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Abstract 

 

Impact of Subsurface Setting on CO2 Storage Leakage Risk: Implications for 

Financial Responsibility and the Insurance Industry 

 

Argenis Jesus Pelayo Nava, M.S. Energy and Earth Resources 

The University of Texas at Austin, 2025 

 

Supervisor: Susan Hovorka, Sahar Bakhshian, Seyyed Hosseini 

 

Geologic carbon sequestration (GCS) is pivotal for reducing greenhouse gas emissions, yet 

CO₂ and brine leakage, and their environmental and financial impacts, remain critical concerns. 

This research links technical leakage simulations with financial risk assessments to evaluate how 

subsurface conditions and reservoir geometries influence leakage behavior and associated costs. 

Central to the study is the premise that wellbores—particularly unidentified plug and abandoned 

wells—serve as the most likely conduits for leakage, representing a worst-case scenario when 

these open pathways connect the reservoir to the surface. An integrated modeling framework was 

developed using static geological models and dynamic multiphase flow simulations to analyze 

various aspects of leakage behavior. We examined the variation of CO₂ and brine leakage with 

distance from the injection well; the percentage of CO₂ leaked and the financial impact with and 

without detection and remediation; sensitivity to different subsurface settings; the effects of well 

density; and the influence of reservoir geometry, specifically comparing anticline and dipping 

structures. Results indicate that rapid pressure propagation drives early leakage, with most incurred 

costs occurring within the first five years of the project. In scenarios without monitoring and 

remediation, significant cumulative leakage is observed; however, effective detection and repair 

strategies reduce cumulative CO₂ leakage to less than 1% of the injected volume—even under 
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extreme high well density conditions. Cost analysis reveals that the contractual penalty is the 

primary expense driver, followed by environmental remediation capital costs. Among all 

parameters studied, well density emerged as the most significant driver of financial impact, with 

higher densities substantially increasing both leakage volume and total financial impact. 

Furthermore, probabilistic assessments incorporating various well failure probabilities show that, 

although higher failure rates can increase normalized costs over the project’s lifespan, the overall 

leakage remains minimal, thus reducing financial risk when remediation is applied during injection 

and post-injection periods. Although different reservoir geometries and subsurface settings affect 

cumulative leakage, their financial impacts converge to negligible differences when monitoring 

and remediation measures are implemented. This study provides critical insights into the interplay 

between reservoir conditions, leakage dynamics, and financial outcomes in GCS projects, offering 

practical guidance for optimizing monitoring strategies, risk management, and site selection to 

ensure both environmental safety and economic viability. 
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CHAPTER I: INTRODUCTION 

1.1. INTRODUCTION 

Climate Change and the Role of Carbon Capture and Storage 

According to the IPCC (2023), human activities, principally through emissions of 

greenhouse gases, have unequivocally caused global warming. Global surface temperature reached 

1.1°C above 1850-1900 in 2011-2020, affecting many weather and climate extremes in every 

region across the globe, but there is more yet to come, so deep, rapid, and sustained reduction in 

greenhouse gas emissions is needed.    

 

The Paris Agreement, adopted by 196 Parties at the UN Climate Change Conference 

(COP21) in Paris, France, is a legally binding international treaty on climate change. Its 

overarching goal is to hold “the increase in the global average temperature to well below 2°C 

above pre-industrial levels” and pursue efforts “to limit the temperature increase to 1.5°C above 

pre-industrial levels.” (UNFCCC, 2023). Nonetheless, the IPCC indicates that crossing the 1.5°C 

threshold risks unleashing far more severe climate change impacts, including more frequent and 

severe droughts, heatwaves and rainfalls (IPCC, 2018). 

 

Projected CO2 emissions from existing and planned fossil fuel infrastructure without 

additional abatement would exceed the remaining carbon budget for 1.5°C, and would equal to the 

carbon budget for limiting warming to 2°C. Being said that, sustained net negative global CO2 

emissions are required, so additional deployment of carbon dioxide removal (CDR) technologies 

is imperative (IPCC 2023). 

 

Carbon dioxide capture and storage (CCS) represents an option in the portfolio of 

mitigation actions for stabilizing atmospheric greenhouse gas concentrations, as it has the potential 

to reduce overall emissions costs and increase flexibility in achieving climate goals (IEA, 2020; 
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IPCC, 2018). Furthermore, CCS serves as a critical mechanism for deep, rapid, and sustained 

reduction in greenhouse gas emissions in line with 1.5°C pathways and to sustain net negative 

global CO2 levels to reduce adverse and irreversible impacts of overshoot – exceeding 1.5°C, as 

well as additional risks for human and natural systems (IPCC, 2023; UNFCCC, 2023). 

 

Although several CCS technologies have been proposed, geologic carbon storage (GCS) 

has been identified as the most technically viable approach (IPCC, 2023; U.S. EPA, 2008). GCS 

has the potential to reduce emissions from large-scale fossil-based energy and industry sources, as 

well as serve as the storage component of CDR methods, such as direct air capture (DACCS) and 

biomass with CCS (BECCS) (IPCC, 2023).  

 

Risks from Geologic Carbon Storage  

GCS technology is not without risks. The major risk and concern associated with GCS 

projects is the leakage of CO2 from storage sites (Deel & Mahajan, n.d.). If CO2 leaks out of the 

injection formation and escapes back to the atmosphere, the benefits gained in regard to mitigation 

of atmospheric CO2 are evidently diminished. Nonetheless, if the GCS site is appropriately 

selected and managed, it is estimated that the CO2 can be permanently isolated from the 

atmosphere (IPCC, 2023). In fact, appropriately selected and managed geological reservoirs are 

very likely to exceed 99% containment over 100 years and are likely to exceed 99% containment 

over 1000 years (IPCC, 2005).  

 

This non-zero probability has driven numerous studies to investigate the physical causes 

and consequences of this leakage, including the outcomes of leakage into overlying formations, 

groundwater, and the surface, as well as remediation approaches by natural or engineering methods 

(Carroll et al., 2014; Celia et al., 2011; Esposito & Benson, 2011; Jenkins et al., 2015; Jones et al., 

2015; Little & Jackson, 2010; Nordbotten et al., 2009; Zhang & Bachu, 2011).  
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The potential consequences of CO₂ and brine leakage depend heavily on the nature of the 

impacted environment—particularly underground sources of drinking water (USDWs) and the 

atmosphere. Existing studies suggest that CO₂ leakage alone is unlikely to significantly alter 

groundwater chemistry. For instance, laboratory and field tests show no obvious degradation in 

water quality following CO₂ intrusion (C. Yang et al., 2015). However, when CO₂ interacts with 

brine or mobilizes fluids from deeper formations, it may lead to groundwater salinization or the 

release of trace metals into aquifers due to pH reduction (Carroll et al., 2014; Keating et al., 2014). 

Even so, many studies have found that the extent of these changes is limited. Contaminated plumes 

tend to be spatially small, and rarely do water quality parameters exceed primary maximum 

contaminant levels (Carroll et al., 2014; Xiao et al., 2020). Broader reviews have confirmed that 

observed increases in key parameters such as electrical conductivity, alkalinity, major ions, and 

trace metals are generally minor and often remain close to detection limits (Gupta & Yadav, 2020; 

Zheng et al., 2021).  

 

Regarding atmospheric release, CO₂ emissions from leakage events tend to disperse 

quickly once released into the aquifer, seawater, or the air. Surface seeps are typically localized, 

covering areas on the order of meters to tens of meters (Jones et al., 2015). Mixing, dispersion, 

and geochemical buffering also help reduce environmental impact and promote relatively rapid 

recovery following leakage events. Overall, the scientific literature indicates that CO₂-brine 

leakage is more likely to cause transient, localized effects rather than widespread or long-term 

damage. This background informs the need for differentiated treatment of CO₂ and brine leakage 

when assessing environmental risks and designing potential remediation strategies. 
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Leakage Pathways from Geologic Carbon Storage 

CO₂ and brine can leak from geological storage sites through various pathways, including 

faults, fractures, caprock breaches, seismic events, and spill points (See Fig. 1) (Damen et al., 

2006; IPCC, 2005). However, leakage through distributed legacy active or abandoned wells is 

widely recognized as the most significant risk pathway for geologic carbon storage (Gasda et al., 

2004; IPCC, 2005; Lewicki et al., 2007). Every legacy well that penetrates the confining zone of 

a storage formation represents a potential leakage conduit until reservoir pressure dissipates or the 

driving force for CO₂ and brine migration is removed (U.S. EPA, 2013a). 

 

 

Figure 1. Leakage pathways and environmental risks in geologic carbon storage projects 

(modified after Damen et al., (2006)) 

Leakage along wells—especially legacy or improperly abandoned wells—can occur 

through several mechanisms. These include missing long-string casing, uncemented open-hole 

sections, degraded or absent mechanical plugs, chemically or mechanically compromised cement 

in the annulus, poor bonding between cement, casing, and formation, and micro-annuli or 

channeling along the cement sheath (Celia & Bachu, 2003). These features can form direct 

conduits for CO₂ or displaced brine to migrate upward, posing both environmental and regulatory 

challenges. 
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To address these risks, the U.S. Environmental Protection Agency (EPA) established the 

Class VI rule, which requires a risk-based framework for site characterization, corrective action, 

and monitoring. As part of the Underground Injection Control (UIC) program, operators must 

delineate an Area of Review (AoR)—defined as the region where pressure buildup could mobilize 

fluids from the injection zone to protected underground sources of drinking water (USDWs). This 

delineation must be based on computational modeling of the projected CO₂ plume and pressure 

front. Within the AoR, all wells that penetrate the injection or confining zones must be identified. 

Wells lacking adequate construction, documentation, or zonal isolation must undergo corrective 

action before injection operations can proceed. Additionally, site-specific monitoring plans must 

be developed and approved during the permitting process to ensure that CO₂ and displaced fluids 

remain contained (U.S. EPA, 2010b, 2013b).  

 

Despite these regulatory safeguards, challenges remain in accurately assessing long-term 

leakage risk. To date, there have been no confirmed cases of CO₂ leakage reaching USDWs or the 

surface from Class VI operations. Hence, empirical data on CO₂ and brine leakage over the long-

term injection lifecycle remains limited. In the absence of comprehensive datasets, current risk 

assessments often rely on analogs from blowouts or leakage events associated with other well 

types, such as oil and gas wells, wastewater disposal wells, or enhanced oil recovery (EOR) 

operations. These analogs, however, are often problematic. For instance, many documented 

blowouts are linked to operational activities such as tripping or circulation and typically fail to 

distinguish between CO₂ and hydrocarbon sources (Porse et al., 2014; Skalle & Podia, 1998) 

 

Also, the regulatory framework governing each well type significantly affects the 

associated risk profile, further complicating comparisons. As an example, leakage events due to 

Class II injection wells—used primarily for disposing co-produced brine from hydrocarbon 

production and for EOR—have been documented in the Permian Basin of Texas and New Mexico. 

These events are frequently attributed to elevated and extensive pressure zones resulting from the 
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dense clustering of shallow injection projects (Hovorka et al., 2024). But, as expected, unlike Class 

VI wells, Class II wells are subject to less stringent requirements: their AoR is defined by a fixed 

radius (typically ¼ mile) rather than pressure-front modeling, and they are not constrained by 

regulations that limit injection well bottom-hole pressure to below the reservoir fracture pressure. 

These differences increase the risk of pressure buildup and leakage events, and make the Class II 

well experience a poor proxy for CO₂ storage operations. Therefore, using these datasets to 

estimate CO₂-specific failure frequencies can be misleading and may not reflect current best 

practices in carbon capture and storage (CCS). 

 

Despite the early success of Class VI wells, concerns persist about how Class VI wells will 

perform at commercial scale over the long term, particularly in geologically complex areas with a 

long history of oil and gas development. Legacy wells in the AoR—including "wildcat" wells—

may lack construction records or may not have been completed to modern standards. Some may 

have been designed to isolate deeper zones, leaving shallower storage targets inadequately 

protected. Even wells listed as properly plugged and abandoned (P&A) may not have been sealed 

as reported. Plus, undocumented wells may still exist, especially in cases where surface structures 

are absent or historical records are incomplete.  

 

These uncertainties hinder accurate site-specific risk assessments and complicate the 

development of financial models used for insurance underwriting, liability allocation, and 

regulatory compliance. Therefore, a reliable site-specific risk assessment framework is essential 

for ensuring CO₂ storage containment and permanence, meeting EPA Class VI permit 

requirements, justifying financial preparedness for emergency events, and supporting long-term 

liability planning. In response, various efforts have attempted to correlate well construction 

parameters with risk profiles by assigning permeability values to wells based on design and 

completion features parameters to then calculate CO2 and brine leakage rates to the USDW and 

the surface (Nogues et al., 2012; Watson & Bachu, 2008). While these approaches offer a starting 
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point for quantifying risk, they have not been broadly validated at the field scale and remain subject 

to considerable uncertainty. 

 

Despite this, several frameworks for geologic CO2 storage risk assessment (Bielicki et al., 

2013a; Humphries Choptiany & Pelot, 2014; Meyer et al., 2009; Oldenburg et al., 2009; Pawar et 

al., 2015; Trabucchi et al., 2014), and assessing financial responsibility of leakage events (Bielicki 

et al., 2014a, 2016; Deng et al., 2014; Trabucchi et al., 2010) have been developed, but they still 

fail to account for the previously mentioned uncertainties, as well as the specific characteristics 

that make a project more or less risky in terms of CO₂ and brine leakage impacts and their 

associated financial consequences. 

 

Without better data and validated frameworks, stakeholders—including insurers, 

regulators, and operators—face uncertainty in quantifying the financial consequences of CO₂ 

leakage. This impedes the creation of equitable and site-appropriate financial assurance and long-

term liability mechanisms that are both protective and economically viable. 

 

All in all, no studies have developed a site-specific framework that accounts for the 

uncertainties associated with well characteristics and project location to determine maximum 

potential leakage rates and financial impacts. This limitation has left a gap in the ability to inform 

insurance providers, regulators, and operators about the upper bounds of environmental and 

financial risks. The uniqueness of this study lies in addressing this gap by simulating a range of 

geologic conditions and estimating the resulting CO₂ and brine leakage behavior and associated 

financial consequences. Given the scarcity of empirical data on the probability and consequences 

of leakage through legacy wells, this study adopts a conservative, worst-case scenario by modeling 

open wellbores as fully connected conduits to the surface. This framework enables the 

quantification of upper-bound impacts, offering a practical tool to define risk thresholds, support 
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site-specific evaluations, and guide decisions related to insurance pricing, permitting, and long-

term liability management. 

 

1.2. PROBLEM STATEMENT 

Currently, there is a significant gap in our understanding of the potential risks associated 

with CO2 leakage and the resulting material and financial damages. This gap exists in both the 

compliance carbon market (e.g., EPA Class VI Permits) and voluntary carbon market.  

 

EPA Class VI Permit Framework 

EPA Class VI applicants are required to demonstrate financial responsibility under 40 CFR 

146.85 for their permit approval. This financial responsibility encompasses various activities, 

including corrective actions, plugging injection wells, and post-injection site care and closure and 

emergency and remedial response (ERR) which would deal with failure of any legacy wells in the 

project area to isolate the injection zone from USDW. While the costs associated with the first 

three activities can be estimated based on industry experience, emergency and remedial response 

activities involve addressing the movement of injection or formation fluids, which may endanger 

Underground Sources of Drinking Water (USDWs) during construction, operation, and post-

injection site care periods (U.S. EPA, 2010a). These events are uncertain in occurrence and timing 

but can potentially occur throughout the entire lifecycle of the GCS project. It is crucial not to 

underestimate their potential impact and to ensure adequate resources are available to address such 

contingencies (U.S. EPA, 2011).   

 

Some insurance companies, such as Allianz, Aon, Kita, Howden, CarbonPool, Marsh, 

Aspen, Ascot, Enviant, Hamilton, and Markel, currently offer insurance for CO2 storage projects, 

such as policies related to reversal, non-delivery, casualty, and environmental liability, covering 
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emergency and remedial response activities as per the Class VI Permits requirements (Application 

of Red Trail Energy, LLC Requesting Consideration for the Geologic Storage of Carbon Dioxide 

in the Broom Creek Formation from the Red Trail, LLC Ethanol Facility, 2021; The Application 

of Blue Flint Sequester Company, LLC Requesting Consideration for the Geologic Storage of 

Carbon Dioxide in the Broom Creek Formation from the Blue Flint Ethanol Facility, 2023; The 

Application of Dakota Gasification Company Requesting Consideration for the Geologic Storage 

of Carbon Dioxide from the Great Plains Synfuels Plant, 2023; The Application of DCC West 

Project LLC Requesting Consideration for the Geologic Storage of Carbon Dioxide in the Broom 

Creek Formation from the Milton R. Young Station, 2023; The Application of Minnkota Power 

Cooperative, INC. Requesting Consideration for the Geologic Storage of Carbon Dioxide in the 

Deadwood Formation from the Milton R. Young Station, 2022; Wabash Carbon Services, LLC. 

“Underground Injection Control Permit: Class VI.,” 2024; Frontier Carbon Solutions, Inc. & 

Schlumberger Technology Corporation, 2022; IEAGHG, 2024; Tallgrass High Plains Storage, 

LLC & Numeric Solutions, LLC, 2023). However, due to the inherent uncertainty associated with 

the geologic and fluid characteristics of storage formations and potential environmental and 

financial damages from leakage events, insurance carriers in charge of quantifying financial risks 

often overestimate potential damages by imagining hypothetical worst-case scenarios. 

Consequently, the premiums offered by insurers reflect this uncertainty as well as their limited 

coverage time- ranging from one to two years.  

 

After reviewing 22 publicly Class VI permits where emergency and remedial response 

plans and costs were provided, it can be observed that the assumptions currently incorporated into 

their cost models are hypothetical, non-standard, and sometimes over-conservatives. These 

hypothetical assumptions go from assuming every well in the Area of Review (AoR) serves as a 

leakage pathway, all injected CO2 leaks to the USDW and/or atmosphere, several monitoring wells 

are required to determine the extent of the contaminated plume, operators must treat contaminated 
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aquifers using expensive remediation methods, and every plugged and abandoned well should be 

investigated.  

