row_data):
for j, (img, prop) in enumerate(zip(data_row, props)):
ax = axes|1, j]
if j==0: # first column is Vp
vmn, vimx = vmin_vp, vmax_vp
elif j == 1: # second is Vs
vmn, vinx = vmin_vs, vmax_vs
else: # third is p

vmn, vmx = vmin_rho, vmax_rho

im = ax.imshow(
img.T,
origin="upper’,
extent=[ymin, ymax, zmax, zmin],
VMin=vmn, vinax=vmx,
aspect="auto',
cmap="viridis'
)
ifi==0:
ax.set_title(prop, fontsize=14)
ifj==0:
ax.set_ylabel(row_label, fontsize=14)

fig.colorbar(im, ax=ax, shrink=0.75)

332

fig.supxlabel("Crossline (Y)")
fig.supylabel("Depth (2)")
plt.tight _layout()

plt.show()

+*In[]:*+
[source, ipython3]

nz, nx, ny =420, 288, 314

num_slices =20

random_1x2050 = sorted(random.sample(range(10, nx - 10), num_slices))
random_ix2050 = random_ix

filenames = ['AV02050_d10.bin', '"AVO2050 d25.bin','AV02050 d55.bin']
datadir ="../processing'

dz=5

slice_dataset2050 =[]

slice_metadata2050 =[]

Vp_maxlist = np.zeros(num_slices, dtype=np.float32)

333

Vs maxlist = np.zeros(num_slices, dtype=np.float32)
Rb_maxlist = np.zeros(num_slices, dtype=np.float32)
z maxlist = np.zeros(num_slices, dtype=np.float32)

z minlist = np.zeros(num_slices, dtype=np.float32)

ymin, ymax is the same for all ix

ymin, ymax = np.min(dfss['y_coord']), np.max(dfss['y_coord'])

for idx, ix in enumerate(random_ix2050):

dfss1 = dfss[dfss['i_index'] == ix]
dfssl _sorted = dfssl.sort values(by=['j index', 'k index'])
z matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)
zmin, zmax = np.min(z_matrix), np.max(z_matrix)
z_minlist[idx], z_ maxlist[idx] = zmin, zmax
top_z =z matrix][:, 0]
bottom_z =z matrix][:, -1]
start gaps = np.round((zmax - top_z) / dz).astype(int)
stop_gaps = np.round((bottom_z - zmin) / dz).astype(int)
nzfill = int(np.max(start_gaps + nz + stop_gaps))
slice_metadata2050.append({

"slice 1d": idx,

"inline": 1ix,

"shape": (ny, nzfill)
1)
seismic_stack = np.full((ny, nzfill, 3), np.nan, dtype=np.float32)

Vp_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)

334

Vs padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Rb_padded = np.full((ny, nzfill), np.nan, dtype=np.float32)

for 1, fname in enumerate(filenames):
filepath = os.path.join(datadir, fname)
data = np.fromfile(filepath, dtype=np.float32)
data_reshaped = data.reshape((ny, nx, nz)).transpose(1, 0, 2)
seismic_slice = data reshaped][ix, :, :]
for j in range(ny):
start_idx = start_gaps[j]
end idx = start_idx + nz
ifend idx > nzfill:
length = nzfill - start_idx
seismic_stack[j, start idx:end idx, i] = seismic_slice[j, :length]
Vp_padded][j, start_idx:end idx]
dfssl_sorted["Vp2050'].values.reshape(ny, nz)[j, :length]
Vs_padded]j, start_idx:end idx]
dfssl_sorted['Vs2050'].values.reshape(ny, nz)[j, :length]
Rb_padded[j, start_idx:end idx]
dfssl_sorted['Rb2050'].values.reshape(ny, nz)[j, :length]
else:
seismic_stack[j, start_idx:end idx, 1] = seismic_slice[], :]
Vp_padded][j, start_idx:end idx]
dfssl_sorted["Vp2050'].values.reshape(ny, nz)[j, :]

335

Vs_padded][j, start_idx:end idx]
dfss1_sorted['Vs2050'].values.reshape(ny, nz)[j, :]

Rb_padded][j, start_idx:end idx]
dfss1_sorted['Rb2050"].values.reshape(ny, nz)[j, :]

Apply normalization + smoothing

seismic_stack = seismic_stack / np.nanmax(np.abs(seismic_stack))
Vp low =nan_gaussian_filter corrected(Vp padded, sigma=5)
Vs _low =nan_gaussian_filter corrected(Vs padded, sigma=5)

Rb low =nan_gaussian filter corrected(Rb_padded, sigma=5)

Normalize properties

Vp_maxlist[idx] = np.nanmax(np.abs(Vp_padded))

Vp _norm = Vp padded / Vp_maxlist[idx]

print(Vp_maxlist[idx])

Vs_maxlist[idx] = np.nanmax(np.abs(Vs_padded))
Vs norm = Vs_padded / Vs_maxlist[idx]
print(Vs_maxlist[1dx])

Rb_maxlist[idx] = np.nanmax(np.abs(Rb_padded))
Rb norm =Rb padded / Rb_maxlist[idx]

print(Rb_maxlist[idx])

Vp_low norm = Vp low / Vp maxlist[idx]

Vs _low norm =Vs_low / Vs maxlist[idx]

336

Rb low norm =Rb low /Rb maxlist[idx]
slice dataset2050.append((seismic_stack, Vp norm, Vp low norm, Vs norm,

Vs _low _norm, Rb norm, Rb_low norm))

all datasets =[]
for slice_idx, s in enumerate(slice dataset2050): # <-- Now slice idx is defined
dataset = SeismicElasticPatchDataset(
seismic_volume=s[0], # (ny, nzfill, 3)
vp=s[1], vp_low=s|[2],
vs=s[3], vs_low=s[4],
rho=s[5], tho low=s[6],
patch_size=(50, 100),
stride=(10, 25),
nan_threshold=0.15,
slice id = slice_idx
)
dataset.slice _id = slice idx # <-- This is now valid

all datasets.append(dataset)

full dataset2050 = ConcatDataset(all datasets)
n = len(full dataset2050)

print(n)

train_size = int(0.7 * n)

337

val_size = int(0.15 * n)

test size =n - train_size - val_size

train_set2050, val set2050, test set2050 = random_split(full dataset2050,

[train_size, val size, test size])

train_loader2050 = Datal.oader(train_set2050, batch size=16, shuffle=True,
num_workers=4)

val loader2050 = Dataloader(val set2050, batch size=16, shuffle=False,
num_workers=2)

test loader2050 = Dataloader(test set2050, batch size=16, shuffle=False,
num_workers=2)

model = HCTNet2D(in_channels=3, hidden dim=64, dropout_rate=0.1)

trained model2050 = train_model(model, train loader2050, wval loader2050,

epochs=50)

slice_1d map =[]
for sid, ds in enumerate(full dataset2050.datasets):
slice_1d map += [sid] * len(ds)

slice_id_map = np.array(slice id map, dtype=int)

338

2) Grab the subset indices from the torch.utils.data.Subset objects
train_idx = np.array(train_set2050.indices, dtype=int)
val idx =np.array(val set2050.indices, dtype=int)

test_idx = np.array(test set2050.indices, dtype=int)

3) Tally up
records =[]
for sid, inline in enumerate(random_ix2050):
total = np.sum(slice id map == sid)
train = np.sum(slice_id map|[train_idx] == sid)
val =np.sum(slice_id map[val idx] == sid)
test =np.sum(slice id map[test idx] == sid)
records.append({
"slice id": sid,
"inline_number": inline,

"total patches": total,

"train": train,
"val": val,
"test": test,

"test frac": test/total if total else np.nan

1)

df counts = pd.DataFrame(records)

print(df counts.to_string(index=False))