 

Carbon Credit Framework 

Carbon credits are tradable certificates that represent the reduction or removal of one metric 

ton of carbon dioxide equivalent (CO₂e) from the atmosphere. They serve as a market-based tool 

to incentivize climate mitigation. Credits are used either in compliance markets, where emissions 

are regulated through mechanisms such as cap-and-trade, or in the voluntary carbon market 

(VCM), where companies and individuals purchase credits to meet internal climate targets  

(Arbonics, 2023). Independent certification bodies—such as Verra, Gold Standard, American 

Carbon Registry (ACR), and Puro.earth—oversee the issuance of these credits. They rely on 

established methodologies to ensure that credited projects are real, additional, measurable, and 

permanent. 

 

In the case of geologic carbon storage, verification systems assess the project’s 

permanence, risk of leakage, monitoring protocols, and additionality. Projects must demonstrate 

safe storage conditions, including impermeable cap rocks, minimal leakage pathways, and 

geological features that promote long-term CO₂ trapping. Compliance with national regulatory 

frameworks, such as the U.S. EPA’s Class VI well permitting, is typically required (IPCC, 2005). 

To manage the risk of reversal, standards like Verra use a non-permanence risk assessment tool 

and require a percentage of credits—typically 1–5%—to be withheld in a buffer pool. Others, like 

ACR, avoid buffer contributions and instead use legal instruments, such as Risk Mitigation 

Covenants, which assign long-term liability for any future leakage to the project developer. 

 

However, several limitations remain. Current methodologies often lack robust and 

standardized approaches to quantify long-term geological uncertainty—such as identifying key 
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site-specific risk drivers and understanding the sensitivity of outcomes to various subsurface 

conditions. Verifiers commonly rely on deterministic or semi-quantitative scoring tools, which 

depend on expert judgment and documentation review. These approaches may oversimplify 

complex geological behavior and fail to incorporate probabilistic risk modeling grounded in 

reservoir simulation or stochastic analysis. Moreover, the fragmentation across certification 

bodies—each using different approaches to assess permanence and manage liability—leads to 

inconsistent credit quality. Some standards require buffer contributions, while others rely solely 

on regulatory compliance or legal contracts. This lack of harmonization undermines market 

credibility, confuses credit buyers, and increases transaction and compliance costs for project 

developers. It also facilitates “standard shopping,” where developers opt for the least stringent 

certification, further weakening trust in the integrity of carbon credits and slowing the global 

scaling of geologic carbon storage as a high-quality climate solution. 

 

Therefore, a more standard and justified method is required to assess financial leakage 

impacts that allow stakeholders to evaluate different GCS projects under the same rules.  

 

 

1.3. RESEARCH GOALS 

The primary goal of this research is to develop a robust, site-specific methodology for 

quantifying the financial risks associated with containment loss in geologic carbon storage (GCS) 

projects to help inform insurers, carbon markets, operators, and regulators focusing on legacy well 

containment risks. By directly linking technical leakage simulations to financial impact 

assessments, this study enables more informed decision-making around risk management, site 

selection, and financial assurance requirements. The approach explicitly considers variations in 

subsurface properties, reservoir geometry, open wellbore locations, and monitoring and 

remediation strategies. 
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This research seeks to answer the following key questions: 

1. What are the main physical mechanisms and reservoir conditions that drive CO₂ and brine 

leakage through open wellbores? 

2. What site-specific variables most strongly influence the environmental and financial 

consequences of CO₂ and brine leakage in GCS projects? 

3. How do environmental and financial risks evolve throughout the project lifecycle—from 

injection through post-injection site care and closure? 

4. How can monitoring investments be optimized based on site-specific leakage risks and their 

financial implications? 

 

1.4. RESEARCH BENEFICIARIES 

The following entities can benefit from the outcome of this study: 

• Insurance sector: This research provides necessary information to insurance companies to 

quantify, in dollar values, the site-specific financial impact of leakage.  

• Project developers: It offers operators a simplified and more efficient methodology to evaluate 

and compare different project or site risks and justify financial assurance demonstrations for 

class VI permit applications based on the financial impacts of the worst-case scenario of 

leakage events. Furthermore, it offers operators a way to quantify the material and financial 

impacts of CO2 and brine leakage to offer the foundations for economically efficient risk 

management decisions, such as improving monitoring or remediation strategy or select a 

suitable injection location.  

• Regulatory sector: It offers regulators a more quantifiable way to evaluate financial assurance 

demonstration from Class VI permits applicants in a way that is suitable with the site-specific 

conditions.  

• Credit buyers: It gives carbon credit buyers greater confidence in the quality and durability of 

the credits they purchase. It makes it easier to compare projects, reduce the chance of buying 
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low-integrity offsets, and support more credible climate claims. This helps buyers make more 

informed and impactful decisions, while reducing reputational and financial risk. 

 

1.5. RESEARCH METHODOLOGY 

The research combines geological modeling, reservoir simulation, and financial risk 

analysis to capture how subsurface conditions, failure mechanisms, and mitigation strategies 

influence both environmental and economic outcomes (See Figure 2).  

 

Static Modeling  

A portfolio of simplified static geological models was developed to represent a range of 

plausible subsurface configurations. These included various reservoir geometries—flat-lying, 

dipping, and anticlinal structures—to assess how different trapping mechanisms, such as simple 

structural, migration-assisted trapping or CO2 trapping on an anticline, influence leakage risk (see 

Lyu et al. (2024) for more information about migration-assisted structural trapping).  These models 

were built using Petrel software and incorporate variations in petrophysical properties (e.g., 

permeability, salinity, capillary entry pressure, critical water saturation, and critical gas saturation), 

reservoir thickness, depth, and reservoir size. These parameters were systematically varied to 

evaluate their influence on CO₂ and brine migration, leakage potential, and overall environmental 

and financial impact.  

 

Dynamic Modeling  

Dynamic reservoir simulations were conducted using Computer Modelling Group (CMG) 

software to model the injection, migration, and potential leakage of CO₂ and brine over time. The 

dynamic model simulates the full lifecycle of a GCS project, including CO₂ injection, post-

injection, brine displacement, pressure front evolution, and upward fluid migration through 
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compromised wellbores. A fixed CO2 injection rate was used during the injection period but the 

bottom-hole pressure was limited by the 90% of the fracture pressure as established by the EPA 

for CO2 injection operations.  

 

To eliminate uncertainty and capture the full range of potential environmental and financial 

impacts, the simulation framework adopts a conservative worst-case scenario in which no pre-

injection remediation is performed on the wellbores within the project area. This scenario assumes 

that all legacy plugged-and-abandoned wells intersecting the storage formation are fully open, 

cased, unplugged, and lack surface wellheads—allowing them to act as direct vertical conduits for 

CO₂ and brine to reach the surface. By modeling this extreme case, the framework is designed to 

quantify the upper bounds of risk, ensuring that any real-world consequences would fall within the 

envelope of outcomes derived from this analysis. This approach also reflects the inherent 

uncertainty surrounding the location and condition of legacy wells, particularly in areas where 

historical records are incomplete or unreliable. 

 

No thief zones or impacts to USDWs were considered in the simulation in order to 

represent a worst-case scenario in which leaked CO₂ and brine migrate directly to the surface. In 

a realistic setting, CO₂ and brine would follow preferential flow paths and the path of least 

resistance. Therefore, in the presence of legacy wellbores without plugs, fluids would be expected 

to migrate upward directly to the surface. 

 

Also, wellbore density was varied across simulations to evaluate how the number of 

possible leakage pathways affects cumulative leakage volumes, environmental and financial 

impacts.  
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Environmental Impact Assessment  

The mass of CO₂ and brine leaking to the surface through the open conduits was recorded 

for each simulation. Leakage results were expressed in absolute terms and as a percentage of the 

total CO₂ injected at reservoir conditions. Temporal profiles were also analyzed to examine how 

environmental impacts vary across the project lifecycle, from active injection to post-closure 

period. 

 

Financial Impact Assessment  

A simplified version of the Leakage Impact Valuation (LIV) framework (Pollak et al., 

2013). was used to monetize leakage outcomes. The LIV method considers features, events, and 

processes (FEPs) that may lead to undesirable surface impacts during the operational lifetime of a 

CO₂ storage project. This methodology has been applied in previous policy and basin-scale 

analyses (Bielicki et al., 2013b, 2014b, 2016; Deng et al., 2014).  

 

The financial analysis in this study is tailored to reflect the economic perspective of the 

injection operator. Stakeholders considered include the injector and CO₂ producer, under a take-

or-pay agreement. Under this contract, the injector is obligated to accept the CO₂ in exchange for 

receiving the associated tax credits (e.g., 45Q) upon its permanent storage. If the injector is unable 

to accept and inject the CO₂, they incur a penalty for each ton not sequestered. Financial cost 

drivers considered include: 

 

• Cost of environmental remediation due to brine leakage 

• Cost of repairing the leaky wellbore 

• Detection threshold defined by monitoring system 

• Contractual penalties due to injection interruption 

• Loss of 45Q tax credits due to CO2 leakage 
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• Time required to fix the well 

Note that environmental remediation due to CO₂ leakage is not included, as discussed 

earlier, because evidence shows that CO₂ leakage does not significantly harm water quality and 

disperses quickly when released to the atmosphere.  

 

Monte Carlo simulation framework was used to vary the financial cost drivers and run 

thousands of iterations based on a smaller number of simulations, producing statistically robust 

estimates of financial outcomes under varying scenarios. 

 

In addition, an annual probability of well failure was assigned to enable more realistic 

estimation of the financial and environmental impacts associated with CO₂ and brine leakage. Plus, 

to capture the temporal evolution of these impacts, Bayesian inference was applied, allowing for 

dynamic updates to risk estimates as new information (e.g., absence or presence of leakage) 

becomes available over time. 

 

By assigning a range of annual failure probabilities, the model captures how financial 

consequences evolve as wells fail at different points across the injection and post-injection periods. 

This introduces temporal variability into the financial risk profile—reflecting the fact that leakage 

events are not simultaneous but distributed over decades. 

 

This approach differs from others in the literature that rely on assumed effective wellbore 

permeability values (e.g., Watson and Bachu (2008)). Instead, it removes permeability as a source 

of uncertainty and uses failure probability as a proxy for well integrity. This allows for a more 

direct and probabilistically grounded evaluation of long-term containment risk. 
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Monitoring and Mitigation Analysis  

To assess the value of early leak detection and effective remediation, scenarios with 

varying detection thresholds were analyzed. The results show how investment in more sensitive 

monitoring strategies can affect cumulative CO₂ leakage and overall financial impact.  

 

This methodology provides a general (not site-specific) framework for integrating reservoir 

behavior, failure probabilities, and financial consequences, offering valuable insights for risk 

management, regulatory compliance, and investment decision-making in GCS projects. 

 

Research Mechanisms 

Figure 2 presents the research methodology flow diagram used in this study. The process 

begins with the development of a base model, constructed using data representative of geologic 

formations in the U.S. Gulf Coast. Key input parameters—such as permeability, reservoir size, 

salinity, and well density—were selected based on literature sources and industry data.  

 

To evaluate the influence of these parameters on leakage risk, a sensitivity analysis was 

performed. For the probability of well failure, five discrete probability values were evaluated to 

capture a range of possible risk scenarios. For each property, high and low values were analyzed 

in addition to the base case, resulting in a total of 23 dynamic simulation models.  

 

Also, the effect of reservoir geometry on leakage behavior was also assessed. Three 

different structural settings—flat-lying, dipping, and anticlinal—were modeled using the same 

base input values. For each geometry, a model was built featuring one injection well and one open 

(leaky) wellbore. Within each geometry, three distinct reservoir facies were created to represent 

different petrophysical properties, resulting in a total of nine additional simulations. 
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In all simulations, a fixed amount of CO₂ was injected, limited by 90% of the formation’s 

fracture pressure to avoid mechanical failure. Using the dynamic reservoir simulator CMG-GEM, 

both CO₂ and brine leakage rates were calculated for each scenario. 

 

These leakage rates were then used to quantify both environmental impacts—including 

well repair time and detection thresholds—and financial consequences, such as the cost of 

environmental remediation, the cost of repairing leaky wellbores, contractual penalties due to 

injection interruption, and lost 45Q tax credits associated with CO₂ leakage. All environmental and 

financial impacts were normalized by the total volume of CO₂ injected to allow for comparison 

across scenarios and support scalable, per-ton impact estimates. 

 

This modeling framework allows for a comprehensive understanding of how different 

subsurface settings, failure probabilities, and monitoring conditions influence leakage behavior 

and associated risk profiles. It ultimately supports site-specific evaluations and decision-making 

for insurance pricing, permitting, and long-term liability planning. 
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Figure 2. Research Methodology Flow Diagram. 



37 

 

CHAPTER II: METHODOLOGY 

 

2.1. INTRODUCTION 

This chapter outlines the methodological framework used to evaluate CO₂ and brine 

leakage risks in geologic carbon storage (GCS) and their corresponding financial impacts under a 

worst-case leakage scenario. The approach integrates geological characterization, dynamic 

multiphase flow simulations, open wellbore leakage modeling, and financial risk estimation. The 

analysis begins with the development of a static geologic model based on U.S. Gulf Coast reservoir 

properties, followed by dynamic simulation of CO₂ injection and migration using CMG-GEM. 

Leakage behavior through open wellbores is evaluated using CMG-GEM to simulate direct 

leakage from the reservoir to the surface. Finally, a financial modeling framework is applied to 

assess the economic consequences of leakage events under varying monitoring conditions, 

subsurface settings, well failure probabilities, and leakage durations.  

 

2.2. STATIC MODELLING 

Geological Settings 

Values from statistical analysis were used to calculate the primary parameters for the 

geological setting, such as thickness, porosity, permeability, and depth. For the statistical analysis, 

some selection criteria were implemented, such as the sand body should have a thickness higher 

than 10 meters, should have a porosity higher than 10%, permeability higher than 10 millidarcies. 

The selection of these criteria allows the sand body to be feasible for being an injection zone for 

CO2 storage from an economic and risk assessment perspective (Callas et al. 2022; Geological 

Survey 2008; Raza et al. 2016; Ramírez et al. 2010). 

 

The “storage window” for CO₂ (Bump et al., 2021) is defined vertically between the base 

of the lowest Underground Source of Drinking Water (USDW)—classified as water with less than 
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10,000 ppm total dissolved solids (UIC Class VI, 2010)—and the shallower of either the geologic 

overpressure limit or basement rock. At a minimum, injection must occur below the lowest USDW. 

To maximize storage efficiency, injected CO₂ is typically kept in a supercritical state, which 

requires a depth of roughly 800 m or more below the top of the water column. In the U.S. Gulf 

Coast, this storage window generally spans from about 800 to 3,000 m depth. All reservoir property 

data for this study were therefore extracted from within this depth range. 

 

 To determine the range of injection zone thicknesses and depths, 344 wells from the US 

Gulf Coast, Lower, Middle, and Upper Miocene were used. The dataset used is from the Southwest 

Louisiana and Mississippi River Chemical Corridor. In the Figure 3 and Figure 4 are shown the 

histogram and cumulative distribution of thickness values and depth values, respectively. The P10, 

P50, and P90 were used as low, base, and high case values for the sensitivity analysis.  

 

 

Figure 3. Thickness Distribution of Lower, Middle, and Upper Miocene Formations from 344 

Wells in the U.S. Gulf Coast (Southwest Louisiana and Mississippi River Chemical 

Corridor): P10 = 35 ft, P50 = 47 ft, P90 = 90.5 ft 
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Figure 4. Depth Distribution of Lower, Middle, and Upper Miocene Formations from 344 Wells 

in the U.S. Gulf Coast (Southwest Louisiana and Mississippi River Chemical 

Corridor): P10 = -8610 ft, P50 = -6591.5 ft, P90 = -4627.4 ft 

For porosity and permeability, the Atlas of Northern Gulf of Mexico Gas and Oil 

Reservoirs, Volume 1 – Miocene and Older Reservoirs by Seni et al. (1997) was used. This dataset 

surveys 4325 Miocene and older reservoir in the Federal Outer Continental Shelf (OCS) and 

offshore waters of Alabama, Louisiana, and Texas. After applying the selection criteria, porosity 

and permeability values were calculated from 2347 and 59 observations, respectively (Figure 5 

and Figure 6). The P10, P50, and P90 were used as low, base, and high case values for the 

sensitivity analysis. 

 

  

Figure 5. Porosity Distribution of 2,347 Miocene and Older Reservoirs in the Federal OCS and 

Offshore Waters of Alabama, Louisiana, and Texas (Seni et al., 1997). P10 = 0.25, 

P50 = 0.29, P90 = 0.32 
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Figure 6. Permeability Distribution of 59 Miocene and Older Reservoirs in the Federal OCS and 

Offshore Waters of Alabama, Louisiana, and Texas (Seni et al., 1997). P10 = 51.6 

mD, P50 = 367 mD, P90 = 1500 mD 

Vertical to horizontal permeability ratio (kv/kh) is another important parameter in geologic 

CO2 storage, as it affects the migration and distribution of CO2 within saline aquifers. In many 

sedimentary formations, including those in the Gulf Coast, kv/kh ratios often range from 0.01 to 

0.1 (Kumar et al., 2005; Thibeau & Mucha, 2011).  

 

Saline Aquifer Geometry 

Three simplified aquifers structures were created to analyze how different geological 

structures and trapping mechanisms (e.g., migration assisted trapping or structural trapping) can 

affect CO2 and brine leakage behavior. The geological structures used are: flat, dipping, and 

anticline. The slope from the base to the top of the anticline is 5°. This slope matches to values 

reported by Ulfah et al. (2021) for an anticline formed by a salt dome in the Gulf Coast, and the 

average slope of the Cranfield field, Mississippi. As for the dipping reservoir, a slope of 5° was 

also assigned to be comparable with the anticline structure (Figure 7). The model size is 10 by 10 

km, and hydrologic model boundaries were assumed to be an uncertainty, hence different boundary 

conditions were analyzed as a part of the sensitivity analysis study (shown in section 2.3). 
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Figure 7. Geometries used for the research project.  

 

Rock Fluid Properties 

Relative Permeability Curves 

The relative permeability curves for gas and water were derived using two established 

models. The relative permeability of gas was modeled using Corey’s Model (Corey, 1954), which 

is defined as:   

 

𝑘𝑔𝑟 = (1 − 𝑆̂2)(1 − 𝑆̂)
2
, 

 

where: 

 

𝑆̂ =
(𝑆𝑤 − 𝑆𝑤𝑟)

(1 − 𝑆𝑔𝑟 − 𝑆𝑤𝑟)
 

 

Here, Sw is water saturation, Swr is the critical water saturation, and Sgr is the critical gas 

saturation.  

The relative permeability of water was calculated using the Van Genuchten-Mualen Model 

(Van Genuchten, 1980), given by: 

 

 

𝑘𝑤 = √𝑆∗ (1 − (1 − [𝑆∗]
1
𝜆)

𝜆

)

2

 

 

where  
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𝑆∗ =
(𝑆𝑙 − 𝑆𝑤𝑟)

(1 − 𝑆𝑤𝑟)
 

 

 

Sl is the water saturation and λ is the fitting parameters characterizing the pore structure, 

also called Pore Size Distribution index. For the λ value, a value ranging from 0.1 to 0.5 is 

recommended when no real data is available (Baker et al., 2015).  

 

 

As for the critical water saturation and critical gas saturation, the empirical correlations 

proposed by Holtz (2022) were used. These correlations were developed using real-world datasets 

compiled from a wide range of oil and gas reservoirs in U.S Gulf Coast. 

 

 

𝑆𝑔𝑟 = 0.5473 − 0.969∅ 

 

𝑆𝑤𝑟 = 5.6709[log⁡(𝑘) ∅]⁄ −1.6349
 

 

Where κ is the permeability in millidarcies and φ is the porosity. For this study, critical 

water saturation and critical gas saturation values were derived from porosity and permeability 

values.  

 

For the hysteresis model, the trapping model proposed by Land (1968) was used. In this 

model, the trapped gas saturation Sgt is computed as:  

 

𝑆𝑔𝑡 =⁡
𝑆𝑔𝑖

1 + 𝐶𝑆𝑔𝑖
 

Where Sgi is the initial gas saturation (actual gas saturation at flow reversal) and C is the 

Land trapping coefficient. A C value equal to 1 was used to calculate the trapped gas saturation. 

A C value equal to 1 was determined by Juanes et al. (2006) from the relative permeabilities of 

water and gas taken from Oak, Baker, and Thomas (1990) for water wet Berea sandstone and a 
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gas-water system, which aligns with the lowest range from what (Hosseini et al., 2024) 

recommends when no data is available.  

 

Capillary Pressure Curves 

For the capillary pressure curves, the van Genuchten (1980) model was used.  

 

𝑃𝑐 = −𝑃𝑜 ([𝑆
∗]−

1
𝜆 − 1)

1−𝜆

 

Where Pc is the capillary pressure (pressure difference between gas and water phases) and 

Po is the capillary entry pressure (the minimum pressure required for the non-wetting phase to 

enter the porous medium). 

 

For gas-water systems in sandstone reservoirs, typical Po values range from 0.1 psi to 10 

psi, as noted by several studies (e.g., Zhou, Hatzignatiou, and Helland (2017); Borazjani et al. 

(2021); Ni et al. (2019)).  

 

In the following figure is shown the gas relative permeability, water relative permeability, 

and capillary pressure curves used for the base case for the sensitivity analysis.   

 

 

Figure 8. (a) Gas and (b) water relative permeability and (c) capillary pressure curves for the 

base case.  
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In the following figure is shown the gas relative permeability, water relative permeability, 

and capillary pressure curves used for the different geometries case. It is important to mention that 

for the different geometry cases, three representative facies were developed to simulate poorly-

sorted (Facies 1), moderately-sorted (Facies 2), and well-sorted (Facies 3) sand formations. These 

facies were constructed to reflect more geologically realistic conditions by incorporating natural 

correlations among reservoir properties, such as porosity, permeability, capillary entry pressure, 

and saturation parameters. Values used for building these facies are shown in table 2.  

 

 

Figure 9. Gas and water relative permeability and capillary pressure curves for the different 

geometries case. 

Salinity 

The diffusion and dispersion of CO2 within an aquifer have a direct impact on solubility 

trapping. Such trapping mechanism is highly sensitive to temperature, pressure, salinity and the 

composition of the brine (Hosseini et al., 2024). Most waters in the Gulf Coast aquifers have 

salinities in the range of 10,000 to 80,000 mg/L (Ghomian et al., 2024; Kreitler & Richter, 1986). 

Nonetheless, highest concentrations (in excess of 150,000 mg/L) were measured in Frio, 

Vicksburg and Wilcox units (Kreitler & Richter, 1986). These salinity ranges were used for the 

multi-phase flow simulation and posterior sensitivity analysis. 
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Sensitivity Analysis 

In the following table is shown the low and high bound for each of the variables used on 

the sensitivity analysis. For the values calculated statistically – porosity, permeability, thickness, 

and depth-, the low, base and high values correspond to the P10, P50, P90 respectively.  

 

Variable Low Base High 

Porosity 0.25 0.29 0.32 

Permeability 51.6 mD 367 mD 1500 mD 

KvKh 0.01 0.1 1 

Thickness 35 ft (10.67 m) 47 ft (14.33 m) 90.5 ft (27.58 m) 

Depth 4627.4 ft (1410.4 m) 6591.5 ft (2009.1 m) 8610.0 ft (2324.3 m) 

Salinity 10,000 mg/l 30,000 mg/l 100,000 mg/l 

Capillary Entry 

Pressure 
0.1 psi 3 psi 10 psi 

Pore Size 

Distribution (λ) 
0.3 0.4 0.5 

Critical Water 

Saturation 
0.023 0.043 0.094 

Critical Gas 

Saturation 
0.237 0.257 0.305 

Saline Aquifer Size 25200x25200 km 770000x770000 km 7610000x7610000 km 

Saline Aquifer 

Geometry 
Flat, Dipping, and Anticline Structures 

 

Table 1: Sensitivity Analysis for the leakage model. 

In the base case, default values were used along with a flat-lying reservoir geometry. For 

the sensitivity analysis, each variable was tested individually by assigning its low and high values 

while keeping all other parameters at their base values. For example, to assess the impact of 

porosity, the low porosity value was applied while all other variables remained unchanged. The 

same was done for the high porosity value. This approach was used to isolate and evaluate the 

influence of each variable on CO₂ and brine leakage rates. 
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To assess how injection zone geometry affects leakage risk, three representative facies 

were defined to simulate poorly sorted (Facies 1), moderately sorted (Facies 2), and well-sorted 

(Facies 3) sand formations. Homogeneous models containing only one facies type were simulated 

for each case, allowing direct comparison of CO₂ and brine migration patterns under varying facies 

properties and geometries. This approach helps ensure that the modeled CO₂ plume migration and 

leakage behavior more closely reflect the subsurface heterogeneity typically observed in real-

world formations. The following table summarizes the reservoir properties associated with each 

facies used in the sensitivity analysis. 

 

Variable Facies 1 Facies 2 Facies 3 

Permeability 51.6 mD 367 mD 1500 mD 

Porosity 0.25  0.29 0.32 

Critical Gas 

Saturation 
0.305 0.266 0.237 

Critical Water 

Saturation 
0.244 0.161 0.133 

Pore Size 

Distribution (λ) 
0.3 0.4 0.5 

Capillary Entry 

Pressure 
10 psi 3 psi 0.1 psi 

 

Table 2. Sensitivity Analysis for the different geometries.  

 

Due to time constraints, an initial screening assessment was conducted using NRAP-

OPEN-IAM (see Appendix A.2) to identify the key parameters influencing CO₂ and brine leakage 

from the injection zone. A total of 24 simulations were performed to evaluate the sensitivity of 

leakage volumes to various subsurface variables. The analysis revealed that the most influential 

parameters are permeability, pore size distribution (λ), vertical-to-horizontal permeability ratio 

(kv/kh), reservoir depth, capillary entry pressure, aquifer size, salinity, and thickness. Based on 

these findings, a more detailed and physically realistic simulation was subsequently conducted 
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using the CMG-GEM multiphase flow simulator to capture dynamic leakage behavior under 

varying geological and operational conditions. 

 

2.3. DYNAMIC MODELLING 

Numerical injection simulations were conducted using Computer Modeling Group-

Generalized Equation of State (CMG-GEM) (https://www.cmgl.ca/gem), a multiphase numerical 

reservoir flow simulator widely used for simulating CO2 injection and behavior in deep saline 

reservoirs (Foroozesh et al., 2018; Gianni et al., 2025; Khan et al., 2015; Kumar et al., 2005). 

 

Model Configuration & Sizing 

The model domain spans 10 × 10 km with a uniform grid spacing of 250 ft (76 m), resulting 

in 132 cells along both the x- and y-axes. The vertical grid resolution varies based on reservoir 

thickness, with a maximum cell thickness of less than 3 m across all scenarios. The location of the 

CO2 injection well is at the coordinate (3772, 3772) meters.   

 

Because multiple wells were evaluated in this study, the simulation grid was not locally 

refined around individual injection wells or open wellbores. However, it is important to note that 

local grid refinement around open wellbores typically reduces simulated CO₂ and brine leakage 

rates by capturing near-well flow dynamics more accurately (see Section A.3 for further discussion 

of this effect). 

 

Additionally, the open wellbores themselves function as boundary conditions at the top of 

the model domain, creating vertical pathways for pressure relief. This has a direct impact on the 

spatial distribution of pressure and CO₂ saturation. Specifically, increasing the number of open 

wellbores enhances pressure dissipation, reducing pressure buildup in the reservoir and 

accelerating pressure decline over time. As a result, simulations with a higher density of open wells 

https://www.cmgl.ca/gem
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exhibit altered plume behavior, including reduced lateral migration and potentially lower leakage 

volumes. 

 

For the sensitivity analysis on the lateral extent of the saline aquifer—which represents 

variations in aquifer size—the lateral boundary condition was modeled using the approach 

proposed by Ghomian et al. (2024). For this analysis, the geometric progression-based attenuation 

method was utilized, where the pore volume and transmissibility are gradually changed over the 

last boundary cells in the model using a geometric progression function. For this study, unlike the 

approach used by Ghomian et al. (2024), transmissibility multipliers were applied one cell inward 

toward the model center. In Ghomian’s method, the outermost cells have no transmissibility 

multiplier because they are assumed to represent a no-flow boundary. Here, the outermost cells 

were instead assigned transmissibility values calculated using a geometric progression function. 

This adjustment was intended to account for uncertainty by imposing a “closer” effective boundary 

condition—meaning each cell has a slightly lower transmissibility multiplier than in Ghomian’s 

setup. As a result, the model predicts a slightly higher short-term pressure increase, while 

maintaining similar long-term behavior. 

 

For the base and high boundary condition cases, a six-step attenuation with a common ratio 

of 3 was applied, using pore volume modifiers of 10,000 and 100,000, respectively. For the low 

boundary case, a four-step attenuation with a common ratio of 1.2 was used, with a pore volume 

modifier of 100.   
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Figure 10. Pore volume modifiers on the cells at the boundaries of the reservoir model for the 

base boundary condition case.  

 

Initial Simulation Conditions 

For the simulation workflow, the hydrostatic pressure gradient, fracture pressure gradient, 

and temperature gradient used were 0.465 psi/ft, 0.7 psi/ft, and (15°C + 25°C/ft) respectively. The 

initial pressure in the reservoir was assumed to be hydrostatic and the reservoir was initially 

saturated with water.  

 

CMG-Winprop was used to estimate the phase behavior and the properties of reservoir 

fluids. CO2 solubility is modelled using Henry’s law (Nghiem & Li, 1986) for different brine 

salinities. The brine phase density and viscosity were estimated by using Rowe and Chou (1970) 

correlation and Kestin, Khalifa, and Correia (1981) correlation, respectively. For the CO2 

properties, the Peng-Robinson Equation of State (PR-EOS), widely accepted for nonpolar gases 

like CO2 was used to predict phase-equilibrium compositions and to derive EOS parameters (Peng 

& Robinson, 1976).  

 

Regarding the operating conditions of the injection well, 0.2 million tonnes (MT) of CO₂ 

per year were injected over a 20-year period for all cases. However, the bottom-hole pressure was 

constrained to 90% of the fracture pressure. This means that if the 90% threshold was reached, the 
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injection rate was reduced to avoid exceeding this operational limit, making the injection rate 

dependent on the bottom-hole pressure. 

 

As a result, environmental and financial impacts were normalized based on the cumulative 

amount of CO₂ injected in each case. The 20-year injection period was followed by a 100-year 

post-injection monitoring phase, which was analyzed in all scenarios. 

 

2.4. OPEN WELLBORE SIMULATION 

Open Wellbore Distributions 

For the Open Wellbore Simulation, CMG-GEM was used, specifically the module Cap 

Rock Leakage Using Wells. This module assumes that reservoirs are initially bounded by 

competent cap rock that is sealing, and as pressures chance in the reservoir and becomes 

sufficiently large, the seal provided by the cap rock may be breached and flow across the breach 

might occur. To implement this, a rock type is first defined using the keyword CROCKTYPE 

along with its assigned rock type number. Production wells are then designated as caprock leakage 

wells by specifying them with the CRL_WELLS keyword. The simulation was set so that the cap 

rock breaches once the pressure is higher than the hydrostatic pressure, hence CO2 or brine is 

produced from the designated production wells. Namely, once there is a pressure change, fluids 

are going to flow through the wellbore.  

 

Note that these simulations represent a worst-case scenario, in which no pre-injection 

remediation of open wellbores is performed. All wells are assumed to be unplugged, cased, and 

lacking a wellhead, providing a direct pathway to the surface. Additionally, it is assumed that there 

are no thief zones or intermediate permeable layers that could intercept migrating CO₂ or brine—

meaning that any leakage would migrate directly to the surface without attenuation. 
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These wellbores are modeled as open conduits from the top of the injection zone to the 

surface. Operational constraints specify a minimum wellhead pressure of 1 atm (14.65 psi) and a 

minimum bottomhole pressure equal to the hydrostatic pressure. This means that any increase in 

bottomhole pressure above hydrostatic will cause fluids to flow through the well. The wellbores 

have a radius of 0.164 feet, or 0.05 meters. 

 

Two well distributions were used along the analysis: a linear well distribution and a random 

well distribution. 

• Linear well distribution: This was used to understand how CO2 and brine leakage vary 

depending on the distance. 4 open wellbores were located at distances of 100 meters, 500 

meters, 1000 meters, and 2000 meters from the injection well. Different was the case when 

analyzing how different geometries affect the leakage risk. In this case, an open wellbore 

was located on the location on top of the anticline (center of the model) to understand how 

the different structures and potential accumulation of CO2 on the anticline affects leakage 

risks and financial impacts versus having a dipping structure with no evident accumulation 

of CO2. 

• Random well distribution: This was used to understand how the financial damages vary 

depending on the well density and subsurface settings. For the location of the open 

wellbores, the well density of the Texas Gulf Coast was used as an analog. The State of 

Texas has more than 1 million wells related to oil and gas activities and many more, 

generally shallower, water wells. The average surface density of the Texas Gulf Coast is ~ 

2.4 wells/km2, concentrated in areas containing traps and hydrocarbons. Nonetheless, the 

average well penetration density drops to 0.27 well/km2 below a depth of 2440 meters 

(Nicot, 2009). To understand how sensitive is the financial damages depending on the well 

density and to calculate financial impact of geologic CO2 storage, three cases were created, 

a low-density, a base-density, and high-density case of 0.27 wells/km2, 2.4 wells/km2, and 

4.8 wells/km2 respectively. The wells locations were assigned randomly around the model 
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domain using a random location generator code generated using Python. The high-density 

case, even though it is double the average well density of the Texas Gulf Coast, it was 

created to evaluate a worst-case scenario (Figure 11).  

 

 

Figure 11. Open Wellbore densities for the leaky well simulation. (a) well density of 0.27 

wells/km2, (b) well density of 2.4 wells/km2, and (c) well density of 4.8 wells/km2. The blue 

dots are the injection well, and the red dots are the leaky wells.  

 

Geometry Sensitivity Analysis 

The shapes of the CO₂ and pressure plumes for Facies 2 and 3 are illustrated in Figure 11. 

Simulation results for Facies 2 and 1 indicate that the CO₂ plume does not reach the open wellbore 

in any of the geometries. However, for Facies 3, the CO₂ plume reaches the open wellbore in both 

the anticline and dipping scenarios (See Figure 12). The flat scenario and the Facies 1 and 2 have 

been excluded from further analysis because the CO₂ plume does not reach the open wellbore, and 

the primary objective is to assess whether the anticline geometry presents a higher risk due to CO₂ 

accumulation on the top and how the risk profile over time changes due to it. For these reasons, 

just Facies 3 was analyzed for posterior studies.  
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Figure 12. CO₂ plume distribution at years 20 and 120 for different reservoir geometries: 

anticline, dipping, and flat. The left panels illustrate plume behavior using Facies 2 properties, 

while the right panels depict plume behavior using Facies 3 properties. 

 

2.5. FINANCIAL IMPACT EVALUATION 

Financial Model Assumptions 

The financial model developed in this study estimates the potential economic consequences 

of CO₂ and brine leakage in geologic carbon storage (GCS) projects. Financial and environmental 

damages are calculated based on leakage rates to the surface. Impacts to underground sources of 

drinking water (USDWs) are not explicitly considered, due to limited empirical data and to 

maintain focus on a conservative, worst-case scenario: direct leakage to the surface through open 

wellbores. 