339

df counts is DataFrame of per-slice patch counts

Locate the row with the largest “test” count

best row = df counts.loc[df counts['test'].idxmax()]

Extract its slice_id and inline number
best sid = int(best row['slice id'])
best inline = best_row['inline_number']

best n_test = best row|'test']

print(f'Slice ID with most test patches: {best sid}")

print(f'inline number {best inline} has {best n_test} test patches")

find the slice_id for the inline you're interested in

sid = random_1x2050.index(best_inline) # e.g. inline k=150
print(sid)

get the dataset and its shape

ny nzf= full dataset2050.datasets[sid].seismic.shape[:2]

initialize coverage

coverage = np.zeros((ny_nzf[0], ny nzf[1]), dtype=bool)

mark each test patch

for idx in test_set2050.indices: # train_set test set

if slice_id map[idx] !=sid:

340

continue
convert global idx — (row_in_slice dataset) by subtracting cumulative lengths
offset = idx - sum(len(ds) for ds in full dataset2050.datasets[:sid])
10, jO = full dataset2050.datasets[sid].indices[offset] # origin of that patch
coverage[i0:10+50, j0:j0+100] = True

plt.figure(figsize=(6,8))

plt.imshow(coverage.T, origin="lower', aspect="auto', cmap='gray r')
plt.title(f"Test-patch coverage on inline {best inline}")
plt.xlabel("Crossline index")

plt.ylabel("Depth index")

plt.show()

test_slice ids = set()

for idx in test_set2050.indices:
full dataset[1dx] returns a dict with 'slice id": torch.Tensor(...)
sid = full dataset2050[idx]['slice_id']
it might be a tensor, so:

test_slice ids.add(int(sid))

2) filter your slice_metadata down to only those

test_slice metadata2050 = [md for md in slice metadata2050

if md['slice id'] in test_slice ids]

341

3) now build only those canvases

canvases2050 = evaluate_model on_test dynamic(
trained_model2050,
test loader2050,
test_slice_metadata2050, # <-- pass *this*, not the full list
patch_size=(50,100),

device='cuda'

4) now "canvases[best sid]" will only exist if best_sid € test slice ids,
and since you picked best_sid as the inline with the most test patches,
it will have nonzero weight.

¢ = canvases2050[best_sid]

print("weight sum:", c['weight'].sum())

zmin, zmax = z_minlist[best sid], z maxlist[best sid]
3) pull the *input® low-frequency fields from slice dataset
_, Vp_norm, Vp_low_norm, Vs norm, Vs _low _norm, Rb_norm, Rb _low norm =

slice_dataset2050[best_sid]

and de-normalize them using your per-slice max lists

Vp low =Vp low norm * Vp maxlist[best sid]

342

Vs low =Vs low norm * Vs maxlist[best sid]

Rb low =Rb low norm * Rb_maxlist[best sid]

4) pull the *true* and *predicted* canvases that you built in

evaluate model on test dynamic

Vp_true = Vp_norm * Vp_ maxlist[best sid]
Vs _true = Vs norm * Vs_maxlist[best sid]

Rb _true =Rb_norm * Rb_maxlist[best_sid]

Vp pred =c['vp_pred'] * Vp_maxlist[best sid]
Vs _pred = ¢['vs_pred'] * Vs_maxlist[best sid]
Rb pred = c['tho pred'] * Rb_maxlist[best sid]

Vp _pred filled = np.where(np.isnan(Vp_pred), Vp_low, Vp pred)
Vs pred_filled = np.where(np.isnan(Vs_pred), Vs_low, Vs_pred)
Rb pred filled = np.where(np.isnan(Rb_pred), Rb_low, Rb_pred)

Vp pred crop = np.where(np.isnan(Vp_true), Vp true, Vp pred filled)

Vs pred_crop = np.where(np.isnan(Vs_true), Vs _true, Vs pred filled)
Rb _pred crop = np.where(np.isnan(Rb_true), Rb_true, Rb_pred filled)

343

Vp_low_crop = np.where(np.isnan(Vp_true), Vp_true, Vp_low)
Vs _low_crop = np.where(np.isnan(Vs_true), Vs true, Vs _low)

Rb_low crop = np.where(np.isnan(Rb_true), Rb_true, Rb_low)

unpack your three rows

vp_rows =[Vp low, Vp pred filled, Vp_true]

vs rows =[Vs low, Vs pred filled, Vs_true]

rho rows =[Rb low, Rb pred filled, Rb_ true]

compute shared scales

vmin_vp, vimax_vp = np.nanmin(vp_rows), np.nanmax(vp_rows)
vmin_vs, vimax_vs = np.nanmin(vs_rows), np.nanmax(vs_rows)

vmin_rho, vmax_rho = np.nanmin(rho_rows), np.nanmax(rho_rows)

5) now plot a 3x3 grid: rows = [Input, Pred, True], cols = [Vp, Vs, p]

fig, axes = plt.subplots(3, 3, figsize=(15, 12), sharex=True, sharey=True)

row_data =]

([Vp_low _crop, Vs low crop, Rb low crop], "Input"),

([Vp_pred crop, Vs pred crop, Rb pred crop], "Predicted"),

([Vp_true, Vs true, Rb true], "True")

props = ["Vp", "Vs", "Density"]

for 1, (data_row, row_label) in enumerate(row_data):

344

for j, (img, prop) in enumerate(zip(data_row, props)):
ax = axes|1, j]
if j==0: # first column is Vp
vmn, vinx = vmin_vp, vmax_vp
elif j == 1: # second is Vs
vmn, vinx = vmin_vs, vmax_vs
else: # third is p

vmn, vmx = vmin_rho, vmax_rho

im = ax.imshow(
img.T,
origin="upper’,
extent=[ymin, ymax, zmax, zmin],
vmMin=vmn, vmax=vmx,
aspect="auto',
cmap="viridis'
)
ifi==0:
ax.set_title(prop, fontsize=14)
if j==0:
ax.set_ylabel(row_label, fontsize=14)

fig.colorbar(im, ax=ax, shrink=0.75)

fig.supxlabel("Crossline (Y)")
fig.supylabel("Depth (2)")

345

plt.tight _layout()
plt.show()

+*In[]:*+

[source, ipython3]

z_maxlist = np.zeros(num_slices, dtype=np.float32)
z_minlist = np.zeros(num_slices, dtype=np.float32)
ymin, ymax is the same for all ix

ymin, ymax = np.min(dfss['y_coord']), np.max(dfss['y_coord'])

for idx, 1x in enumerate(random_ix2050):
dfssl = dfss[dfss['1_index'] == ix]
dfssl_sorted = dfssl.sort values(by=['j index', 'k index'])
z matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)
zmin, zmax = np.min(z_matrix), np.max(z_matrix)

z_minlist[idx], z maxlist[idx] = zmin, zmax

+*In[]:*+

346

[source, ipython3]

slice id map =]
for sid, ds in enumerate(full dataset2050.datasets):
slice id map += [sid] * len(ds)

slice id map = np.array(slice_id_map, dtype=int)

2) Grab the subset indices from the torch.utils.data.Subset objects
train_idx = np.array(train_set2050.indices, dtype=int)
val idx =np.array(val set2050.indices, dtype=int)

test_idx = np.array(test set2050.indices, dtype=int)

3) Tally up
records =[]
for sid, inline in enumerate(random_1x2050):
total = np.sum(slice_id map == sid)
train = np.sum(slice_id map([train_idx] == sid)
val =np.sum(slice id map[val 1dx] == sid)
test =np.sum(slice id map([test idx] == sid)
records.append({
"slice id": sid,
"inline_number": inline,
"total patches": total,

"train": train,

347

"val": val,
"test": test,

"test frac": test/total if total else np.nan

1)

df counts = pd.DataFrame(records)
print(df counts.to_string(index=False))

df counts is DataFrame of per-slice patch counts

Locate the row with the largest “test” count

best row = df counts.loc[df counts['test'].idxmax()]