Scientific literature shows that brine leakage can negatively impact surface water quality, 

so the model includes environmental remediation costs for brine reaching the surface. In contrast, 

CO₂ leakage is unlikely to significantly harm water quality or human health, as it disperses rapidly 
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once released. Therefore, the model excludes CO₂ remediation costs and instead accounts for 

financial penalties and tax credit losses resulting from leakage. 

 

The model incorporates several key assumptions: 

• Cost of environmental remediation due to brine leakage 

• Cost of repairing the leaky wellbore 

• Detection threshold defined by the monitoring system, which determines the minimum 

detectable leakage rate 

• Time required to fix the well, based on literature estimates 

• Contractual penalties due to injection interruption 

• Loss of 45Q tax credits due to CO₂ leakage 

 

These assumptions reflect realistic commercial operations and assume the injection 

operator is fully responsible for remediation and compliance. A take-or-pay agreement is assumed 

between the operator and the CO₂ emitter, whereby: 

• The operator must inject a contracted CO₂ volume or pay a penalty for unmet delivery. 

• In return, the operator receives the full value of the 45Q tax credit per tonne of CO₂ 

successfully sequestered. 

 

If leakage occurs, injection is suspended under regulatory requirements, triggering: 

• Take-or-pay penalties for the CO₂ not injected 

• Loss of 45Q tax credits for the leaked CO₂ 

This structure incentivizes early detection and fast remediation to reduce economic and 

environmental exposure. 
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For the purposes of this study, financial impacts are assessed solely from the perspective 

of the injection operator. This approach reflects both the low likelihood and high uncertainty 

associated with quantifying costs to other stakeholders. Hence, the model assumes that CO₂ and 

brine leak directly to the surface and do not affect third parties such as water users, oil and gas 

producers, or waste injection operators. Accordingly, no third-party damages or liabilities are 

considered, and no labor or remediation burdens are attributed to external entities. Additionally, 

the model does not incorporate lost revenue or opportunity costs for the injector operator. 

 

Financial damages are calculated using a simplified version of the Leakage Impact 

Valuation (LIV) framework developed by Pollak et al. (2013). Inspired by the LIV approach, this 

study adapts its structure to emphasize the key cost drivers listed above while capturing the timing 

and magnitude of leakage events. The framework connects leakage features, events, and processes 

(FEPs) to quantifiable outcomes like leakage volumes, detection timing, and remediation costs. 

By simplifying these elements, the model supports transparent evaluation of leakage impacts under 

both worst-case and mitigated scenarios, tailored to site-specific conditions. 

 

Financial Model Components 

Contractual Penalty 

The contractual penalty represents a contractual fee paid to the emitter as compensation if 

the project operator fails to receive and permanently store the contracted amount of CO₂. For first-

of-a-kind (FOAK) projects, this penalty is typically higher due to higher uncertainty and risk, 

estimated at $20 per ton of CO₂. For nth-of-a-kind (NOAK) projects, reflecting more mature and 

lower-risk scenarios, the penalty is around $5 per ton. To capture this uncertainty, a uniform 

distribution ranging from $5 to $20 per ton was utilized, based on values from Bielicki et al. 

(2014b).  
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Inflation Rate 

An annual inflation rate of 2.9% was used, based on data from the U.S. Bureau of Labor 

Statistics (BLS) for the year 2024. This rate is employed to adjust historical and current costs into 

future dollars, ensuring the accuracy of future cost projections. 

 

45Q Tax Credits Lost 

The model applies a carbon price of $85 per tonne of CO₂, as established by the Inflation 

Reduction Act (2022). In the event of a leakage, the model assumes that the financial value of the 

leaked CO₂ must be repaid through the forfeiture of 45Q tax credits. Specifically, if any portion of 

the stored CO₂ escapes into the atmosphere within a designated time frame, the operator is required 

to return the tax credits received for that volume (IRS, Department of the Treasury, 2023). This 

effectively treats CO₂ leakage as a reversal of the financial incentive provided by the 45Q program. 

 

Discount Rate 

The discount rate was set equal to the inflation rate (2.9%) to achieve a real discount rate 

of zero. Given the long-term nature of CCS projects (typically spanning 100 years or more), 

employing a real discount rate of zero ensures that future financial impacts have equivalent 

weighting to present-day impacts.  

 

Detection Threshold 

Different approaches to monitoring sites to detect leakage are available such as down-hole 

geophysical methods (e.g.,  time lapse seismic methods or pulsed neutron logs) or surface fluid 

samples for geochemical analysis (e.g., air or soil detection, dissolved inorganic carbon alkalinity, 

and pH) (U.S. DOE, 2017) to satellite-based InSAR. But due to the limited empirical data and 

potentially site-specific nature of the detection threshold across various monitoring technologies, 

for this study a detection threshold was defined as the minimum leakage rate (both CO2 and brine) 

required for a leak to be identified and reported by the collective monitoring systems. Hence, a 
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triangular distribution was applied, ranging from 0.33 tons per day (minimum sensitivity) to 30 

tons per day (maximum reasonable detection threshold). Meaning, that when the CO2 and brine 

leakage from a well is equal or higher than such detection threshold, the leakage will be detected 

and posteriorly remediated. The selected values reflect findings from Trabucchi et al. (2012). 

Nonetheless, choosing an appropriate detection threshold remains critical for operators and 

regulators, impacting response times and total leakage volume. 

 

Well Fix Time 

Well fix time represents the interval between leak detection and successful remediation. 

To establish this parameter, empirical data from the Texas Railroad Commission (TRRC) was 

analyzed. Operators in Texas are required to submit Mechanical Integrity Tests (MIT) annually, 

resulting in a robust dataset of 471,033 registered events since February 2020. Analysis identified 

3,157 events transitioning from failure to approval status, and 1,120 events transitioning from 

approval status to failure to approval. The latter dataset was used to derive a normal distribution 

for the well fix time, reflecting industry practices and regulatory timelines (Figure 13). For this 

study, it is assumed that the time required to repair a leaking well in a storage project would be 

similar to that observed in various production cases. While carbon storage projects may respond 

more quickly due to higher financial risks, the repair timelines used in this analysis are intended 

to represent a conservative, worst-case scenario to bound the financial model. 
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Figure 13. Normal distribution of estimated well fix times calculated based on MITs. Data 

provided by the Texas Railroad Commission. Well fix time serves as a proxy in this study for 

time over which leakage continued  

 

Environmental Remediation Costs 

Environmental remediation costs associated with brine leakage in this study are based on 

a pump-and-treat strategy, where contaminated groundwater leaking to the surface is extracted, 

treated, and reinjected into the aquifer. Cost data were obtained from the U.S EPA Remediation 

Technology Cost Compendium (U.S. EPA, 2001), which reports both capital and operating costs 

for various remediation technologies. Specifically, the unit capital cost is defined as the cost per 

1,000 gallons of groundwater treated annually, and the unit average annual operating cost reflects 

the ongoing expenses per 1,000 gallons of groundwater treated each year.  

 

To capture the uncertainty and skewed distribution often observed in environmental 

remediation costs, driven by variability in system throughput, treatment intensity, and operational 

efficiency, a lognormal distribution was fitted separately for capital and operating costs using the 

reported median, 25th percentile (P25), and 75th percentile (P75) values. This probabilistic 

approach ensures that rare, high-impact events are appropriately reflected in the financial model. 
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Leaky Well Remediation Costs 

Leaky well remediation costs refer to the total expenses incurred to restore the integrity of 

a leaking well once a leakage is detected. Based on U.S. EPA (2010) estimates, these costs consist 

of three main components: a clean-out cost of $31,200 per well to remove debris, scale, and 

contaminants; a replug cost of $13,500 per well to seal the well properly; and a log cost of $11,400 

per well for well logging services to assess the remediation. 

 

Finally, all financial values were adjusted for inflation and subsequently discounted to the 

base year (2025) to calculate the net present value (NPV), facilitating a consistent comparative 

basis across scenarios.  

 

  

Figure 14. Figure: Input Distributions Used in Monte Carlo Simulation. (a) Detection threshold 

(tons/day), modeled as a triangular distribution; (b) Fix time (days), modeled as a truncated 

normal distribution (truncated at 0); (c) 45Q credit lost ($/ton), modeled as a uniform distribution 

with a minimum of 5 and maximum of 20; (d) Environmental remediation costs, including 

capital expenditure (P25 = $23, median = $78, P75 = $350) and operating expenditure (P25 = $5, 

median = $16, P75 = $41), based on 1999 USD. Each distribution was generated using 100,000 

samples. 
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2.6 FINANCIAL MODEL FRAMEWORK 

Three financial models were developed to explore how detection and remediation, well 

failure probability, and project timing influence the financial consequences of CO₂ leakage. All 

three models use Monte Carlo simulation to capture uncertainty in key input parameter (e.g., time 

to fix the well, detection threshold, 45Q tax credit lost, environmental remediation cost, leaky well 

remediation costs) and produce distributions of normalized cost and percentage of CO₂ leaked. 

Each model reflects a different assumption set to test how financial risks evolve under various 

operational scenarios. 

 

Detection and Remediation Adjustment 

This model was developed to evaluate the effectiveness of active monitoring and 

remediation strategies in limiting both environmental and financial impacts from CO₂ and brine 

leakage in geologic carbon sequestration (GCS) projects (see Appendix A.7 for more information 

about the algorithm). It represents a conservative worst-case scenario, where it is assumed that all 

leaky wells fail from year 0—that is, a 100% probability of failure is applied to all wells in the 

simulation. This setup ensures that every well has the potential to leak, enabling the model to 

stress-test the system under the most pessimistic assumptions. This adjustment serves as the basis 

for the base case analysis and was also applied in the sensitivity analysis of key variables such as 

permeability, reservoir thickness, salinity, and depth.  

 

The objective is to isolate the role of detection and remediation in mitigating leakage 

consequences. Using Monte Carlo simulation, this model incorporates uncertainty in key 

operational and economic variables—such as detection threshold, remediation delay, water 

treatment cost, and injection penalty. Leaks are monetized only when detected, and it is assumed 

that once a well is remediated, it ceases to leak. By aggregating thousands of simulation iterations, 
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this model quantifies the expected cost and leakage performance under a proactive site 

management strategy. 

 

Figure 15. High-Level Monte Carlo Flow for CCS Well Cost & Leakage with Detection & 

Remediation.  
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Annual Probabilities of Well Failure Adjustment 

 

This model was developed to assess how financial and environmental outcomes vary 

depending on the assumed annual probability of well failure (see Appendix A.8 for more 

information about the algorithm). Although certain well attributes found in regulatory databases 

or industry records can be used to estimate leakage risk (Watson & Bachu, 2008), such datasets 

are often incomplete, inconsistent, or nonexistent for older or undocumented wells. This data gap 

increases uncertainty and concern among project developers, insurers, and regulators regarding the 

actual risk of CO₂ and brine leakage from storage sites. 

 

Therefore, historical information from well failures associated to oil and gas operations 

were used as a basis for estimating plausible failure probabilities. These probabilities are 

influenced by multiple factors, including well integrity, construction quality, age, material type, 

bottom-hole pressure and CO2 saturation, and regional regulatory oversight. 

 

To address this uncertainty, the model applies a range of fixed annual failure probabilities 

to wells in the simulation and uses Monte Carlo Simulation to estimate the range of uncertainty 

for the financial and environmental impact calculations. Once a well fails and it’s remediated, it 

remains fixed for the rest of the project life. This assumption represents a conservative yet practical 

scenario for financial risk planning. Failure probabilities in this model span both historically 

derived values (Jordan & Benson, 2009; Porse et al., 2014; Trabucchi et al., 2012)—0.0001%, 

0.01%, and 0.1%—and more aggressive or hypothetical cases, including 1% and 10%. These 

scenarios serve as analogs for varying well conditions mentioned previously and enable a 

comprehensive evaluation of risk across a spectrum of realistic to worst-case assumptions. 

 



63 

 

By simulating a range of failure probabilities, this model demonstrates how financial 

assurance requirements and environmental impacts varies with the level of expected well failure 

risk. The overall logic for this financial model is shown in Figure 16.  
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Figure 16. Monte Carlo Simulation with Multiple Annual Failure Probability.  
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Bayesian Updating Adjustment 

 

This model was developed to explore how the financial risk profile of a GCS project 

evolves over time as more information becomes available (see Appendix A.9 for more information 

about the algorithm). Previous studies on GCS have applied Bayesian frameworks to improve 

leakage detection (e.g., Yang et al. (2012) used a Bayesian belief network to combine evidence 

from multiple CO₂ monitoring technologies; Wang and Small (2014) applied Bayesian methods to 

detect leakage using pressure anomalies; and Wang et al. (2021) modeled containment 

effectiveness using a Bayesian decision network). These efforts focused on improving monitoring 

system design and detection accuracy during site operations. 

 

In contrast, this research’s approach uses Bayesian updating not to detect a leak, but to 

simulate how the probability of leakage—and therefore the expected financial impact—changes 

over time in response to observed outcomes, such as continued non-leakage. The model 

incorporates this dynamic probability into the financial risk profile of the project. This novel 

application helps quantify how effective monitoring and a strong operational track record can 

gradually lower perceived risk and inform decisions related to insurance premiums, credit buffers, 

or long-term liability across the project lifecycle. 

 

 The probability of failure, P(F), is treated as an input uncertainty and explored across a 

broad range (0.0001% to 10%). Initially, the probability of leakage given failure, P(Leak | F), is 

conservatively assumed to be 100%, but it is updated using Bayesian inference each year based on 

new data. If no leaks are observed among failed wells, P(Leak | F) is revised downward, reducing 

the marginal leakage probability over time.  

 

To represent initial uncertainty in P(Leak∣F), a Beta distribution is used. The model is 

initialized with a Beta(100, 0) prior, corresponding to a conservative assumption (mean of 1) and 
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an equivalent of 100 pseudo-observations (0 leaks, 100 non-leaks). Given this, the initial marginal 

probability of leakage is computed as: 

 

𝑃(𝐿𝑒𝑎𝑘) ⁡= ⁡𝑃(𝐹) ⁡× ⁡𝑃(𝐿𝑒𝑎𝑘⁡|⁡𝐹) ⁡= ⁡𝑃(𝐹) ⁡× ⁡
100

100⁡ + ⁡0
⁡= ⁡1 × 𝑃(𝐹) 

 

In each subsequent year of the simulation, it is assumed that well failures occur, but no 

leaks are observed. This lack of observed leakage is used to update the Beta distribution. If n wells 

fail in a given year and none leak, the posterior becomes: 

 

𝑃(𝐿𝑒𝑎𝑘⁡|⁡𝐹)⁡~⁡𝐵𝑒𝑡𝑎(𝛼⁡ + 𝑥, 𝛽 + 𝑛⁡ − ⁡𝑥) 

 

where x= 0 is the number of observed leaks, and n is the number of new failed wells. For 

example, if 10 new failures are observed with zero leaks, the posterior becomes Beta(100,10), 

reducing the expected value of P(Leak∣F) from 1 to 0.9.  

 

This process is repeated annually, progressively refining the expected leakage probability 

based on observed outcomes. If no leaks are observed following well failures, the conditional 

leakage probability decreases, leading to lower projected financial risk. The result is a dynamic, 

time-resolved simulation of leakage risk and associated costs across the full project timeline—

from the injection phase through post-injection care. This time-dependent approach enables both 

operators and insurers to better estimate and manage expected financial damages across the project 

lifecycle, accounting for evolving reservoir conditions such as pressure dissipation and CO₂ 

saturation dynamics.  

 

All in all, this temporal evolution supports strategic decision-making regarding monitoring 

intensity and financial risk mitigation instruments. It provides critical insight into how the need 
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for safeguards—such as CO₂ credit buffers or insurance premiums—may diminish or shift over 

time, aligning protection strategies with actual risk exposure as the project matures (See Figure 

17).  
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Figure 17. Year-by-Year Monte Carlo Approach for CCS Well Failures and Costs using 

Bayesian Update Over Time.  
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CHAPTER III: RESULTS AND ANALYSIS 

 

3.1. INTRODUCTION 

This chapter presents the results of a set of dynamic multiphase flow simulations and 

financial risk assessments conducted to evaluate the environmental and economic impacts of CO₂ 

and brine leakage in geologic carbon storage (GCS) projects. Each case study in this chapter 

corresponds to a specific scenario or sensitivity analysis, designed to isolate the effect of key 

geological, operational, or risk-related variables. 

 

The simulations are structured into several categories, each representing a different real-

world uncertainty or design decision. These include: 

• Distance Sensitivity: How pressure, CO₂ saturation, and leakage vary spatially and over 

time as a function of distance from the injection well. 

• Financial Impact: Decomposition of total cost to determine the relative weight of cost 

components and estimate the overall financial risk profile across time. 

• Well Density Sensitivity: How increasing the number of potential leakage pathways 

influences outcomes. 

• Subsurface Parameter Sensitivity: How properties like porosity, permeability, salinity, and 

capillary pressure affect outcomes. 

• Geologic Setting Sensitivity: How different reservoir geometries (flat, dipping, anticline) 

affect plume migration and leakage risk. 

• Probability Sensitivity: How varying assumptions on well failure probabilities impact 

leakage and cost. 

• Bayesian Updating Model: How financial risk projections evolve over time when 

incorporating new (non-leakage) evidence. 
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• Monitoring and Remediation Analysis: How detection thresholds, time to remediation, and 

mitigation costs affect the total risk, and how the financial value of monitoring can be 

quantified. 

To help the reader navigate the different cases, Table 3 summarizes the key simulation 

cases, what each represents, and the purpose of their inclusion in the analysis. 
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Case Variable(s) Studied Description Purpose 

Distance Sensitivity 
Distance from injection 

well 

Open wellbores at fixed distances (100–

2000m) from injection point; spatial and 

temporal variation of pressure, CO₂ 

saturation, and leakage are tracked 

Assess how flow dynamics and 

leakage behavior evolve in space and 

time 

Financial Impact 
Disaggregated cost 

components 

Cost breakdown using leakage simulation 

under base assumptions 

Understand cost drivers and estimate 

the time-dependent risk profile 

Well Density 

Sensitivity 

Open well density 

(0.27, 2.4, 4.8 

wells/km²) 

Randomly placed wells at low, medium, and 

high densities 

Identify how increasing leak pathway 

density affects leakage and cost 

Subsurface Settings 

Sensitivity 

Permeability, thickness, 

salinity, depth, etc. 