Extract its slice id and inline number
best sid = int(best row['slice id'])
best_inline = best row['inline_number']

best n_test = best row|['test']

print(f'Slice ID with most test patches: {best sid}")

print(f'inline number {best inline} has {best n_test} test patches")

find the slice _id for the inline you're interested in

sid = random_1x2050.index(best_inline) # e.g. inline k=150
print(sid)

get the dataset and its shape

ny nzf= full dataset2050.datasets[sid].seismic.shape[:2]

348

initialize coverage

coverage = np.zeros((ny_nzf[0], ny_nzf[1]), dtype=bool)

mark each test patch
for idx in test_set2050.indices: # train_set test set
if slice_id map[idx] != sid:
continue
convert global idx — (row_in_slice dataset) by subtracting cumulative lengths
offset = idx - sum(len(ds) for ds in full dataset2050.datasets[:sid])
10, jO = full dataset2050.datasets[sid].indices[offset] # origin of that patch
coverage[i0:10+50, j0:j0+100] = True

plt.figure(figsize=(6,8))

plt.imshow(coverage.T, origin="lower', aspect="auto', cmap='gray r')
plt.title(f"Test-patch coverage on inline {best inline}")
plt.xlabel("Crossline index")

plt.ylabel("Depth index")

plt.show()

test_slice ids = set()
for idx in test_set2050.indices:
full dataset[1dx] returns a dict with 'slice id": torch.Tensor(...)

sid = full_dataset2050[idx]['slice id']

349

it might be a tensor, so:

test_slice ids.add(int(sid))

2) filter your slice_metadata down to only those
test_slice_ metadata2050 = [md for md in slice_metadata2050

if md['slice_id'] in test slice ids]

3) now build only those canvases
canvases2050 = evaluate_model on_test dynamic(
trained _model2050,
test_loader2050,
test_slice_metadata2050, # <-- pass *this*, not the full list
patch_size=(50,100),
device='cuda'
)
best sid=9
4) now ‘canvases[best sid] will only exist if best sid € test slice ids,
and since you picked best sid as the inline with the most test patches,
1t will have nonzero weight.

¢ = canvases2050[best_sid]

print("weight sum:", c['weight'].sum())

zmin, zmax = z_minlist[best sid], z maxlist[best sid]

350

3) pull the *input* low-frequency fields from slice dataset
_, Vp_norm, Vp_low_norm, Vs_norm, Vs_low _norm, Rb_norm, Rb_low norm =

slice dataset2050[best_sid]

and de-normalize them using your per-slice max lists
Vp low =Vp low norm * Vp maxlist[best sid]
Vs low =Vs low norm * Vs maxlist[best sid]

Rb low =Rb _low norm * Rb_maxlist[best sid]

4) pull the *true* and *predicted* canvases that you built in
evaluate model on test dynamic

¢ = canvases2050[best_sid]

Vp true = Vp norm * Vp maxlist[best sid]

Vs _true = Vs _norm * Vs maxlist[best sid]

Rb_true =Rb norm * Rb_maxlist[best sid]

Vp pred = c['vp_pred'] * Vp_maxlist[best sid]
Vs pred = c['vs_pred'] * Vs_maxlist[best sid]
Rb pred = c['rtho pred'] * Rb_maxlist[best sid]

Vp pred filled = np.where(np.isnan(Vp_pred), Vp_low, Vp pred)

351

Vs _pred_filled = np.where(np.isnan(Vs_pred), Vs_low, Vs_pred)
Rb pred filled = np.where(np.isnan(Rb_pred), Rb_low, Rb_pred)

Vp_pred crop = np.where(np.isnan(Vp_true), Vp _true, Vp pred filled)
Vs _pred crop = np.where(np.isnan(Vs_true), Vs true, Vs _pred filled)
Rb_pred crop = np.where(np.isnan(Rb_true), Rb_true, Rb_pred filled)

Vp_low_crop = np.where(np.isnan(Vp_true), Vp_true, Vp_low)
Vs _low_crop = np.where(np.isnan(Vs_true), Vs true, Vs _low)

Rb _low crop = np.where(np.isnan(Rb_true), Rb_true, Rb_low)

unpack your three rows

vp_rows =[Vp low, Vp pred filled, Vp_true]

vs rows =[Vs low, Vs pred filled, Vs_true]

rho rows =[Rb low, Rb pred filled, Rb true]

compute shared scales

vmin_vp, vimax_vp = np.nanmin(vp_rows), np.nanmax(vp rows)
vmin_vs, vmax_vs = np.nanmin(vs_rows), np.nanmax(vs_rows)

vmin_rho, vmax_rho = np.nanmin(rho_rows), np.nanmax(rho_rows)

5) now plot a 3x3 grid: rows = [Input, Pred, True], cols = [Vp, Vs, p]

fig, axes = plt.subplots(3, 3, figsize=(15, 12), sharex=True, sharey=True)

row_data = [

([Vp_low crop, Vs low crop, Rb low crop], "Input"),

352

([Vp_pred crop, Vs pred crop, Rb pred crop], "Predicted"),

([Vp_true, Vs true, Rb true], "True")

props = ["Vp", "Vs", "Density"]

for i, (data_row, row_label) in enumerate(row_data):
for j, (img, prop) in enumerate(zip(data_row, props)):
ax = axes|[1, j]
if j==0: # first column is Vp
vmn, vimx = vmin_vp, vmax_vp
elif j == 1: # second is Vs
vmn, vinx = vmin_vs, vmax_vs
else: # third is p

vmn, vimx = vmin_rho, vmax_rho

im = ax.imshow(
img.T,
origin="upper’,
extent=[ymin, ymax, zmax, zmin],
Vmin=vmn, vinax=vmx,
aspect='auto',

cmap="viridis'

ifi==0:

353

ax.set_title(prop, fontsize=14)
ifj==0:
ax.set_ylabel(row_label, fontsize=14)

fig.colorbar(im, ax=ax, shrink=0.75)

fig.supxlabel("Crossline (Y)")
fig.supylabel("Depth (2)")
plt.tight layout()

plt.show()

+*In[]:*+
[source, ipython3]

def compute delta maps(canvases ref, canvases target, max_list, prop="vp"):
i
Compute delta maps (difference from reference year) for a given property across
slices.
Args:
canvases_ref: dict of canvases (reference year)

canvases_target: dict of canvases (target year)

354

max_list: normalization constants per slice
prop: one of 'vp', 'vs', or 'tho'
Returns:
delta_maps: list of 2D numpy arrays (delta per slice)
delta_ maps =[]
for sid in range(len(canvases_ref)):
print(f'sid: {sid} ref: {canvases_ref[sid][f"{prop} pred"].shape},
tgt: {canvases_target[sid][{" {prop} pred"].shape} ")

ref = canvases_ref[sid][{" {prop} pred"] * max_list[sid]
tgt = canvases_target[sid][f"{prop} pred"] * max list[sid]
delta = tgt - ref

delta_maps.append(delta)

return delta_maps

def plot_delta vs co2scatter(delta_ maps, sg maps, prop_name, title):
Plot scatter plots of AProperty vs CO: saturation.
Args:
delta_maps: list of AProperty (2D arrays)
sg_maps: list of CO: saturation maps (2D arrays)
prop_name: 'Vp', 'Vs', or 'Density’

nnn

plt.figure(figsize=(7, 5))

355

for delta, sg in zip(delta_maps, sg_maps):
mask = (~np.isnan(delta)) & (delta!=0) & (~np.isnan(sg)) & (sg>1le-4)

plt.scatter(sg[mask], deltamask], s=1, alpha=0.3)

plt.xlabel("CO: Saturation")

plt.ylabel(f"A{prop _name} ({title} - 2024)")
plt.title(f"Sensitivity of {prop name} to CO: in year {title}")
plt.grid(True)

plt.tight layout()

plt.show()

def plot property change(delta, title, vmin=None, vmax=None):

plt.figure(figsize=(8, 6))

im = plt.imshow(delta.T, cmap="bwr', origin="upper’,
extent=[ymin, ymax, zmax, zmin],
aspect="auto', vmin=vmin, vmax=vmax)

plt.colorbar(im)

plt.title(f"A {title} (2030 - 2024)")

plt.xlabel("Crossline (Y)")

plt.ylabel("Depth (Z)")

plt.tight layout()

plt.show()

356

+*In[]:*+
[source, ipython3]

delta_ vp 2030

compute delta maps(canvases, canvases2030, Vp maxlist,

prop="vp")
delta_ vp 2050

compute delta maps(canvases, canvases2050, Vp maxlist,

prop="vp")
delta_ vp 2070

compute delta maps(canvases, canvases2070, Vp maxlist,
prop="vp")

delta vs 2030 = compute delta maps(canvases, canvases2030, Vs maxlist,
prop="vs")

delta vs 2050 = compute delta maps(canvases, canvases2050, Vs maxlist,
prop="vs")

delta vs 2070 = compute delta maps(canvases, canvases2070, Vs maxlist,
prop="vs")

delta rho 2030

compute delta maps(canvases, canvases2030, Rb maxlist,

prop="rho")

delta rho 2050 = compute delta maps(canvases, canvases2050, Rb maxlist,
prop="rho")

delta rtho 2070 = compute delta maps(canvases, canvases2070, Rb maxlist,
prop="rho")

357

+*In[]:*+

[source, ipython3]
slice Sg2030 =]
slice Sg2050 =]
slice Sg2070 =]

for idx, ix in enumerate(random_ix):
dfss1 = dfss[dfss['i_index'] == ix]
dfssl _sorted = dfssl.sort values(by=['j index', 'k index'])
z matrix = dfssl_sorted['z_coord'].values.reshape(ny, nz)
zmin, zmax = np.min(z_matrix), np.max(z_matrix)
top_z =z matrix[:, 0]
bottom_z =z matrix][:, -1]
start gaps = np.round((zmax - top_z) / dz).astype(int)
stop_gaps = np.round((bottom_z - zmin) / dz).astype(int)
nzfill = int(np.max(start_gaps + nz + stop_gaps))
Sg2030 padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Sg2050 padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
Sg2070 padded = np.full((ny, nzfill), np.nan, dtype=np.float32)
for j in range(ny):

start_idx = start_gaps|[j]

358

end idx = start idx + nz
ifend idx > nzfill:
length = nzfill - start_idx
Sg2030 padded][j, start_idx:end idx]
dfss1_sorted['Sg2030"].values.reshape(ny, nz)[j, :length]
Sg2030 padded][j, start_idx:end idx]
dfssl_sorted['Sg2050'].values.reshape(ny, nz)[j, :length]
Sg2030 padded][j, start_idx:end idx]
dfss1_sorted['Sg2070'].values.reshape(ny, nz)[j, :length]
else:
Sg2030 padded][j, start_idx:end idx]
dfss1_sorted['Sg2030'].values.reshape(ny, nz)|j, :]
Sg2050 padded][j, start_idx:end idx]
dfss1_sorted['Sg2050'].values.reshape(ny, nz)|j, :]
Sg2070 padded][j, start idx:end idx]
dfssl_sorted['Sg2070'].values.reshape(ny, nz)|j, :]

slice_Sg2030.append(Sg2030 padded)
slice_Sg2050.append(Sg2050 padded)
slice_Sg2070.append(Sg2070 padded)

359

+*In[]:*+
[source, ipython3]

plot_delta vs co2scatter(delta vp 2030, slice Sg2030, "Vp","2030")
plot_delta vs co2scatter(delta vp 2070, slice Sg2070, "Vp","2070")

+*In[]:*+
[source, ipython3]
def flatten clean(data list):
return np.concatenate([d[~np.isnan(d)].flatten() for d in data_list])
def compute sensitivity range(sg vals, delta_vals, bins=10):
bin_edges = np.linspace(0, 0.5, bins+1)
ranges = []
for 1 in range(bins):
mask = (sg_vals >=bin_edges[i]) & (sg_vals <bin_edges[i+1])
vals_in_bin = delta vals[mask]
if len(vals_in_bin) > 0:
mean = np.mean(vals_in_bin)

std = np.std(vals_in_bin)

360

ranges.append((mean - std, mean + std))
else:
ranges.append((0, 0))
return np.array(ranges), bin_edges

sg vals2030 = flatten_clean(slice_Sg2030) # (2637600,)
vp_vals2030 = flatten _clean(delta vp 2030) # (1876278,)
vs_vals2030 = flatten clean(delta vs 2030)
rho vals2030 = flatten clean(delta rho 2030)

+*In[]:*+
[source, ipython3]

sg vals2030, vp vals2030 = flatten clean pair(slice Sg2030, delta vp 2030)
_, vs_vals2030 = flatten_clean_pair(slice_Sg2030, delta_vs 2030)
_, tho vals2030 = flatten_clean pair(slice _Sg2030, delta rho 2030)

+*In[]:*+
[source, ipython3]

def flatten clean pair(sg_slices, delta slices):

361

"""Takes two lists of 2D arrays and returns flat arrays of matched non-NaN
values."""
sg all =[]

delta_all =]

for sg, delta in zip(sg_slices, delta_slices):
if sg.shape != delta.shape:
print("Shape mismatch:", sg.shape, delta.shape)
continue # skip mismatched slices
mask = (~np.isnan(sg)) & (~np.isnan(delta))
sg_all.append(sg[mask])
delta_all.append(delta|mask])

sg_flat = np.concatenate(sg_all)
delta flat = np.concatenate(delta all)

return sg_flat, delta flat

Apply to your data

sg vals2030, vp vals2030 = flatten clean pair(slice Sg2030, delta vp 2030)
_, vs_vals2030 = flatten_clean_pair(slice_Sg2030, delta vs 2030)

_, tho vals2030 = flatten_clean_ pair(slice_Sg2030, delta rho 2030)

Then use your plotting code

vp_range, edges = compute sensitivity range(sg_vals2030, vp vals2030)

362

vs range, = compute_sensitivity range(sg vals2030, vs_vals2030)

rho range, = compute sensitivity range(sg vals2030, rtho vals2030)

labels = [f" {edges[i]:.2f}-{edges[i+1]:.2f}" for i in range(len(edges)-1)]
bar width = 0.25

x = np.arange(len(labels))

fig, ax = plt.subplots(figsize=(12, 6))

ax.barh(x - bar width, vp range[:,1] - vp_range[:,0], bar width,
left=vp range[:,0], label="Vp")

ax.barh(x, vs_range[:,1] - vs_range[:,0], bar_width, left=vs_range][:,0], label='Vs")

ax.barh(x + bar width, rho range[:,1] - rho range[:,0], bar width,

left=rho_range[:,0], label='Density")

ax.set_yticks(x)

ax.set_yticklabels(labels)

ax.set xlabel("AProperty Value Range")

ax.set_title("Sensitivity of Properties to CO: Saturation (by bins)")
ax.legend()

ax.grid(True)

plt.tight layout()
plt.show()

363

+*In[]:*+
[source, ipython3]

max(s[2].shape[1] for s in slice _dataset)

+*In[]:*+
[source, ipython3]
ny = max(s[0].shape[0] for s in slice dataset)
newnz = max(s[0].shape[1] for s in slice dataset)
def pad to shape(arr, target shape):
pad_y = target shape[0] - arr.shape[0]
pad z = target shape[1] - arr.shape[1]
return np.pad(arr, ((0, pady), (0, pad z)), mode='constant',

constant_values=np.nan)