High vs. low bounds for geologic and 

petrophysical parameters 

Determine most influential variables 

on leakage risk and financial impact 

Subsurface 

Geometry 

Sensitivity 

Flat, Dipping, Anticline 

(Facies 3) 

Simulates plume migration and leakage in 

different structural trapping settings 

Understand risk implications of 

different subsurface geometries 

Probability 

Sensitivity 

Annual well failure 

probability (0.0001% to 

10%) 

Fixed failure probability applied to all wells 
Estimate risk exposure under varying 

leak likelihood scenarios 

Bayesian Updating 
Time-evolving leak 

probability 

Adjusts leak probability annually based on 

non-leakage observations 

Estimate how risk exposure varies 

over time 

Monitoring & 

Remediation 

Analysis 

Detection threshold, fix 

delay, cost distributions 

Models reduction in impact from early 

detection and response actions 

Evaluate how monitoring strategy 

influences financial risk; quantify its 

value 

Table 3. Summary of Simulation Cases
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3.2. DISTANCE SENSITIVITY 

Leakage Rate vs. Distance 

Base case reservoir properties were used for this scenario, featuring a flat-lying reservoir. 

Four open wellbores connected from the injection zone to the surface are positioned at varying 

distances from the injection well—100 m, 500 m, 1,000 m, and 5,000 m—to evaluate the effect of 

proximity on leakage behavior. This case represents a worst-case scenario, in which no detection 

or remediation measures are implemented—allowing CO₂ and brine to leak indefinitely without 

intervention. As for how the AoR was estimated, see appendix A.1 and A.5.   

 

Figure 18 shows the CO₂ and pressure fronts at Year 20, immediately after injection stops. 

The CO₂ plume reaches the open wellbore located 500 meters from the injection well, and 

significant pressure changes are observed around the plume boundary. 
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Figure 18. Top-down view of (a) CO₂ saturation and (b) reservoir pressure (psi) at Year 20, 

immediately following the end of injection. The figure shows a portion of the full 10×10 km 

model. Open wellbores CAP1, CAP2, CAP3, and CAP4 are positioned at distances of 100 m, 

500 m, 1,000 m, and 5,000 m from the injection well, respectively. 

 

Figure 19 illustrates how CO₂ and brine leakage rates, reservoir pressure and CO₂ saturation 

at each well location evolve over time at various distances from an injection well. The vertical 

dashed line at year 20 marks the end of CO₂ injection.  

 

Notably, when CO₂ reaches a particular well, the buoyant force of CO₂ can prevent bottom-

hole pressure from returning to hydrostatic conditions. This phenomenon influences the duration 

and magnitude of leakage, as well as pressure evolution in the system.  

 

Main Observations: 

• Injection Period: 
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o Under the modeled conditions, an almost immediate increase in reservoir pressure 

causes almost immediate brine leakage along the model domain. 

o The spatial footprint of the pressure front is significantly larger than that of the CO₂ 

plume, resulting in brine leakage through more wells than those directly contacted by 

the injected CO₂. 

o Peak CO₂ and brine leakage rates reached 140 tons/day and 70 tons/day at 100 meters 

from the injection well, respectively. At 500 meters, peak CO₂ leakage dropped to 20 

tons/day, while brine leakage was 50 tons/day. These peaks occurred just before 

injection ceased, when both pressure and CO₂ saturation reached their highest levels. 

o At the 500 m well, a distinct pressure spike is observed upon CO₂ arrival, indicating 

the role of CO₂ buoyancy in maintaining elevated reservoir pressures. 

o Once the CO₂ plume reaches the open wellbore, brine leakage dramatically decreases, 

and as pressure and saturation build, a CO₂ flow to surface occurs. This leads to a phase 

of co-produced CO₂ and brine, with CO2 being the primary leaking fluid. The timing 

of CO₂ flow to surface appears more closely related to CO₂ saturation than to pressure: 

in both the 100 m and 500 m wells, breakthrough occurs when saturation exceeds 30%, 

regardless of pressure conditions.  

o At the 100 m well, CO₂ surface flow occurs approximately 2 months after plume 

arrival; at the 500 m well, breakthrough takes about 1 year. Following breakthrough, 

CO₂ leakage is primarily driven by increasing CO₂ saturation rather than pressure 

changes, but pressure dictates CO2 leakage intensity.  

 

• Post-Injection Period: 

o Due to the sustained buoyancy pressure from a column of mobile CO₂, slow leakage 

persists well after injection ends. At the 100 m well, CO₂ leakage continues for 100 

years, whereas at the 500 m well, leakage ceases after 15 years.  
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o At the wells located 100 and 500 meters from the injection point, pressure drops 

significantly once injection ceases but then model-wide equilibration of pressure causes 

a slight increase (less than 4 psi) over the following 100 years. 

o Post-injection behavior shows that reservoir pressure does not return to hydrostatic 

levels (3,067 psi) within the 120-year simulation period. This is due to the gradual 

nature of pressure dissipation, as outer boundary cells remain fixed at hydrostatic 

pressure while adjacent cells continue to decline. Consequently, over a longer 

timeframe, pressure is expected to equilibrate. This pressure behavior also influences 

brine leakage: wells with CO₂ breakthrough show no brine leakage after injection stops, 

while those without CO₂ flow experience reduced but ongoing brine leakage, driven by 

residual overpressure. Over time, as pressure normalizes, this leakage is expected to 

cease (see Appendix A.4 for more on boundary condition effects). 

o For wells with CO₂ breakthrough, the cessation of brine leakage after injection is likely 

due to sustained high CO₂ saturation. Preferential mobility of low viscosity non-wetting 

phase CO2 dominates the flow system which prevents further brine migration to the 

surface.  Complex geysering and gas lift type processes could occur but are not modeled 

in this wellbore by the software used. 

 

 

 



76 

 

  

Figure 19. Dynamics of Reservoir Pressure, CO₂ Saturation, and Leakage during Injection and Post-Injection Phases. 



77 

 

Cumulative Leakage Rate vs. Distance 

Base case reservoir properties were used for this scenario, featuring a flat-lying reservoir. 

Ten open wellbores connected from the injection zone to the surface are positioned at varying 

distances to the east and west from the injection well—100 m, 500 m, 1,000 m, 2,000 m, and 3,000 

m—to evaluate the effect of proximity on leakage behavior.  

 

Figure 20 compares cumulative CO₂ and brine leakage alongside peak reservoir conditions 

across varying distances from the injection well, covering a 120-year timeframe.  

 

Main Observations: 

• Peak bottom-hole pressure decreases with distance from the injection well, indicating a rapid 

decline in the driving force for fluid migration at greater distances. 

• Wells located closer to the injection point exhibit higher cumulative CO₂ leakage but lower 

brine leakage. In contrast, wells farther away experience delayed CO₂ breakthrough due to 

lower CO₂ saturation, leading to greater brine leakage relative to CO₂. 

• There is a strong inverse correlation between cumulative brine leakage and peak CO₂ 

saturation, highlighting that higher CO₂ saturation limits brine migration. 

• Cumulative CO₂ leakage strongly correlates with peak reservoir pressure. While CO₂ 

saturation influences the timing of breakthrough, it is pressure that primarily controls the 

intensity of leakage—higher pressures result in higher CO₂ leakage rates. 

• Brine leakage is observed up to 3,000 meters from the injection well. This occurs because, as 

shown in the figure, peak pressure at that distance still exceeds hydrostatic pressure. The 

reservoir is over-pressurized relative to the surface due to the size and boundary conditions of 

the model, allowing brine to leak even at wells located far from the injection point. 
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Figure 20. Distance-Dependent Trends in Cumulative Leakage and Reservoir Conditions over 

120 Years 

 

3.3. FINANCIAL IMPACT 

Financial Impact Results 

Base case reservoir properties were used for this scenario, assuming a flat-lying reservoir 

and 240 open wellbores randomly distributed across the project area. The wells are modeled as 

direct conduits from the injection zone to the surface, and both leakage rates and financial impacts 

are calculated based on their effects at the surface. Unlike a worst-case scenario where leaks persist 

indefinitely as in the previous section, this scenario assumes wells are detected and remediated 

once leakage occurs, preventing further losses. For this scenario, different cost components were 

included, such as environmental remediation, leaky wellbore remediation, and regulatory and 

contractual penalties. This scenario also assumes that all wells fail (100% annual probability of 
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failure), meaning that any change in pressure and/or CO₂ saturation sufficient to drive upward fluid 

migration results in leakage through the wells. 

 

The next figure displays cumulative distribution functions (CDFs) for both the normalized 

remediation cost (left) and the final percentage of CO₂ leaked (right) for the financial model 

adjusted by detection and remediation. Over 2,000 Monte Carlo simulations were conducted, 

varying parameters such as well repair time, detection threshold, remediation costs, and penalty 

costs to generate the cumulative distribution functions (CDFs).  

 

Main Observations: 

• The median (p50) financial impact normalized by the total injected CO2 is around $15 per ton 

of injected CO₂, indicating that for half of the scenarios, the cost is at or below this value. 

• The median (p50) final leakage rate is about 0.08%, demonstrating that timely detection and 

remediation keep total leakage relatively low, even if all wells fail. 

• The spread between p10 and p90 underscores the inherent uncertainty, with some scenarios 

resulting in minimal leakage and hence financial impacts, while others approach higher leak 

percentages and higher costs. 

• The majority of the costs are associated with remediating wells due to brine leakage. Because 

the pressure front rapidly propagates throughout the reservoir in this model, brine leakage 

occurs at nearly all leaky wells, triggering detection, injection interruption, and remediation 

efforts. 
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Figure 21. CDFs of Remediation Costs and Final CO₂ Leakage under Detection and Repair 

Scenarios 

Figure 22 presents the breakdown of cost contributions from each component included in 

the financial model. The results show that the contractual penalty (64.7%) and environmental 

remediation capital costs (30.5%) together account for approximately 95% of the total expenses. 

These costs are largely influenced by the volume of brine leaked and the time required to detect 

and repair the leakage. 

 

In contrast, well remediation and loss of 45Q Tax Credits represent relatively minor 

portions of the total cost. This highlights the critical importance of rapid leak detection and 

remediation, especially for first-of-a-kind (FOAK) projects, where we have assumed that higher 

injection penalties place a greater financial burden on early adopters. 

 

It is also important to note that environmental costs—comprising water leakage 

remediation and well remediation—make up only 35% of total costs, while contractual costs—

including loss of 45Q Tax Credits and contractual penalties—account for the remaining 65%. This 

distinction emphasizes how project agreements and policy design can significantly influence 

financial outcomes. 
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Figure 22. Average cost contribution by component.  

Figure 23 shows the normalized cost per ton of CO₂ injected (top) and the discounted 

incurred cost per year (bottom). Most expenses arise in the first five years because of the rapid 

pressure front propagation, reflecting a scenario in which wells fail early, are quickly detected, and 

then remediated. Once leaks are addressed, subsequent CO₂ injections occur without additional 

costs, causing the normalized cost to peak in year one and then diminish as more CO₂ is injected. 

The bottom plot highlights how the discounted costs are heavily front-loaded, tapering off 

substantially after early remediation efforts. 
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Figure 23. Time-Resolved CO₂ Leakage Costs: Normalized and Discounted Annual Expenses 

 

3.4. WELL DENSITY SENSITIVITY  

As in the previous section, base reservoir properties were used for this scenario, which 

assumes a flat-lying reservoir. A varying number of open wellbores were randomly distributed 

across the project area. The wells are modeled as direct conduits from the injection zone to the 

surface, and both leakage rates and financial impacts are calculated based on their effects at the 

surface. Also, for this scenario, different cost components were included, such as environmental 

remediation, open wellbore remediation, loss of 45Q Tax Credits, and contractual penalty. This 
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scenario also assumes that all wells fail, meaning that any change in pressure and/or CO₂ saturation 

sufficient to drive upward fluid migration results in leakage through the wells. 

 

These plots compare the cumulative distribution functions (CDFs) of normalized cost (left) 

and final CO₂ leakage (right) under two different well densities: (a) 0.27 wells per km² (top) and 

(b) 4.8 wells per km² (bottom). These results correspond to the financial model adjusted by 

detection and remediation. The lower density represents deeper Gulf Coast wells below 2,440 m, 

while the higher density is twice the average surface density of 2.4 wells per km², serving as a 

worst-case scenario. By examining these extremes, we see how injection depth and the number of 

potential leakage pathways affect overall cost and leakage outcomes. 

 

Low-Density Scenario (0.27 wells/km²) – Figure 24.a: 

• The median (p50) normalized cost is $31.07 per ton of CO₂ injected, with a relatively wide 

distribution extending beyond $60/ton at p90. 

• The final CO₂ leakage remains extremely low, with p50, p10, and p90 values all approximately 

at 0%, with P90 being less than 0.0005% of the total CO2 injected. This indicates that although 

CO2 leakage is virtually nonexistent, the cost per ton is relatively high due to environmental 

remediation and contractual and regulatory penalties due to injection interruption.  

• The higher cost in comparison to the high-density scenario is attributed to limited pressure 

dissipation due to fewer leaky wells. As a result, brine leakage is concentrated in fewer wells, 

increasing the per-well environmental remediation burden and overall cost. 

 

High-Density Scenario (4.8 wells/km²) – Figure 24.b: 

• The median (p50) normalized cost is significantly lower at $16.16/ton, with a narrower 

distribution. 
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• The cumulative CO₂ leakage increases with well density, reaching a p50 value of 0.29% and a 

p90 value of 8.05% of total CO2 injected. 

• Despite the higher leakage risk in this scenario, the costs remain lower because pressure is 

more evenly distributed across a greater number of wells, reducing the burden on individual 

wells and the associated water remediation cost per well. 

 

 

Figure 24. Comparative CDF of CO₂ Leakage and Cost under Varying Well Densities. (a) 

corresponds to a density of 0.27 wells/km2, and (b) of 4.8 wells/km2 
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3.5. SUBSURFACE SETTINGS SENSITIVITY  

Cumulative Leakage Rates 

Figures 25 and 26 illustrate how subsurface parameters influence both the amount of CO₂ 

and brine that leak from a storage reservoir and the resulting financial and environmental impacts. 

The analysis considers scenarios with and without detection and remediation measures in place. 

By examining variables such as permeability, kv/kh, reservoir depth, and capillary entry pressure, 

we identify which factors most strongly affect leakage rates—and assess whether these differences 

lead to significant changes in normalized costs and final percentages of CO₂ leaked under each 

scenario. 

 

The Figure 25 corresponds to the flat-lying reservoir scenario, where the open wellbores 

are open conduits connected from the injection zone to the surface. For this case, no detection and 

remediation are considered. In the Table 4 is shown the cumulative volume of CO2 leakage, brine 

leakage, and CO2 injected at reservoir conditions per case. 

 

Environmental Impacts (Figure 25): 

• Permeability, λ (Pore Size Distribution index), and kv/kh ratios have the greatest positive 

correlation with CO₂ leakage, as they facilitate easier migration of the plume through the 

reservoir and therefore encounter more leaky wells. 

• In contrast, higher permeability and kv/kh can lower brine leakage by reducing overall 

reservoir pressure buildup. 

• Deeper reservoirs exhibit lower CO₂ and brine leakage, likely because the higher CO₂ density 

at greater depths results in less brine displacement and reduced pressure buildup (see Table 4 

for more information about cumulative CO2 injected at reservoir conditions per case).  

• Greater reservoir thickness reduces pressure buildup by providing more pore volume for CO₂ 

injection, which in turn limits lateral plume migration. This smaller plume footprint decreases 
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the number of open wellbores contacted by the CO₂ plume, thereby reducing cumulative CO₂ 

and brine leakage rates. 

• Higher brine salinity increases the brine's density and viscosity, making it more resistant to 

displacement. As a result, greater injection pressures are required to mobilize the brine, which 

can lead to increased pressure buildup in the reservoir and elevate the overall rates of CO₂ and 

brine leakage through the open wellbores.  

• Saline aquifer size (lateral extension) has minimal impact on CO₂ and brine leakage during the 

injection phase. All three scenarios—low, base, and high-capacity aquifers—show similar 

leakage rates, with only slightly higher brine leakage in the low-capacity case due to faster 

pressure buildup. However, each aquifer accommodates the full 4 MT of injected CO₂ without 

reaching injection well’s pressure operating constraints. Post-injection behavior highlights 

clearer differences. In all cases, pressure drops below hydrostatic due to continued CO₂ 

leakage, but recovers by year 120 in the base and high-capacity aquifers thanks to boundary-

driven pressure dissipation. In contrast, the low-capacity aquifer maintains a slight pressure 

deficit, reflecting its limited ability to offset fluid loss over time (See Appendix A.4 for more 

information about how different saline aquifer sizes affects pressure buildup). 
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Variables 

Cumulative CO2 

Leakage [ MT] 

Cumulative Brine 

Leakage [MT] 

Volume of CO2 

Injected [MMCF] 

Low Base High Low Base High Low Base High 

Depth 0.91 0.86 0.81 4.47 4.40 4.26 202.94 198.26 195.08 

Permeability 0.14 0.86 1.06 1.91 4.40 4.16 72.66 198.26 202.70 

Kv/Kh 0.69 0.86 0.90 4.56 4.40 4.23 196.78 198.26 198.29 

Capillary Entry 

Pressure 0.89 0.86 0.84 4.28 4.40 4.44 199.41 198.26 196.96 

λ 0.71 0.86 1.07 4.41 4.40 4.26 190.07 198.26 200.69 

Salinity 0.84 0.86 0.90 4.34 4.40 4.63 198.34 198.26 197.78 

Thickness 1.02 0.86 0.52 4.21 4.40 3.77 197.06 198.26 200.00 

Saline Aquifer 

Size 0.84 0.86 0.86 4.53 4.40 4.41 198.26 198.26 198.26 

Table 4. Cumulative volume of CO2 leakage, brine leakage, and CO2 injected at reservoir 

conditions per case. 

 

 

Figure 25. Sensitivity of CO₂ and Brine Leakage to Subsurface Parameters: Tornado Diagrams. 

Black and gray bars represent the high and low case, respectively.  

 

Financial Impact Results 

 

Financial Impacts (Figure 26): 
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• Despite the variations in leakage rates shown in the tornado diagrams, once detection and 

remediation strategies are factored in, the financial cost (per ton of CO₂ injected) and final 

leaked percentage do not vary dramatically across different subsurface settings.  

• The ability to quickly identify and fix leaks dampens the influence of reservoir parameters on 

overall financial and environmental outcomes. In other words, a highly permeable reservoir or 

a shallower depth does not necessarily translate into a proportionally higher cost if leaks are 

detected and remediated effectively.  

• While certain reservoir conditions can lead to higher CO₂ or brine leakage in a worst-case 

scenario, robust monitoring and mitigation measures minimize the ultimate difference in both 

cost and final leaked fraction across varying subsurface settings. 

• Higher CO₂ leakage percentages are observed in the low-permeability scenario because the 

bottom-hole pressure reaches the operating limit—set at 90% of the fracture pressure—sooner. 

As a result, less CO₂ is injected overall, and the leaked volume represents a larger proportion 

of the total injected mass. 

 

 

Figure 26. Normalized Cost and CO₂ Leakage Across Different Subsurface Parameters: Impact 

of Detection and Remediation 
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3.6. SUBSURFACE GEOMETRY SENSITIVITY 

CO2 and Brine Leakage Rates vs. Distance 

These figures compare CO₂ leakage behavior and associated financial impacts for two 

different reservoir geometries: an anticline and a dipping reservoir. The injection well is located 

downdip whereas one open wellbore is placed in the up-dip part of each model to observe how 

CO₂ accumulates and migrates, particularly focusing on whether CO₂ collects at the crest of the 

anticline, what trapping mechanisms are more efficient, and how that affects leakage patterns, 

costs, and overall risk. 

 

• In the dipping reservoir, CO₂ arrives at the open wellbore more quickly, causing a short-lived 

but intense leakage rate that rapidly drops to near zero after injection stops. This occurs 

because, as CO₂ continues to migrate updip, it becomes immobile at the open wellbore location 

due to the dominance of residual CO₂ saturation. 

• In the anticline scenario, CO₂ takes longer to reach the well, and the peak leakage rate is 

approximately half that of the dipping case. However, the anticline acts as a structural trap, 

allowing CO₂ to accumulate at its crest. This leads to a prolonged, low-rate leakage phase that 

continues well after injection ends. 

• Consequently, total (cumulative) CO₂ leakage in the anticline is approximately 25% higher, 

driven by this extended leakage tail over time. 
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Figure 27. CO₂ Leakage Rate and Cumulative Leakage over Time for Anticline vs. Dipping 

Reservoir 

Financial Impact Results 

Financial Impacts (Figure 28): 

• Box plots show that, when accounting for detection and remediation, both anticline and dipping 

reservoirs yield near-zero normalized costs and similarly negligible final percentages of CO₂ 

leaked (around 0.000002%).  

• The geometry-specific differences in leakage timing and volume have no impact on financial 

outcomes under detection and remediation protocols. 
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Figure 28. Comparison of Normalized Cost, Percentage of CO₂ Leaked, and Their Cumulative 

Distributions under Detection and Remediation 

 

3.7. PROBABILITY SENSITIVITY  

Annual Well Failure Probability Results 

The Intergovernmental Panel on Climate Change (IPCC) emphasizes the importance of 

minimizing CO₂ leakage from storage sites to less than 1% over a 100-year period to maintain the 

integrity of climate mitigation efforts (IPCC, 2005). Similarly, the California Low Carbon Fuel 

Standard (LCFS) has established a CCS Protocol that mandates rigorous permanence 

requirements. This protocol requires that geologic carbon sequestration projects demonstrate a 

high likelihood—specifically, a probability exceeding 90%—that less than 1% of the injected CO₂ 

will leak over a 100-year post-injection period (CARB, 2018).  

 

Achieving Permanence Certification is essential for CCS projects to qualify for greenhouse 

gas reduction credits under California’s climate programs. However, there remains a notable 

discrepancy between certification criteria and regulatory expectations. For example, under the 

Emergency and Remedial Response Plan required during the EPA’s Class VI permitting process, 
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any verified leakage event requires an immediate shutdown of injection operations until the issue 

is fully resolved. 

 

Despite this operational constraint, using Permanence Certification standards as part of 

project selection and design is still valuable. It enables developers to assess whether a site is likely 

to meet long-term containment thresholds and to tailor monitoring and remediation strategies 

according to the project’s specific risk profile.  

 

Figure 29 presents both box plots and cumulative distribution functions (CDFs) illustrating 

how different annual well failure probabilities (ranging from 0.0001% to 10%) affect normalized 

costs (in $ per ton of CO₂ injected) and the final percentage of CO₂ leaked. These scenarios 

correspond to the base case, flat-lying reservoir, where 240 open wellbores are located around the 

project area. These scenarios were analyzed with respect to the permanence criteria mentioned 

before. Each scenario underwent 1,000 Monte Carlo iterations, varying parameters such as well 

repair time, detection threshold, environmental remediation costs, and contractual and regulatory 

penalties to account for variability in cost and leakage outcomes.   

 

These results show the need to reduce the well leakage failure probably via screening for 

and repairing high risk wells and bounds the financial value of screening and remediation.  

 

Main Observations 

• Even at the 0.1% annual failure probability, which is the highest probability according to 

historical data, the 90th‐percentile leakage remains comfortably below 1% (0.4%). Costs are 

also modest ($1.4), indicating that rare well failures (<0.1%) carry negligible risk of violating 

permanence criteria. 

• In the 1% annual failure scenario, the mean CO₂ leakage remains below 1%, with an average 

cost of $3.60 per ton, thus meeting the IPCC permanence criteria on average. However, the 
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90th-percentile leakage reaches 1.87%, with a corresponding cost of $8.90 per ton, which fails 

to meet the LCFS requirement of “greater than 90% probability of less than 1% leakage.” As 

a result, the project either fails or marginally passes the more stringent LCFS permanence 

standard. 

• At 10% annual failure, 90th‐percentile leakage can exceed 3%, and average costs climb above 

$18 /ton. This scenario clearly falls outside LCFS criteria and underscores the high financial 

and environmental risk of frequent well failures. 

 

 

Figure 29. Probabilistic Assessment of Well Failure: Effects on CO₂ Leakage and Normalized 

Cost 

3.8. BAYESIAN UPDATING 

These three plots illustrate the results of a Bayesian updating financial model that simulates 

the evolution of leakage risk and financial impact over the lifetime of a geologic carbon storage 

(GCS) project. The model begins with an assumed probability of failure and an initial belief that 

every failure results in leakage. However, as the simulation progresses, if no leakage is observed 

from failed wells, the conditional probability of leakage given failure is updated using Bayesian 

inference, leading to reduced expectations of leakage in future years. Results assuming no updating 

of leakage probability—meaning that the probability of leakage remains fixed regardless of new 
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observations—, and that wells may fail with replacement are presented in Figure A7 and Figure 

A8. The following observations summarize the trends across the two figures.  

 

Average Normalized Leakage Cost (Figure 30): 

This figure presents the projected net present value (NPV) of financial impacts over time, 

broken down by year. For example, under a 0.1% annual well failure probability, which is the 

highest annual probability of failure according to historical data, the projected NPV of financial 

impacts from year 10 to year 120 is approximately $2 per ton of CO₂ injected, while from year 20 

to year 120, the value drops to effectively $0 per ton. This time-resolved financial projection 

reflects the declining risk profile of the project and provides a basis for estimating the appropriate 

insurance premium at each stage of the storage lifecycle. Here some observations: 

 

• For all scenarios, the average normalized leakage cost ($/ton CO₂) declines rapidly and 

approaches zero by approximately year 20, which corresponds to the end of the injection 

period. 

• During the injection period, the primary cost driver is the contractual penalty, which is 

triggered when CO₂ leakage interrupts injection operations. After year 20, when injection 

ceases, no detectable CO₂ leakage occurs, and thus no additional contractual penalties are 

incurred. 

• Additionally, because reservoir pressure dissipates quickly after injection ceases and no 

significant/detectable brine leakage occurs during the post-injection phase, environmental 

remediation costs are minimal or nonexistent. 

• Consequently, during the post-injection period, financial impacts from leakage become 

negligible, indicating that the bulk of the economic burden is front-loaded during active CO₂ 

injection. 
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Figure 30. Year-by-Year Average Normalized Cost under Bayesian Updating Framework. 

 

Average % CO₂ Leaked (Figure 31): 

This figure shows the projected percentage of CO₂ leaked over time. For example, under a 

0.1% annual well failure probability, which is the highest probability of failure according to 

historical data, the cumulative leakage from year 10 to year 120 is approximately 0.65%, and from 

year 20 to year 120, it increases slightly to about 0.8%. These results provide insight into the 

evolving environmental risk over the project lifecycle and demonstrate that, even under this worst-

case failure rate (0.1%), the cumulative percentage of CO₂ leaked remains below 1% at all stages—

meeting typical performance thresholds for long-term containment. Here some observations: 

 

• Early project years show the highest average percentages of CO₂ leaked, especially for higher 

well failure probabilities. 

• The 1% threshold for total CO₂ leakage is only exceeded in scenarios with annual failure 

probabilities of 1% or higher, underscoring the critical importance of this parameter. This 
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finding can support the EPA’s requirement to assess well integrity and zonal isolation for all 

wells within the AoR.  

• After the injection period ends, the CO₂ leakage percentage continues to decrease for all 

scenarios. While the leakage does not drop to zero, it steadily trends downward and approaches 

zero by year 120. 

• The reason leakage does not fully vanish is the presence of a non-zero detection threshold, 

which prevents the detection and remediation of minor leaks. These undetected leaks continue 

post-injection but at very low rates, contributing minimally to overall leakage volume. 

 

 

Figure 31. Year-by-Year Average Percentage of CO₂ Leaked under Bayesian Updating 

Framework 

3.9. MONITORING & REMEDIATION ANALYSIS 

In this analysis, simulations are used to estimate the value of monitoring by quantifying 

financial damages under a worst-case scenario—assuming all 240 wells fail—and evaluating how 

different detection thresholds influence compliance with permanence criteria. While regulatory 

requirements under Class VI permits assume zero tolerance for leakage and mandate site shutdown 

upon detection, using permanence standards—such as the IPCC (2005) guideline of 99% 
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containment over 100 years and the LCFS requirement that 90% of modeled scenarios remain 

below 1% cumulative leakage (CARB, 2018)—provides a practical and risk-informed benchmark 

for cost-effective monitoring investment. 

 

Although tighter detection thresholds improve early leak identification and permanence 

compliance, they also increase remediation costs, requiring a careful trade-off analysis. Framing 

monitoring design around permanence criteria provides a smart, flexible strategy for investment 

planning, especially when facing uncertainty and limited resources. 

 

Main Observations: 

• Very low detection thresholds catch small leaks early but often result in high remediation costs. 

Conversely, high thresholds may delay detection, allowing significant leakage. A threshold 

around 20 tons per day (TPD) strikes an effective balance between early response and cost 

control. 

• At ~20 TPD, 90% of modeled outcomes show less than 1% leakage over 100 years, aligning 

with the IPCC (2005) and CARB (2018) permanence standards. Under this condition, 

monitoring investments up to $8 per ton of CO₂ injected are financially justifiable—spending 

beyond this level offers diminishing returns in ensuring permanence compliance. 
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Figure 32. Effect of detection threshold on cost and cumulative % of CO2 leaked. The bars 

correspond to the p10 and p90 values.  
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CHAPTER IV: DISCUSSION 

 

4.1. PHYSICAL MECHANISMS AND RESERVOIR CONDITIONS THAT DRIVE CO₂ AND BRINE 

LEAKAGE  

Predicting CO₂ and brine leakage through an open wellbore remains a significant challenge 

due to the complex interplay of multiphase flow, buoyancy effects, and pressure propagation. 

Given the uncertainty in leakage behavior, CMG-GEM results were compared against NRAP-

OPEN-IAM simulations (see Appendix A.2) under same reservoir assumptions. The results 

differed by up to an order of magnitude—an outcome attributed to fundamental differences in the 

numerical frameworks: CMG-GEM uses a fully coupled, isothermal formulation that omits 

thermodynamic effects like Joule-Thomson cooling and temperature-dependent density variations 

in the wellbore, while NRAP-OPEN-IAM includes non-isothermal drift-flux modeling but lacks 

feedback from reservoir pressure and saturation changes, as it treats the wellbore and reservoir as 

decoupled systems. 

 

Numerous studies have attempted to replicate historical CO₂ or gas blowouts and field test 

results (e.g., Adams et al. (2021); Freifeld et al. (2016); Lindeberg et al. (2017); Pan et al. (2018)), 

yet accurately capturing the coupled dynamics of CO₂ and brine leakage remains elusive. 

Nonetheless, this study is designed around worst-case scenarios, assuming the presence of open 

wellbores fully connected from the injection zone to the surface. As a result, it intends to capture 

within the full range of leakage behaviors and complexities observed in historical CO₂ or gas 

blowouts and field tests. This approach enables the estimation of upper bounds for potential CO₂ 

and brine leakage rates in the event of well failure, along with their associated environmental and 

financial impacts. It also provides insight into how different subsurface settings and trapping 

mechanisms influence overall leakage risk. 
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The dynamic interplay between reservoir pressure, CO₂ saturation, and leakage behavior 

fundamentally governs both risk and cost. When the pressure front reaches an open wellbore, brine 

leakage increases sharply, with leakage rates closely tied to the magnitude of reservoir 

overpressure. In cases where the CO₂ plume does not reach the wellbore, brine leakage typically 

ceases within 10 years after injection ends, as the pressure gradient dissipates. 

 

However, if the CO₂-rich phase plume reaches the well and CO₂ saturation is sufficient, 

leakage transitions from brine-dominated to CO₂-dominated. In this phase, brine is largely 

displaced by CO₂, and further leakage is driven primarily by CO₂ saturation and the pressure 

differential between the reservoir and the atmosphere. 

 

It is important to note that field and experimental data have shown that accumulation of a 

denser fluid (e.g., water) within the open wellbore can occur. This accumulation may eventually 

suppress or “kill” flow, as observed in controlled testing scenarios, thereby reducing or halting 

leakage rates despite the pressure differential (Adams et al., 2021). 

 

After injection stops, pressure within the CO₂ plume declines quickly but does not return 

to hydrostatic levels, due to the buoyancy of the CO₂. At this stage, mobile CO₂ saturation drives 

leakage, which gradually declines as CO₂ becomes residually trapped. There are no field studies 

that characterize leakage dynamics months or years after injection. The Aliso Canyon gas storage 

field well blowout showed a steady-state leakage phase from day 80 to 110, but no long-term data 

were collected afterward (Lindeberg et al., 2017). Thus, projections of post-injection leakage 

behavior remain entirely dependent on numerical simulations. 

 

However, these findings have clear implications for monitoring strategy: while brine 

leakage risk largely vanishes within 10 years post-injection, wells located within the CO₂ plume 
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may continue to leak CO₂ if mobile-phase saturation remains high. Rapid residual trapping 

significantly reduces long-term CO₂ leakage risk. 

 

Another important finding is the timing of peak leakage rates. In this study, peak CO₂ and 

brine leakage rates occurred just before injection ceased, when both pressure and CO₂ saturation 

were at their maximum. This contrasts with findings by (Pan & Oldenburg, 2020), who used 

T2Well simulations to model short-term leakage behavior (~1 month). In their work, peak CO₂ 

leakage occurred early, once brine was fully displaced, and then plateaued at a relatively constant 

rate. 

 

The simulations also highlighted the rapid propagation of the pressure front, which reached 

wells 2 km from the injector almost immediately after injection began. This supports prior findings 

by (Nordbotten & Celia, 2006), who emphasized that pressure waves travel faster than CO₂ 

plumes, thereby enabling early brine displacement well before CO₂ arrival.  

 

Another important observation was that, in all CMG-GEM cases, once CO₂ reached the 

open wellbore, it significantly displaced the brine. This created a gas-dominated flow regime with 

minimal two-phase interaction, which implies an efficient gas lift mechanism. In reality, during 

gas lift complex interactions happen as brine would likely continue to interact with and impede 

CO₂ flow. The expected competition between phases, intermittent flow regimes, and more 

complex gas-brine dynamics were not modeled, highlighting a potential limitation in the 

simulation's physical realism.  

 

Another critical factor influencing leakage behavior is near-wellbore phenomena. Studies 

by Abdel Azim (2016), Bahrami et al. (2004) and Pérez-Martinez et al. (2012) have shown that 

strong pressure gradients near the well can create vacuum-like conditions that draw water into the 

conduit. This process may trigger brine breakthrough and, in some cases, suppress or completely 
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halt gas flow. This phenomenon, known as the upconing effect—where brine migrates upward into 

the wellbore due to localized pressure depletion and a rapid decline in CO₂ saturation—was not 

observed in this study. In fact, the opposite trend was seen: as the grid was refined around the open 

wellbore, CO₂ saturation increased while pressure decreased (see Figure A4). 

 

Despite these limitations, the scenarios modeled here are intentionally constructed as 

worst-case cases, representing the upper bound of leakage and financial risk. This approach aligns 

with the study's goal: to provide a conservative framework for understanding the consequences of 

open-wellbore leakage in geologic carbon storage projects. 