AV02024 d10 = [pad_to_shape(s[O][:, :, 0], (ny, newnz)) for s in slice dataset]

AV02024 d25 =[pad to shape(s[O][:, :, 1], (ny, newnz)) for s in slice dataset]
AV02024 d55 = [pad to shape(s[0][:, :, 2], (ny, newnz)) for s in slice dataset]

364

AV02030 d10

[pad _to shape(s[O][:, :, 0], (ny, newnz)) for s in
slice_dataset2030]

AV02030 d25 = [pad to shape(s[O0][:, : 1], (ny, newnz)) for s in
slice_dataset2030]
AV02030 d55 = [pad to shape(s[O][:, : 2], (ny, newnz)) for s in

slice_dataset2030]

AV02024 d10 = np.stack(AV02024_d10, axis=0)
AV02024 d25 = np.stack(AV02024 _d25, axis=0)
AV02024 d55 =np.stack(AV02024 d55, axis=0)

AV02030 _d10 = np.stack(AVO2030_d10, axis=0)
AV02030 d25 =np.stack(AV0O2030_d25, axis=0)
AV02030 _d55 =np.stack(AV0O2030_d55, axis=0)

delta AV02030 d10=AV02030 d10- AV0O2024 d10
delta AV0O2030 _d25=AV02030 d25- AV02024 d25
delta AV02030_d55=AV02030 d55- AV02024 d55
slice_ Sg2030 padto = [pad_to_shape(s, (ny, newnz)) for s in sliceSg2030]

slice_ Sg2030 padto = np.stack(slice Sg2030 padto, axis=0) # shape: (20, ny, nz)

+*In[]:*+

365

[source, ipython3]
slice Sg2030 padto = [pad_to_shape(s, (ny, newnz)) for s in slice Sg2030]
slice Sg2030 padto = np.stack(slice Sg2030 padto, axis=0) # shape: (20, ny, nz)

+*In[]:*+
[source, ipython3]
def flatten_clean_pair(slice list base, slice list target):
base all =[]
target all =[]
for 1, (b, t) in enumerate(zip(slice list base, slice list target)):
b =np.array(b)
t = np.array(t)
if b.shape != t.shape:
print(f"[WARN] Skipping index {i} due to shape mismatch:
base={b.shape}, target={t.shape}")
continue
mask = (~np.isnan(b)) & (~np.isnan(t))
base_all.append(b[mask])
target all.append(t[mask])

return np.concatenate(base_all), np.concatenate(target all)

366

sg_vals2030, avolO vals = flatten_clean_pair(slice Sg2030 padto,
delta AV0O2030_d10)

_,avo25 vals = flatten_clean_pair(slice Sg2030 padto, delta AVO2030 d25)

_,avo55 vals = flatten_clean_pair(slice Sg2030 padto, delta AVO2030 d55)

+*In[]:*+
[source, ipython3]

flatten and clean

def compute sensitivity range(base, delta_vals, bins=10):
bin_edges = np.linspace(np.min(base), np.max(base), bins+1)
bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])

value ranges =[]

for 1 in range(bins):

mask = (base >=bin_edges[i]) & (base < bin_edges[i+1])

367

vals = delta_vals[mask]
if len(vals) > 0:

value range = np.percentile(vals, 95) - np.percentile(vals, 5) # Robust

range
else:
value range =0
value ranges.append(value range)
return bin_centers, value ranges
bins = 10
bin_centers, range 10 = compute sensitivity range(sg vals2030, avol0 vals,
bins=bins)

_,range 25 = compute sensitivity range(sg vals2030, avo25 vals, bins=bins)

_,range 55 =compute sensitivity range(sg vals2030, avo55 vals, bins=bins)

y_labels = [{"{bin_centers[i]:.2f}-{bin_centers[i+1]:.2f}" if i+1 <len(bin_centers)

else f"{bin_centers[i]:.2f}+" for 1 in range(bins)]
fig, ax = plt.subplots(figsize=(10, 6))
width =0.2

y = np.arange(len(y_labels))

ax.barh(y - width, range 10, height=width, label="AVO @ 10°")
ax.barh(y, range 25, height=width, label="AVO @ 25°")

368

ax.barh(y + width, range 55, height=width, label="AVO @ 55°")

ax.set_yticks(y)

ax.set_yticklabels(y labels)

ax.set xlabel("AAVO Reflectivity Range")

ax.set_title("Sensitivity of AVO Angles to CO- Saturation (2030)")
ax.legend()

ax.invert_yaxis()

plt.grid(True)

plt.tight layout()

plt.show()

+*In[]:*+
[source, ipython3]

369

APPENDIX E: SEISMIC FORWARD MODELING MADAGASCAR CODE (FOMEL, 2024;
FOMEL ET AL., 2013; GAO ET AL., UNPUBLISHED)

from rsf.proj import *

#Flow('FID','FID.txt','asc2rsf")

#Flow('x_coor',’x_coord.txt','dd form=native')

#git add data
#mv ~/DOwnload/FID.gslib data

work on facies

Flow('FIDdata','faciesCorr.txt',
echo n1=7 n2=37981440 data format=ascii_float
in=$SOURCE
keyl=i1 key2=j key3=k key4=x key5S=y key6=z key7=fid
| dd form=native

"', stdin=0)

stheaderattr < FID.rsf segy=n

Flow('ijk','FIDdata’,'window n1=3 | dd type=int')

Flow('FID', FIDdata ijk',

370

window nl=1 f1=6 squeeze=n |

intbin3 head=$ {SOURCESJ[1]} xkey=0 ykey=1 zkey=2 |

window |

put d1=0.250 d2=0.250 label1=X label2=Y 01=1137.825 02=10801.125

IH)
Result('FID',

byte gainpanel=all bar=bar.rsf |

transp plane=12 | transp plane=13 |

grey3 color=j frame1=0 frame2=150 frame3=200 point1=0.25 point2=0.70

flat=n title=FID scalebar=y unitl=ft labell=Z label2=X unit2="x1000 ft"
label3=Y unit3="x1000 ft"

")

Flow('xy','FIDdata ijk',
window n1=2 f1=3 squeeze=n |
intbin3 head=$ {SOURCES[1]} xkey=0 ykey=1 zkey=2 |

dd type=complex | window

")
nl=288 dlI=l ol=1
n2=314 d2=1 02=1
n3=494 d3=1 03=1
nd=1 d4=1 04=3

371

Result('xy",
window n3=1 |
graph symbol=x title=Coordinates
label1=X label2=Y plotcol=6
minl=1.137825e6 max1=1.209575e6
min2=1.080112e7 max2=1.087938¢7
")
work on vp
Vpfiles=["VpO0.txt','Vp2030.txt',"Vp2050.txt',"Vp2070.txt']
for Vpfile in Vpfiles:
strs = Vpfile.split(".")
Vpname = strs[0]
if Vpname=='Vp0'":
Vpname="Vp'
yearname="
else:
yearname=Vpname[2:]
Vpdataname = 'Vpdata'+yearname
print(Vpdataname)
Flow(Vpdataname, Vpfile,
echo n1=7 n2=37981440 data format=ascii_float
in=$SOURCE

key1=i1 key2=j key3=k key4=x key5=y key6=z key7=Vp

372

| dd form=native

" stdin=0)

Flow(Vpname,[Vpdataname, 'ijk'],
window nl=1 f1=6 squeeze=n |
intbin3 head=$ {SOURCES][1]} xkey=0 ykey=1 zkey=2 |
window |
transp plane=12 | transp plane=13 |
put d2=0.25 d3=0.25 labell=Z Ilabel2=X label3=Y 02=1137.825
03=10801.125
") #|put d1=-5 01=-4295.10
Result(Vpname,
byte gainpanel=all mean=y bar=bar.rsf |
grey3 color=virdis frame3=80 frame2=100 framel=353 pointl=0.5
point2=0.70
flat=n title="Vp (ft/s)" scalebar=y unitl=ft unit2="x1000 ft" unit3="x1000

ft"
Hl)