 

4.2. SITE-SPECIFIC VARIABLES MOST STRONGLY INFLUENCE THE ENVIRONMENTAL AND 

FINANCIAL IMPACTS  

Sensitivity analyses using NRAP-OPEN-IAM and CMG-GEM revealed that several site-

specific variables—including permeability, depth, vertical-to-horizontal permeability ratio 

(kv/kh), pore size distribution (λ), salinity, thickness, and capillary entry pressure—affect CO₂ and 

brine leakage behavior. However, their impact on financial outcomes is substantially reduced when 

detection and remediation strategies are in place. 

 

Environmental Impacts 

Permeability, thickness kv/kh, and λ most strongly influence CO₂ leakage rates (Figure 25). 

These parameters govern plume mobility and interaction with leakage pathways. Higher 

permeability and kv/kh promote CO₂ migration but reduce pressure buildup, lowering brine 

leakage. Although these variables affect leakage volume, their financial significance diminishes 

when leaks are detected and remediated promptly. 
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Financial Impact 

Well density is the most influential factor for both environmental and financial outcomes 

(Figure 24). In high-density cases (e.g., 4.8 wells/km²), pressure is more dissipated (more open 

wellbores), leading to higher CO₂ leakage but lower brine leakage. In low-density scenarios (e.g., 

0.27 wells/km²), CO₂ leakage is negligible, but brine leakage is higher due to less pressure 

dissipation (i.e., less open wellbores cause less pressure dissipation), resulting in higher well and 

water remediation costs.  

 

In the base case—240 open wells at 2.4 wells/km²—the median financial impact is 

approximately $0.24 per ton of CO₂ injected per open wellbore. This worst-case assumption 

demonstrates how well count and placement strongly affect financial exposure. Estimating the 

number of wells intersecting the CO₂ plume and those within the area of review (AoR) can be a 

practical proxy for assessing site-specific financial impact. Moreover, wells affected by reservoir 

pressure—even without plume contact—can significantly contribute to costs. In the low-density 

case, brine leakage from pressure changes drove financial impact despite inexistent CO₂ leakage. 

This corroborates EPA’s focus on performing corrective actions and enhancing monitoring on 

wells within the AoR (U.S. EPA, 2013).  

 

As an analog to well integrity, different annual well failure probabilities were also analyzed 

to reflect realistic scenarios of leakage through compromised wellbores (Figure 29). Historical 

data suggests that a 0.1% annual failure rate is among the highest observed in practice (Jordan & 

Benson, 2009; Porse et al., 2014; Trabucchi et al., 2012). Under this scenario, the 90th-percentile 

CO₂ leakage remains well below 1%, and the normalized financial cost is modest, around $1.40 

per ton of CO₂ injected. These results indicate that rare well failures (≤0.1%) pose limited risk to 

project permanence and cost-effectiveness. 
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Cost Breakdown  

Brine leakage is the dominant cost driver due to early pressure propagation during 

injection. Most costs are incurred upfront, with injection interruption and water remediation 

comprising the bulk. CO₂-related climate compensation is negligible, accounting for just 0.2% of 

total expenses (Figure 22).  

 

Although the model assumes leakage to the surface, the framework is applicable to 

groundwater scenarios. The remediation approach—brine extraction, treatment, and reinjection—

mirrors strategies for managing contamination of Underground Sources of Drinking Water 

(USDWs). 

 

This analysis also informs carbon credit certification. Even under conservative 

assumptions (e.g., 240 open wells in the AoR), the p90 CO₂ leakage rate remains below 2%. This 

low figure suggests that sites with effective monitoring and remediation could justify lower credit 

buffer requirements. 

 

4.3. EVOLVING ENVIRONMENTAL AND FINANCIAL IMPACTS THROUGHOUT THE PROJECT 

LIFECYCLE 

This analysis focuses on the base case scenario—a flat-lying reservoir with 240 open 

wellbores—and applies a range of annual well failure probabilities to simulate leakage risk over 

time. Using Bayes’ theorem, the model updates the probability of future leakage based on 

continued non-leakage observations, reflecting how real-world operational experience can reduce 

perceived risk. In this scenario, wells are remediated upon detection, and the results—shown in 

Figures 30 and 31—illustrate how both environmental and financial impacts evolve over the 

lifetime of a project. 
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Unlike previous studies that primarily emphasized detection thresholds, this approach 

offers a time-resolved risk framework that dynamically adjusts expected leakage rates and 

financial liabilities as site performance data accumulates. It demonstrates how early non-leakage 

observations can lower projected risks, thereby reducing long-term liability. 

 

Understanding how financial and environmental impacts evolve over time is critical for the 

success of geologic carbon storage (GCS) projects. To our knowledge, this is the first study to 

jointly quantify these impacts across both the injection and post-injection periods. These insights 

are highly relevant for insurers evaluating fair risk premiums, for project developers designing 

adaptive monitoring strategies, and for building public trust in the long-term safety of CO₂ storage. 

 

Normalized Cost Over Time 

Simulation results show that the vast majority of financial risk is concentrated during the 

injection phase (Figure 30). For the highest historically observed annual well failure probability 

(0.1%), the normalized cost peaks at approximately $2 per ton of CO₂ injected, then drops to zero 

immediately after injection stops. This trend is consistent across all failure probability scenarios 

and reflects a key insight: under well-managed conditions, the net present cost of future damages 

is effectively zero once injection ends. 

 

This is primarily because, after injection stops, reservoir pressure declines sharply, 

reducing the driving force required for CO₂ and brine to migrate to the surface. As a result, any 

post-injection leakage that does occur is extremely limited—below the assumed detection 

threshold of monitoring systems, and therefore not financially consequential.  

 

Bayesian updating reinforces this finding by continually lowering the estimated probability 

of future leakage in the absence of observed incidents. Together, these results support the scaling 
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down of financial safeguards post-injection and highlight the importance of focusing mitigation 

efforts during the active injection period, when both pressure and leakage risk are highest. 

 

CO₂ Leakage Percent Over Time 

The projected percentage of CO₂ leaked over time follows a similar trend (Figure 31). 

Under a 0.1% annual failure probability, the cumulative percentage of CO₂ leaked reaches its 

maximum—approximately 0.8% of the total injected volume—around the end of the injection 

period. After that point, leakage tapers off significantly. Even 50 years post-injection, the projected 

additional leakage remains under 0.2%, and by 100 years, no further leakage is expected.  

 

These results underscore the long-term integrity of well-managed storage sites and 

demonstrate alignment with permanence thresholds such as those predicted by IPCC and LCFS 

protocols. They suggest that most climate risk associated with leakage is front-loaded and 

manageable with appropriate monitoring and response strategies. 

 

Overall, this time-dependent framework enables risk management strategies—such as 

credit buffers and insurance premiums—to be aligned with actual project behavior. It provides 

operators and insurers with a basis for adjusting safeguards dynamically, concentrating resources 

during higher-risk periods and reducing over-coverage as uncertainty decreases. This supports 

capital efficiency, regulatory compliance, and stakeholder confidence across the lifecycle of a CO₂ 

storage project. 

 

4.4. OPTIMIZATION OF MONITORING INVESTMENTS BASED ON SITE-SPECIFIC LEAKAGE 

IMPACTS 

Effective monitoring is essential not only for regulatory compliance but also for reducing 

financial liabilities and reinforcing public confidence in CO₂ storage projects. This section 
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evaluates how different detection thresholds influence the cost-effectiveness of monitoring 

strategies and their ability to satisfy long-term containment goals. 

 

The results show that a detection threshold of approximately 20 tons per day (TPD) 

provides the most balanced outcome (Figure 32). At this threshold, 90% of modeled outcomes 

remain below 1% cumulative leakage over 100 years, satisfying both (IPCC, 2005) 

recommendations for 99% CO₂ containment and the LCFS requirement that 90% of modeled 

scenarios stay under 1% leakage (CARB, 2018). 

 

Monitoring investments up to $8 per ton of CO₂ injected are justified under this optimized 

threshold, beyond which diminishing returns become apparent. While this $8 estimate is 

conservative—particularly under the assumption that all 240 wells in the model domain fail with 

100% probability—it offers a valuable upper bound for planning purposes. But again, this assumes 

that all 240 wells fail. If we instead assume an annual failure probability of 0.1%, the cost can 

decrease to $0.008 per ton of CO₂ injected. According to Ogland-Hand et al. (2023), monitoring 

costs typically range around $2 per ton of CO₂, and IEAGHG reports estimates between $0.80 and 

$2 per ton, depending on site complexity and monitoring strategy. Even though the $8 figure 

exceeds typical costs, having early insight into financial implications enables operators to conduct 

cost-benefit analyses and optimize monitoring investments, such as frontloading monitoring 

investment to time of highest risk early in the project, while being in line with both permanence 

requirements and budgetary constraints. 

 

Moreover, the detection threshold itself can be refined based on site-specific monitoring 

results and historical performance. This would allow operators to establish a tailored threshold that 

reflects actual leakage behavior and monitoring resolution, improving the efficiency and accuracy 

of the response strategy. 
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It is important to note that in this analysis, we assume the monitoring system detects 

leakage with 100% certainty once the threshold is exceeded. In practice, detection probability 

depends on the capabilities of the monitoring technology and site-specific factors. If detection 

likelihoods are available—for example, as probabilities associated with particular monitoring 

observations—these can be incorporated into the Bayesian framework to update the estimated 

probability of leakage more accurately. 

 

Additionally, one emerging challenge in the field is defining an overall detection threshold 

for a given monitoring system. While the complexity of monitoring network design makes this 

difficult—due to dependencies on spatial resolution, sensor type, leakage pathway geometry, and 

noise levels—developing reasonable approximations will help clarify how detection thresholds 

reduce leakage risk, improve system performance, and provide a framework for tailoring 

monitoring intensity to actual project conditions. This helps project developers and regulators 

identify financially efficient approaches that still meet permanence and safety criteria. 
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CHAPTER V: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1. CONCLUSIONS 

This thesis set out to investigate how subsurface conditions influence the material and 

financial impacts of CO₂ and brine leakage in geologic carbon storage (GCS) systems, with the 

goal of estimating upper-bound environmental and economic consequences from potential leakage 

events. The motivation stems from the urgent need to de-risk carbon storage investments, optimize 

monitoring investments, and comply with regulatory requirements—particularly the financial 

responsibility mandates of the U.S. EPA’s Class VI permitting framework. Due to limited 

operational track records and the absence of standardized risk quantification methodologies, 

current insurance and financial assurance practices often rely on conservative assumptions. This 

can lead to inefficiencies in project planning and inflated premiums. 

 

To address these challenges, a methodology was developed that integrates multiphase flow 

simulations, wellbore leakage modeling, and environmental and financial cost analysis. A portfolio 

of dynamic simulations was constructed to represent a broad range of plausible subsurface and 

project conditions, including variations in reservoir geometry (flat, dipping, and anticlinal), 

permeability, thickness, depth, porosity, well density, and extension of the injection zone. All 

models were grounded in real-world data from the U.S. Gulf Coast, ensuring regional relevance 

and enhancing the robustness of the simulation outcomes. 

 

CO₂ and brine can migrate through various pathways such as fractures, faults, and spill 

points; however, legacy plugged and abandoned (P&A) wells are recognized as the most 

significant risk pathway. This analysis focused on a worst-case scenario in which all P&A wells 

intersecting the storage formation were assumed to be fully open and vertically connected to the 

surface—lacking plugs and wellheads. These open wells served as simplified analogs for vertical 
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conduits and could also represent worst case analogs for damaged caprock, fractures, or faults that 

allow upward fluid migration through simple aperture. These hypothetical conduits were 

distributed at varying locations and distances from the injection well to capture a range of leakage 

possibilities. This conservative framing enabled rigorous estimation of maximum potential 

environmental and financial impact. 

 

To quantify the financial consequences of leakage, a simplified cost model was developed. 

Unlike other frameworks that may attempt to account for third-party damages—such as impacts 

on water wells, oil and gas operations, or public health—this study focused on the most probable, 

direct, and quantifiable cost drivers: brine remediation, leaky well repair, loss of tax credits, and 

contractual penalties. Only two stakeholders were considered in the model: the CO₂ emitter and 

the injection operator. 

 

Environmental damages were limited to brine leakage reaching the surface, which is more 

likely to produce observable and traceable impacts. In contrast, CO₂ leakage was excluded from 

environmental cost calculations because evidence suggests that when CO₂ reaches the atmosphere, 

it rapidly disperses and poses minimal risk to human health or ecosystems. Similarly, damages to 

underground sources of drinking water (USDWs) were not included, given the limited evidence of 

widespread harm and the difficulty in quantifying such impacts in a generalized cost model. 

However, the financial remediation methods modeled for surface brine leakage (e.g., pumping, 

treatment, reinjection) would also apply in cases where USDW contamination occurs—assuming 

that the leakage is detectable and measurable. 

 

To account for evolving site conditions, Bayesian updating was incorporated into the 

framework to dynamically adjust risk and cost estimates over time, based on actual site 

performance and the absence of observed leakage events. 
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This modeling framework is designed to scale with larger projects and higher injection 

rates. While the base simulations assume CO₂ injection into a single sand body or reservoir layer, 

the findings can be reasonably extrapolated to scenarios involving multiple stacked injection 

zones—an approach commonly used in real-world applications. In such cases, the modeled layer 

can serve as a proxy for the uppermost portion of a thicker storage complex. 

 

Importantly, reservoir thickness and permeability—key parameters that control the 

maximum achievable injection rate—were found to have limited influence on overall financial and 

environmental impacts, particularly when robust monitoring and remediation strategies are 

implemented. As injection volumes increase, operators are expected to distribute CO₂ across 

multiple layers to manage pressure buildup and meet project capacity requirements. 

 

For conservative planning, it can be assumed that legacy plugged-and-abandoned (P&A) 

wells intersect all active injection layers. This assumption enables the proportional extension of 

the risk and cost estimates presented in this study to larger, more complex storage architectures, 

while preserving the core risk assessment principles. 

 

In conclusion, this thesis demonstrates that even under conservative, worst-case 

assumptions, the environmental and financial risks associated with geologic CO₂ storage are low 

and manageable. For an annual well failure probability of 0.1%—the highest rate documented in 

historical records—the average projected cost is approximately $1.4 per ton of CO₂ injected. 

Although this cost may seem modest, a 0.1% failure rate implies that more than 1 in 10 wells 

would fail through the entire casing over the course of the project, making this a highly 

conservative and extreme scenario. In reality, most documented leakage incidents occur through 

smaller apertures or more complex pathways, such as degraded plugs or poor bonding between 

rock, casing, and cement. By adopting these worst-case conditions, this study establishes an upper 
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bound for evaluating long-term risk and financial liability, providing a valuable reference point for 

project developers, regulators, and insurers. 

 

This cost reflects the expected financial liability over the lifetime of the project, including 

both environmental remediation and regulatory penalties. At this same failure probability, the 

90th-percentile cumulative CO₂ leakage is just 0.4% of the total injected volume—well below the 

1% IPCC threshold and comfortably within LCFS permanence criteria. These findings affirm the 

permanence effectiveness of well-sited CO₂ storage systems, even under pessimistic assumptions. 

 

When evaluating how leakage and costs evolve over time using the Bayesian framework, 

the results remain reassuring. From year 10 to 120, projected cumulative CO₂ leakage reaches only 

0.65%. Extending the period to start at year 20 increases this slightly to 0.8%, but it decreases to 

0% at year 120. This means that no CO2 leaks 100 years after injection stops under this worst-case 

scenario. Financial impacts follow a similar pattern: under the 0.1% scenario, the projected cost 

between years 10 and 120 is approximately $2 per ton of CO₂ injected. Once injection ceases at 

year 20, leakage and costs decline sharply. From year 20 onward, no further detectable CO₂ or 

brine leakage is projected, and financial impacts fall to zero. This outcome has significant 

implications for long-term liability planning, suggesting that post-injection site care and 

monitoring requirements can reasonably be relaxed after injection ends, especially if supported by 

monitoring data. 

 

A breakdown of the total financial impact shows that 35% is attributed to environmental 

remediation—including brine cleanup and well repair—while the remaining 65% stems from the 

loss of tax credits and contractual penalties. The analysis assumed a conservative well repair time 

of 430 days, which significantly contributes to these financial losses. However, in real-world GCS 

projects, strong financial and regulatory incentives exist to reduce downtime. As a result, actual 

repair times—and consequently, overall financial impacts—are likely to be significantly lower. 
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Also, this study assessed how varying detection thresholds affect monitoring effectiveness 

and cost-efficiency. A threshold of 20 tons per day (TPD) was found to be optimal from an 

economic perspective, ensuring that 90% of modeled outcomes stay under 1% cumulative leakage 

over 100 years, satisfying both IPCC and LCFS requirements. At this threshold, monitoring 

investments up to $8 per ton are justified under the assumption that all 240 wells in the project 

area will fail. When assuming a more realistic 0.1% failure probability, this cost can drop to just 

$0.008 per ton. The analysis also supports front-loading monitoring efforts during high-risk 

periods and adapting intensity as site-specific performance data becomes available. 

 

Also, the simulations clearly show that subsurface conditions—such as reservoir geometry, 

lateral extent of the injection zone, and petrophysical variability—have only a minor influence on 

total leakage volumes and financial consequences when effective detection and remediation 

systems are in place. Instead, the most critical factors are well density and the annual probability 

of failure, which act as proxies for legacy well integrity and well type. These two parameters 

primarily determine the scale of leakage events, making them the dominant drivers of both 

environmental and financial risk over the project lifecycle. Focusing on these key variables—and 

how their impacts change over time—can lead to more targeted and cost-effective risk 

assessments, monitoring strategies, and policy frameworks that enhance the long-term safety, 

credibility, and financial sustainability of carbon storage operations. Together, these findings 

support a more rational and evidence-based approach to financing, insuring, and managing the 

long-term liability of CO₂ storage projects. 