Flow('Vp2030 sufl','Vp2030','window n1=1 f1=353 squeeze=y")

work on vs

373

Vsfiles=["Vs0.txt','Vs2030.txt','Vs2050.txt','Vs2070.txt']
for Vsfile in Vsfiles:
strs = Vsfile.split(".")
Vsname = strs[0]
if Vsname=='Vs0"
Vsname='Vs'
yearname="
else:
yearname=Vsname|[2:]
Vsdataname = "Vsdata'+yearname
print(Vsdataname)
Flow(Vsdataname, Vsfile,
echo n1=7 n2=37981440 data_format=ascii_float
in=$SOURCE
key1=i1 key2=j key3=k key4=x key5S=y key6=z key7=Vs
| dd form=native

"', stdin=0)

Flow(Vsname,[Vsdataname, 'ijk'],

window nl=1 f1=6 squeeze=n |
intbin3 head=$ {SOURCES[1]} xkey=0 ykey=1 zkey=2 |
window |

transp plane=12 | transp plane=13 |

374

put d2=0.25 d3=0.25 labell=Z label2=X Ilabel3=Y 02=1137.825
03=10801.125

") # | put d1=-5 01=-4295.10

Result(Vsname,

byte gainpanel=all mean=y bar=bar.rsf |

grey3 color=virdis frame3=80 frame2=100 framel=353 pointl=0.5
point2=0.70

flat=n title="Vs (ft/s)" scalebar=y unitl=ft unit2="x1000 ft" unit3="x1000

ft"
Hl)

work on Rb
Rbfiles=['Rb0.txt','Rb2030.txt','Rb2050.txt','Rb2070.txt']
for Rbfile in Rbfiles:
strs = Rbfile.split(".")
Rbname = strs[0]
if Rbname=="Rb0":
Rbname='Rb'
yearname="
else:
yearname=Rbname[2:]
Rbdataname = 'Rbdata'+yearname
print(Rbdataname)

Flow(Rbdataname,Rbfile,

375

echo n1=7 n2=37981440 data_format=ascii_float
in=§SOURCE

keyl=i key2=j key3=k key4=x key5=y key6=z key7=Rb
| dd form=native

" stdin=0)

Flow(Rbname,[Rbdataname, 'ijk'],
window nl=1 f1=6 squeeze=n |
intbin3 head=$ {SOURCES[1]} xkey=0 ykey=1 zkey=2 |
window |
transp plane=12 | transp plane=13 |
put d2=0.25 d3=0.25 labell=Z Ilabel2=X label3=Y 02=1137.825
03=10801.125
") # | put d1=-5 01=-4295.10
Result(Rbname,
byte gainpanel=all mean=y bar=bar.rsf |
grey3 color=virdis frame3=80 frame2=100 framel=353 pointl=0.5
point2=0.70
flat=n title="Rhob (g/cm3)" scalebar=y unitl=ft unit2="x1000 ft"

unit3="x1000 ft"
m)

376

Flow('Imp','Vp Rb',
put label1=Z unit1=ft label2=x unit2=ft label3=y unit3=ft
mul ${SOURCESJ[1]}

")

Result('Imp',
byte gainpanel=all mean=y bar=bar.rsf |
grey3 flat=n frame1=0 frame2=150 frame3=200 color=seismic

point1=0.3 point2=0.7 title="Acoustic Impedance" scalebar=y

")

convert from depth to time
Flow('Impt','Tmp Vp',

depth2time velocity=$ {SOURCES[1]} dt=0.0005 nt=201 |
smooth rect2=5 rect3=5

") # dt=0.001 nt=401

Result('Impt',

byte gainpanel=all mean=y bar=bar.rsf |

grey3 flat=n frame3=250 frame2=100 frame1=0 color=viridis scalebar=y

377

point1=0.3 point2=0.7 title="Acoustic Impedance" label1=Time unitl=s
Hl)
convolution modeling

Flow('Seist','Impt',"ai2refl rickerl frequency=28")

Result('Seist',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=250 frame2=100 frame1=0
point1=0.3 point2=0.7 title="Seismic Image in Time" labell=Time unitl=s
scalebar=y color=seismic
")
convert from time to depth
#Flow('Seis','Seist Vp','time2depth velocity=${SOURCES[1]} | put d1=-5 ol=-
4295.10")
Flow('Seis','Seist Vp','time2depth velocity=$ {SOURCES[1]} | put d1=-5 ol=-
4295.10"
Flow('Seis.bin', 'Seis', 'rsf2bin bfile=$ TARGET")

Result('Seis',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=250 frame2=100 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="Seismic Image in Depth" label1=Depth unit1=ft

minval=-0.3 maxval=0.3

378

")

Seis.rsf

nl=420 d1=-5 01=-4295.1 labell="Z" unit1="ft"
n2=288 d2=0.25 02=1137.82 label2="x" unit2="{t"
n3=314 d3=0.25 03=10801.1 label3="y" unit3="ft"
nd=1 d4=1 04=6

HHHHHHHRHHEHEHAR A 2030

Flow('Sgdata2030','Sg2030.txt',
echo n1=7 n2=37981440 data_format=ascii_float
in=$SOURCE
keyl=i key2=j key3=k key4=x key5=y key6=z key7=Sg
| dd form=native

"', stdin=0)

Flow('Sg2030','Sgdata2030 ijk’,
window nl=1 f1=6 squeeze=n |
intbin3 head=$ {SOURCES[1]} xkey=0 ykey=1 zkey=2 |
window |

transp plane=12 | transp plane=13 |

379

put d2=0.25 d3=0.25 label1=Z label2=X label3=Y 02=1137.825 03=10801.125
d1=-5 01=-4295.10

")

Plot("Sg2030',
byte gainpanel=all mean=y bar=bar.rsf |
grey3 color=virdis frame3=80 frame2=150 framel=353 point1=0.5
point2=0.70
flat=n title="Sg2030" scalebar=y unitl=ft unit2="x1000 ft" unit3="x1000 ft"

")

Flow('Imp2030',"Vp2030 Rb2030',
put label1=Z unit1=ft label2=x unit2=ft label3=y unit3=ft
mul ${SOURCESJ[1]}

")

Result('Imp2030',

byte gainpanel=all mean=y bar=bar.rsf |
grey3 flat=n framel1=0 frame2=150 frame3=200 color=seismic

point1=0.3 point2=0.7 title="Acoustic Impedance" scalebar=y

380

")

convert from depth to time
Flow('Impt2030','ITmp2030 Vp2030',
depth2time velocity=$ {SOURCES[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

Result('Impt2030',
byte gainpanel=all mean=y bar=bar.rsf |
grey3 flat=n frame3=250 frame2=100 frame1=0 color=viridis
point1=0.3 point2=0.7 title="Acoustic Impedance" label1=Time unitl=s
")

convolution modeling

Flow('Seist2030','Tmpt2030','ai2refl rickerl frequency=28")

Result('Seist2030',

byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=250 frame2=100 frame1=0
point1=0.3 point2=0.7 title=Seismic Image in Time label1=Time unitl=s

")

convert from time to depth

381

Flow('Seis2030','Seist2030 Vp2030','time2depth velocity=$ {SOURCES[1]} | put
d1=-5 01=-4295.10")
Flow('Seis2030.bin', 'Seis2030', 'rsf2bin bfile=$ TARGET")
Plot('Seis2030",
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="Seismic Image in 2030" labell=Depth unitl=ft
minval=-0.3 maxval=0.3
")
Result('Seis2030','Seis2030','SideBySidelso')
Flow('diffSeis30','Seis2030 Seis','math s2=$ {SOURCESJ[0]} s1=$ {SOURCESJ[1]}
output="s2-s1"")
Plot('diffSeis30',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="Seismic Difference in 2030" labell=Depth
unit]=ft minval=-0.3 maxval=0.3
")
T 2070
Flow('Sgdata2070','Sg2070.txt',
echo n1=7 n2=37981440 data format=ascii_float

in=§SOURCE

382

keyl=i key2=j key3=k key4=x key5=y key6=z key7=Sg
| dd form=native

" stdin=0)

Flow('Sg2070','Sgdata2070 ijk',
window nl=1 f1=6 squeeze=n |
intbin3 head=$ {SOURCES[1]} xkey=0 ykey=1 zkey=2 |
window |
transp plane=12 | transp plane=13 |
put d2=0.25 d3=0.25 label1=Z label2=X label3=Y 02=1137.825 03=10801.125
d1=-5 01=-4295.10

")

Plot('Sg2070',
byte gainpanel=all mean=y bar=bar.rsf |
grey3 color=virdis frame3=80 frame2=150 framel=353 point1=0.5
point2=0.70
flat=n title="Sg2070" scalebar=y unitl=ft unit2="x1000 ft" unit3="x1000 ft"

Hl)
Result('Sg2070','Sg2070','SideBySidelso')

Flow('Imp2070',"'Vp2070 Rb2070',

383

put label1=Z unit1=ft label2=x unit2=ft label3=y unit3=ft
mul ${SOURCESJ[1]}

")

Result('Imp2070',
byte gainpanel=all mean=y bar=bar.rsf |
grey3 flat=n frame1=0 frame2=150 frame3=200 color=seismic

point1=0.3 point2=0.7 title="Acoustic Impedance" scalebar=y
Hl)

convert from depth to time
Flow('Impt2070','Tmp2070 Vp2070',
depth2time velocity=$ {SOURCES[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

Result("Impt2070',

byte gainpanel=all mean=y bar=bar.rsf |
grey3 flat=n frame3=250 frame2=100 frame1=0 color=viridis

point]1=0.3 point2=0.7 title="Acoustic Impedance" labell=Time unitl=s

")

384

convolution modeling

Flow('Seist2070','Impt2070','ai2refl rickerl frequency=28")

Result('Seist2070',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=250 frame2=100 frame1=0
point1=0.3 point2=0.7 title=Seismic Image in Time label1=Time unitl=s
")
convert from time to depth
Flow('Seis2070','Seist2070 Vp2070','time2depth velocity=$ {SOURCESJ[1]} | put
d1=-5 01=-4295.10"

Flow('Seis2070.bin', 'Seis2070", 'rsf2bin bfile=STARGET")

Plot('Seis2070",
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=100 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="Seismic Image in 2070" labell=Depth unitl=ft

minval=-0.3 maxval=0.3
Hl)
Result('Seis2070','Seis2070','SideBySidelso")

Flow('diffSeis70','Seis2070 Seis','math s2=$ {SOURCES[0]} s1=$ {SOURCES[1]}

output="s2-s1"")

385

Plot('diffSeis70',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
pointl=0.5 point2=0.7 title="Seismic Difference in 2070" labell=Depth

unit1=ft minval=-0.3 maxval=0.3

")

Result('SeisDiff3070','Seis2030 Seis2070 diffSeis30 diffSeis70'," TwoRows')
Result('Sg3070','Sg2030 Sg2070', TwoColumns')

Result('SeisDiff','diffSeis30 diffSeis70','SideBySidelso")
S I S L AV O
Flow('Vpt','Vp',

depth2time velocity=$ {SOURCES[0]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

Flow('Vst','Vs Vp/,

depth2time velocity=$ {SOURCESJ[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

386

Flow('Rhobt',)/Rb Vp',
depth2time velocity=$ {SOURCESJ[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

Hl)
Flow('AVOt,'Vpt Vst Rhobt','zoeppritz2 vs=${SOURCES[1]}

tho=$ {SOURCES]|2]} a0=10 da=15 na=5 | sftransp | sfrickerl frequency=>50 | sftransp') #
angel: 10, 25, 40, 55, 70 deg

angels=[10,25,40,55,70]

for i in range(5):

strAVOtangel='AVOt_d'+str(angels[i])

print(strAVOtangel)

Flow(strAVOtangel, 'AVOt','window n1=1 f1=%d' %i)

strAVOangel='"AVO _d'+str(angels[i])

Flow(strAVOangel,[strAVOtangel, 'Vp'],'time2depth
velocity=$ {SOURCES[1]} ")

Flow(strAVOangel+'.bin', strAVOangel, 'rsf2bin bfile=$TARGET")

#Flow('AVOL1'/AVOLt,'window n1=1 f1=0") # n1=401
Flow('AVO1',AVOLt1 Vp',time2depth velocity=$ {SOURCES[1]} ')

Plot('AVOL1',

387

byte gainpanel=all bar=bar.rsf |

grey3 flat=n frame3=80 frame2=100 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO angle=10" label1=Depth unit1=ft

")

#Flow('AVOt2',AVOt','window nl1=1 f1=4")
Flow('AVO2''AVOt2 Vp','time2depth velocity=$ {SOURCES[1]} ')
Plot("'AVO2',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=100 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO angle=70" label1=Depth unit1=ft
")
Result('AVO12'AVO1 AVO2',' TwoColumns')

#sfzoeppritz2 < Vp.rsf vs=Vs.rsf rho=Rhob.rsf a0=10 da=5 na=5 | sftransp |
sfricker] frequency=10 | sftransp > avo.rsf
#< avo.rsf sfwindow n4=1 f4=150 > avoY 1.rsf

#<avoY l.rsf sftransp plane=12 | sftransp plane=23 | sfgrey | sfpen

HHHHHEHHHHHHIHEHEHHRHPHH A AVO 2030

388

Flow('Vpt2030','Vp2030',
depth2time velocity=$ {SOURCES[0]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

Flow('Vst2030','Vs2030 Vp2030',
depth2time velocity=$ {SOURCESJ[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

Flow('Rhobt2030','/Rb2030 Vp2030',
depth2time velocity=$ {SOURCES[1]} dt=0.0005 nt=201 |
smooth rect2=>5 rect3=5
")
Flow("AVOt2030',"Vpt2030 Vst2030 Rhobt2030','zoeppritz2 vs=$ {SOURCES][1]}
rho=$ {SOURCES|2]} a0=10 da=15 na=5 | sftransp | sfricker] frequency=50 | sftransp') #
angel: 10, 25, 40, 55, 70 deg

angels=[10,25,40,55,70]

389

for i in range(5):

strAVOtangel='"AVOt2030 d'+str(angels[i])

print(strAVOtangel)

Flow(strAVOtangel, 'AVOt2030','window n1=1 f1=%d' %i)

strAVOangel='AV02030_d'+str(angels[i])

Flow(strAVOangel,[strAVOtangel, 'Vp2030'],'time2depth
velocity=$ {SOURCES[1]} ")

Flow(strAVOangel+'.bin', strAVOangel, 'rsf2bin bfile=$TARGET")

#Flow('AVOt1',AVOt','window nl=1 f1=0") # n1=401

Flow('diffAVO30 d10',’AV02030 d10 AVO d10",'math s2=${SOURCES[0]}
s1=${SOURCESJ[1]} output="s2-s1"")
Result('AV02030 d10/,
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO in 2030 at 10deg" labell=Depth unitl=ft
minval=-0.3 maxval=0.3

Hl)
Result(AV02030_d40',

byte gainpanel=all bar=bar.rsf |

grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic

390

point1=0.5 point2=0.7 title="AVO in 2030 at 40deg" labell=Depth unitl=ft
minval=-0.3 maxval=0.3

Hl)
Result('diffAVO30 d10,

byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO Difference in 2030 at 10deg" label1=Depth
unit]=ft minval=-0.3 maxval=0.3
")
Flow('diffAVO30 d40',AV02030 d40 AVO d40''math s2=${SOURCES[0]}
s1=${SOURCESJ[1]} output="s2-s1"")
Result('diffAVO30_d40',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO Difference in 2030 at 40deg" labell1=Depth
unit]=ft minval=-0.3 maxval=0.3
")
Flow('diffAVO30 d55''AV02030 d55 AVO d55'math s2=${SOURCES[0]}
s1=${SOURCESJ[1]} output="s2-s1"")
Result('diffAVO30_d55',
byte gainpanel=all bar=bar.rsf |

grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic

391

point1=0.5 point2=0.7 title="AVO Difference in 2030 at 55deg" label1=Depth

unit1=ft minval=-0.3 maxval=0.3

")

HHHHHEHHHHHIH AR AVO 2050

Flow('Vpt2050','Vp2050),

depth2time velocity=$ {SOURCESJ[0]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

Flow('Vst2050',"Vs2050 Vp2050',

depth2time velocity=$ {SOURCES[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

Flow('Rhobt2050','/Rb2050 Vp2050',

depth2time velocity=$ {SOURCES[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

392

Flow('AVOt2050','Vpt2050 Vst2050 Rhobt2050','zoeppritz2 vs=$ {SOURCES[1]}
rho=$ {SOURCES|2]} a0=10 da=15 na=5 | sftransp | sfrickerl frequency=50 | sftransp') #
angel: 10, 25, 40, 55, 70 deg

angels=[10,25,40,55,70]

for i in range(5):

strAVOtangel='"AVOt2050 d'+str(angels[i])

print(strAVOtangel)

Flow(strAVOtangel, 'AVOt2050','window n1=1 f1=%d' %i)

strAVOangel='AV02050 d'+str(angels[i])

Flow(strAVOangel,[strAVOtangel, 'Vp2050'],'time2depth
velocity=$ {SOURCES[1]} ")

Flow(strAVOangel+'.bin', strAVOangel, 'rsf2bin bfile=$TARGET")

#Flow('AVOL1'AVOL,'window n1=1 f1=0') # n1=401

Flow('diffAVO50_d10'/AV02050 d10 AVO_d10''math s2=${SOURCES[0]}
s1=${SOURCES[1]} output="s2-s1"")

Plot('diffAVO50_d10,

byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic

point1=0.5 point2=0.7 title="AVO Difference in 2050 at 10deg" label 1=Depth

unitl=ft minval=-0.3 maxval=0.3

")

393

Flow('diffAVO50 d40',’AV02050 d40 AVO d40''math s2=${SOURCES[0]}
s1=${SOURCESJ1]} output="s2-s1"")
Plot('diffAVOS50 d40',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO Difference in 2050 at 40deg" label1=Depth

unit1=ft minval=-0.3 maxval=0.3

")

HHHHEHHHHAHHIHEHEHHRHPHHEHHAR AR AVO 2070

Flow('Vpt2070','Vp2070),

depth2time velocity=$ {SOURCES[0]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

Flow('Vst2070',"Vs2070 Vp2070',

depth2time velocity=$ {SOURCESJ[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

")

394

Flow('Rhobt2070',’Rb2070 Vp2070',

depth2time velocity=$ {SOURCES[1]} dt=0.0005 nt=201 |

smooth rect2=5 rect3=5

Hl)
Flow('AVOt2070','Vpt2070 Vst2070 Rhobt2070','zoeppritz2 vs=$ {SOURCES[1]}

tho=$ {SOURCES]|2]} a0=10 da=15 na=5 | sftransp | sfrickerl frequency=>50 | sftransp') #
angel: 10, 25, 40, 55, 70 deg

angels=[10,25,40,55,70]

for i in range(5):

strAVOtangel='AVOt2070 d'+str(angels[i])

print(strAVOtangel)

Flow(strAVOtangel, 'AVOt2070','window nl1=1 f1=%d' %1)

strAVOangel='"AV02070_d'+str(angels[i])

Flow(strAVOangel,[strAVOtangel, 'Vp2070'],'time2depth
velocity=$ {SOURCES[1]} ")

Flow(strAVOangel+'.bin', strAVOangel, 'rsf2bin bfile=$TARGET")

#Flow('AVOt1'AVOt','window nl=1 f1=0") # nl1=401

Plot('AV0O2070_d10',

byte gainpanel=all bar=bar.rsf |

395

grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO in 2070 at 10deg" labell=Depth unitl=ft
minval=-0.3 maxval=0.3

Hl)
Plot('AV02070 d25',

byte gainpanel=all bar=bar.rsf |

grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic

point1=0.5 point2=0.7 title="AVO in 2070 at 25deg" labell=Depth unitl=ft
minval=-0.3 maxval=0.3

Hl)
Plot('AV02070 d55',

byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO in 2070 at 55deg" labell=Depth unitl=ft
minval=-0.3 maxval=0.3
")
Result('AV02070 d102555''AV02070 d10 AVO02070 d25
AVO02070 _d55','SideBySidelso')

Flow('diffAVO70_d10';AV02070 d10 AVO d10')math s2=${SOURCES[0]}
s1=${SOURCES[1]} output="s2-s1")
Plot('diffAVO70_d10',

396

byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO Difference in 2070 at 10deg" label1=Depth

unit1=ft minval=-0.3 maxval=0.3

")

Flow('diffAVO70 d40',’AV02070 d40 AVO d40''math s2=${SOURCES[0]}
s1=${SOURCESJ[1]} output="s2-s1"")
Plot('diffAVO70_d40',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO Difference in 2070 at 40deg" label1=Depth

unit1=ft minval=-0.3 maxval=0.3

")

Flow('diffAVO70_d55''AV02070_d55 AVO_d55''math s2=${SOURCESJ[0]}
s1=${SOURCESJ[1]} output="s2-s1"")
Plot('diffAVO70_d55',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO Difference in 2070 at 55deg" label 1=Depth

unitl=ft minval=-0.3 maxval=0.3

")

397

Flow('diffAVO70 d55d10',)AV0O2070 d55 AV02070_d10','math
s2=${SOURCES[0]} s1=${SOURCES[1]} output="s2-s1"")
Result('diffAVO70 d55d10',
byte gainpanel=all bar=bar.rsf |
grey3 flat=n frame3=80 frame2=150 frame1=353 scalebar=y color=seismic
point1=0.5 point2=0.7 title="AVO Difference in 2070 at 55deg" label1=Depth

unit1=ft minval=-0.3 maxval=0.3

")

Result('AVODIff3070','Seis2030 Seis2070 diffSeis30 diffSeis70', TwoRows')

Result('AVODiIff d40','diffAVO30_d40 diffAVO70_d40','SideBySidelso")

Result('AVODiIff d10','diffAVO30_d10 diffAVO70_d10','SideBySidelso")

Result('SeisAvoDiff3070 d10','diffSeis30 diffSeis70 diffAVO30_d10
diffAVO70_d10', TwoRows')

Result('SeisAvoDiff3070 d40','diffSeis30 diffSeis70 diffAVO30_d40
diffAVO70_d40', TwoRows')

Result('SeisAvoDiff3070 d55','diffSeis30 diffSeis70 diffAVO30_ds5
diffAVO70_d55'," TwoRows')

Result('AvoDiff3070 d104055','diffAVO30_d10 diffAVO30_d40
diffAVO30_d55 diffAVO70_d10 diffAVO70_d40 diffAVO70_d55','TwoRows")

Result('AvoDiff30_d104055','diffAVO30 _d10 diffAVO30_d40
diffAVO30_ds5','SideBySidelso'")

398

Result('AvoDiff70 _d104055','diffAVO70_d10 diffAVO70_d40
diffAVO70_d55','SideBySidelso")

End()

399