 

5.2. RECOMMENDATIONS AND FUTURE WORK 

Building on the findings of this study, several recommendations are proposed to guide 

future research, improve simulation practices, and inform regulatory and policy development. 
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First, current simulations do not fully account for near-wellbore effects, which field tests 

have shown can significantly influence leakage behavior. Specifically, water intrusion and 

upconing phenomena can suppress or entirely halt CO₂ flow due to pressure depletion and brine 

displacement near the well. These effects—observed in field experiments but not captured in the 

current modeling framework—could materially reduce leakage rates and thus affect environmental 

and financial risk estimates. Future modeling should integrate these localized physical processes 

to improve the realism and accuracy of leakage predictions. 

 

Second, open wellbores in this study act as an upper boundary condition, influencing 

reservoir pressure and CO₂ saturation throughout the model domain. Even when only a subset of 

wells is assumed to fail probabilistically, the input conditions used for analysis reflect the 

cumulative impact of all open wellbores, possibly leading to overestimation of leakage rates. 

Additionally, lateral boundary conditions were found to significantly influence pressure buildup, 

brine displacement, and long-term risk projections. Future work should prioritize scalable, 

physically representative methods for modeling aquifer size and boundary behavior. 

 

Third, more work is needed to quantitatively link well construction characteristics—such 

as completion type, casing material, and construction year—to failure probability. By identifying 

correlations between these variables and observed leakage or failure events, practitioners can 

develop more refined, evidence-based failure probability estimates. These values can then be 

integrated into risk assessments and monitoring plans at the individual well level. This could also 

support site-specific prioritization of monitoring investments based on well risk profile and 

proximity to the plume. 

 

Fourth, the financial and leakage results derived in this study should not be interpreted as 

forecasts but rather as conservative upper bounds on potential outcomes. For insurance purposes 

and financial responsibility planning, the outputs of this research are best used as caps or maximum 
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expected damages. Different assumptions about annual failure probability (e.g., less than 0.1%) 

can be used to assess lower-risk scenarios and evaluate trade-offs in monitoring and remediation 

costs. 

 

Fifth, the financial model developed in this study is intentionally conservative and designed 

for flexibility. While results represent upper-bound estimates, users can easily adjust key variables 

such as well failure rates, CO₂ tax credit value, or well repair time to reflect site-specific conditions. 

Additionally, some insurers now offer coverage for lost revenue—such as tax credit loss during 

injection interruptions—which can be directly incorporated into the framework. Expanding the 

model to support real-time updates and site-specific parameterization would further strengthen its 

applicability for dynamic risk management, insurance underwriting, and investment planning. 

 

Sixth, simulation results show that after injection ceases, CO₂ and brine leakage rates 

decline rapidly to levels that are often undetectable with existing monitoring technologies. This 

finding suggests that monitoring efforts should be focused during the injection period, when risks 

are highest and intervention can mitigate significant damage. Post-injection regulatory 

requirements should be revisited to reflect the reduced risk profile, potentially enabling more 

efficient resource allocation and reducing long-term liability management burdens for operators. 

 

Lastly, future research should improve the characterization of sensor detection thresholds, 

spatial and temporal resolution, and detection reliability under varying site conditions. These 

attributes directly affect the probability of early leakage detection and must be integrated into 

adaptive risk modeling frameworks. Enhanced understanding will support optimization of 

monitoring system design, justify expenditures, and ensure alignment with regulatory and project 

performance standards. 
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APPENDIX 

 

A.1. AREA OF REVIEW (AOR) CALCULATION 

 

To determine the Area of Review (AoR), the critical pressure had to be calculated. The 

critical pressure was used to calculate the CO2 and brine leakage rates when using NRAP-OPEN-

IAM and when determining the AoR for the CMG-GEM open wellbore simulations. According to  

(Nicot et al., 2009) critical pressure is defined as the minimum value of pressure increase sufficient 

to lift denser brine up an open wellbore to the base of the freshwater aquifer. The equation to 

calculate the critical pressure in a reservoir is as follows:  

 

∆𝑃 = 𝑔 ×
𝜀

2
× (𝑍𝑢 − 𝑍𝑖)

2 

Where:  

∆𝑃⁡= Critical pressure 

𝑔⁡= gravity 

𝜀⁡= density gradient, a linear coefficient depending on the salinity increase with depth, 

and also geothermal gradient: 

 

𝜀 =
𝜌𝑢 − 𝜌𝑖
𝑍𝑢 − 𝑍𝑖

 

𝜌𝑢⁡= Fluid density at USDW 

𝜌𝑖 ⁡= Fluid density at the injection zone 

𝑍𝑢⁡= Depth of the top of the injection formation  

𝑍𝑖 = Depth of the base of the USDWs. 
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For the case at hand and in order to determine the pressure it takes to lift the brine up to the 

atmosphere, it was assumed 𝑍𝑖 of 0 meters. Based on this equation, different critical pressure 

values were calculated for the different cases in the sensitivity analysis.  

 

A.2. SENSITIVITY ANALYSIS USING NRAP-OPEN-IAM 

 

For the leaky well simulation, NRAP-OPEN-IAM software was used 

(https://edx.netl.doe.gov/sites/nrap/nrap-open-iam/). NRAP-OPEN-IAM comprises a set of 

reduced-order and analytical models of various components of the Geologic Carbon Storage 

System, potential leakage pathways, including impact to groundwater resources and the 

atmosphere.  

 

The open wellbore model used to calculate CO2 and brine leakage rates into the atmosphere 

(Pan et al., 2011) implements the drift-flux approach to simulate CO2 and brine flow through an 

open conduit. This model treats the leakage of CO2 up an open wellbore or up an open (i.e., 

uncemented) casing/tubing. This model treats the non-isothermal flow of CO2 and brine up an 

open wellbore, allows for the phase transition of CO2 from supercritical to gaseous, with Joule-

Thompson cooling, and considers exsolution of CO2 from brine phase.   

 

The NRAP-OPEN-IAM is designed to determine the leakage from a point in the reservoir 

to the atmosphere. Therefore, results (i.e., calculated pressure and CO2 saturation) for a single 

layer must be extracted from the numerical model results. For this analysis, pressure and CO2 

saturation from the uppermost model layer were extracted from the reservoir model (CMG-GEM). 

The extracted model layer has the largest CO2 plume extent and the highest CO2 concentration.  

 

For these simulations, 0.2 MT of CO₂ was injected per year for 20 years (4MT of CO2 in 

total), and a 100-year post-injection period was analyzed. As for the critical pressure, since leakage 

https://edx.netl.doe.gov/sites/nrap/nrap-open-iam/
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rates to the surface are being calculated, it was assumed that the fluid salinity at the USDW is 0 

ppm, effectively representing fresh water. For the sensitivity analysis, the reservoir model 

corresponds to the base case scenario: 240 open wellbores located at different locations on the 

project area, and flat-lying reservoir.  

 

For the sensitivity analysis, 24 simulations were done. For these 24 simulations, the 

cumulative CO2 and brine leakage (kg) were calculated to understand the most important variables 

that influence CO2 and brine leakage out of the atmosphere and hence, risk. To normalize the 

results, the cumulative volume of CO2 injected in the reservoir (ft3) per case was calculated. Then, 

the CO2 and brine leakage were divided by the cumulative volume of CO2 injected.  

 

 

Variables 

Normalized Cumulative CO2 

Leakage 

Normalized Cumulative Brine 

Leakage 

Low Base High Low Base High 

Depth 0.313 (0.77) 0.17 0.14 (-0.16) 13.58 (1.73) 4.97 6.36 (0.28) 

Thickness 0.18 (0.05) 0.17 0.1 (-0.38) 5.44 (0.09) 4.97 5.19 (0.04) 

Porosity 0.16 (-0.03) 0.17 0.16 (-0.05) 5.28 (0.06) 4.97 4.81 (-0.03) 

Permeability 1.69 (8.57) 0.17 0.01 (-0.93) 10.99 (1.21) 4.97 8.92 (0.79) 

Kv/Kh 0.37 (1.09) 0.17 0.13 (-0.22) 4.62 (-0.06) 4.97 5 (0) 

Salinity 0.21 (0.23) 0.17 0.06 (-0.62) 5.08 (0.02) 4.97 8.47 (0.7) 

Critical Water 

Saturation 
0.16 (-0.06) 0.17 0.21 (0.24) 5.01 (0) 4.97 4.91 (-0.01) 

Critical Gas 

Saturation 
0.19 (0.08) 0.17 0.14 (-0.17) 4.99 (0) 4.97 5.02 (0.01) 

Capillary Entry 

Pressure 
0.13 (-0.26) 0.17 0.36 (1.06) 5.53 (0.11) 4.97 4.4 (-0.11) 

λ 0.52 (1.97) 0.17 0.12 (-0.3) 4.43 (-0.1) 4.97 5.25 (0.05) 

Aquifer Size 1.28 (6.27) 0.17 0.17 (0) 8.41 (0.69) 4.97 5.02 (0) 
   

     

Table A1: CO2 and brine leakage rates for different variables using NRAP-OPEN-IAM. The 

values in the parenthesis show the change in percentage as a decimal value with 

respect to the base case.  
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Figure A1. Sensitivity of CO₂ and Brine Leakage to Subsurface Parameters: Tornado Diagrams. 

Black and gray bars represent the high and low case, respectively. These simulations were done 

using NRAP-OPEN-IAM.  

 

To understand how leakage rates vary with distance, three open wellbores were placed at 

different distances from the injection well: 100 m, 500 m, and 1,000 m. For this analysis, the base 

case reservoir model was used—a flat-lying reservoir with 0.2 MT of CO₂ injected per year for 20 

years, followed by a 100-year post-injection period. 
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Figure A2. CO2 and Brine Leakage Rates at different distances: 100 m, 500 m, and 1,000 m. The 

software used was NRAP-OPEN-IAM. 

 

A.3. EFFECTS OF GRID DISCRETIZATION AROUND AN OPEN WELLBORE 

 

To analyze near-wellbore effects, the simulation grid was discretized around the open 

wellbore. Two grid resolutions were evaluated: one with 10×10×1 meter cells and another with 

finer 1×1×1 meter cells, both applied at the injection well and open wellbore locations. 

 

The model domain spans 10 km × 10 km, and base reservoir properties—such as thickness, 

permeability, depth, and salinity—were used. The model was run as a closed boundary system, 

with 0.1 MT of CO₂ injected annually for 20 years (totaling 2 MT), followed by a 50-year post-

injection monitoring period. The open wellbore was positioned 500 meters from the injection well, 

as shown in Figure A3. 

 

Main Observations: 

• Larger grid cells around the open wellbore lead to higher simulated pressure. This occurs 

because pressure is distributed across a greater volume, reducing the model’s ability to capture 
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sharp pressure drops near the wellbore. Finer grid cells more accurately capture the localized 

pressure drawdown associated with leakage, leading to more realistic pressure gradients. 

• Coarser grid cells result in higher pressure buildup near the open wellbore, which in turn drives 

more CO₂ leakage. As more CO₂ escapes the system, the local CO₂ saturation decreases. Thus, 

simulations with larger grid cells show lower CO₂ saturation near the wellbore due to increased 

leakage rates. 

 

Because pressure differentials are the main driver of CO₂ and brine leakage, the grid 

resolution significantly affects the accuracy of leakage estimates. Coarser grid cells smooth the 

pressure field, leading to inflated leakage rates. In this study, the full-scale simulations used grid 

cells coarser than 10 meters (approximately 75 × 75 × 3 meters), suggesting that the reported CO₂ 

and brine leakage values are conservative upper bounds. In real-world applications, near-wellbore 

effects—such as localized pressure drawdown around open wellbores—would likely reduce 

leakage rates compared to those estimated in this study. As a result, actual environmental and 

financial impacts may be lower than the conservative estimates produced using coarser grid cells. 
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Figure A3. Model domain used for grid size sensitivity analysis, measuring 10 km by 10 km. The 

open wellbore is positioned 500 meters from the injection well. 

 

Figure A4. Results from the grid size sensitivity analysis. Plot (a) displays the CO₂ and brine 

leakage rates over time, while plot (b) shows the CO₂ saturation and pressure at the grid cell 

containing the open wellbore. The “1 m grid” corresponds to the 1 x 1 x 1 meter cells, whereas 

the “10 m grid” corresponds to the 10 x 10 x 1 meter cells.  
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A.4. EFFECTS OF DIFFERENT AQUIFER LATERAL EXTENSIONS ON LEAKAGE RATES 

 

To assess the effect of saline aquifer lateral extent on CO₂ and brine leakage rates, three 

scenarios were analyzed based on varying boundary conditions that simulate different aquifer 

sizes: 

• Low case: 25.2 × 25.2 km 

• Base case: 770 × 770 km 

• High case: 7610 × 7610 km 

 

Although the physical model domain remains 10 × 10 km, boundary conditions were 

adjusted to represent these lateral extents using the geometric progression method described in 

Section 2.3. All scenarios used base reservoir properties, with a CO₂ injection rate of 0.2 million 

tonnes (MT) per year for 20 years (4 MT total), followed by a 100-year post-injection monitoring 

period. One open wellbore was placed 500 meters from the injection well, and the grid resolution 

was set at 132 × 132 × 5. 

 

Main Observations: 

• Base and High Cases: Both scenarios behave similarly and reflect an open-boundary system. 

While minor differences in pressure, CO₂ saturation, and leakage rates exist, they remain small. 

Due to the buoyant nature of CO₂, reservoir pressure does not return to hydrostatic levels (3067 

psi) after injection ceases in either case. 

• Low Case: The low-capacity aquifer acts as a closed system, resulting in sustained 

overpressure throughout the simulation. This elevated pressure drives increased CO₂ leakage 

and results in lower CO₂ saturation near the leakage pathway. 

• Pressure Behavior: Regardless of boundary configuration, pressure propagates rapidly across 

the model domain, initiating brine leakage in the first year of the project. The effects of 
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boundary conditions become more evident during the post-injection period, particularly in the 

high-capacity case, where pressure continues to decline further than in the base or low 

scenarios. 

 

The lateral extent of the saline aquifer plays a critical role in influencing CO₂ and brine 

leakage rates. Larger saline aquifers tend to behave as open-boundary systems, dissipating pressure 

more effectively and reducing leakage risk, while smaller aquifers exhibit closed-system behavior, 

leading to sustained overpressure and increased leakage. However, accurately defining boundary 

conditions to simulate realistic large-scale reservoirs remains a key area for further research. 

Notably, pressure does not return to hydrostatic conditions within the 100-year simulation window 

in any scenario in the entire model domain. This raises important questions about whether this 

behavior reflects true reservoir dynamics or is an artifact of how boundary conditions were 

modeled. One possible explanation is that brine displacement and redistribution may occur more 

slowly than expected, leading to more localized pressure buildup and extended pressure dissipation 

timescales. Additional studies are warranted to determine whether prolonged overpressure is a 

realistic outcome or a result of model simplifications. 
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Figure A5. Results from the saline aquifer lateral extension sensitivity analysis. Plot (a) shows 

pressure and CO₂ saturation at the grid cell containing the open wellbore. Plot (b) displays the 

brine and CO₂ leakage rates through the open wellbore from the reservoir to the surface. 

 

A.5. CMG-GEM AOR ANALYSIS 

Figure A6 shows the pressure front at year 20, simulated using CMG-GEM, for two 

scenarios: one without open wellbores and one with four open wellbores. The Area of Review 

(AoR) was determined using the critical pressure equation presented in Section A.1. 
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In this analysis, the open wellbores are modeled as cased conduits connecting the injection 

zone directly to the surface, without any intermediate connection to thief zones or aquifers. As a 

result, the fluid salinity within the well is assumed to match that of the injection zone. Under these 

conditions, the critical pressure buildup for defining the AoR becomes zero—meaning that the 

critical pressure for AoR definitions is the hydrostatic pressure, so even minimal pressure increases 

would initiate fluid migration from the injection zone. 

 

Due to the limited size of the model domain, the calculated AoR exceeds the model 

boundaries and therefore cannot be visualized within the simulation extent. Nonetheless, the 

comparison between the two scenarios clearly demonstrates how the number of open wellbores 

influences the pressure front. Open wellbores act as vertical pressure sinks, effectively serving as 

upper boundary conditions that dissipate pressure and limit pressure buildup within the reservoir. 

 

 

Figure A6. This model is a sample of the model domain. Pressure contour for (a) case with no 

open wellbores and for (b) case with four open wellbores. Open wellbores CAP1, CAP2, CAP3, 

and CAP4 are located 100 m, 500 m, 1,000 m, and 5,000 m from the injection well, respectively.  
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A.6. BAYESIAN UPDATING ADJUSTMENT SENSITIVITY ANALYSIS 

 

 

 

Figure A7. Year-by-Year Average Normalized Cost and % of CO₂ Leaked under the Constant 

Probability Framework. In this scenario, the annual probability of well failure remains constant 

over time and is not updated using Bayesian learning based on observed (non-) leakage events. 

That is, the model does not incorporate feedback from the absence of leakage to reduce 

perceived risk. Additionally, wells can fail in multiple years throughout the simulation—they are 

not permanently fixed after a failure in a given iteration. Instead, failures are reassigned 

independently each year, allowing repeated failures over the project lifetime. 
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Figure A8. Year-by-Year Average Normalized Cost and % of CO₂ Leaked under Static Failure 

Probability Scenario. In this case, the annual probability of failure remains constant throughout 

the project, as it is not updated based on non-leakage observations (i.e., Bayesian updating is not 

applied). Wells that fail are permanently repaired within each simulation iteration following their 

failure. 
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A.7. DETECTION AND REMEDIATION ADJUSTMENT – PYTHON CODE 

This Python code estimates the environmental and financial consequences of CO₂ and brine 

leakage from a geologic storage site. It simulates leakage detection and remediation using 

probabilistic inputs and provides cost distributions per ton of injected CO₂. 

 

This script models leakage from one storage scenario (single CSV file) by: 

• Reading gas and water rate outputs from reservoir simulations (e.g., CMG). 

• Simulating detection and repair delays. 

• Calculating leakage volumes and associated financial penalties. 

• Running 1,000 Monte Carlo iterations with uncertainty in detection thresholds, 

remediation delays, and cost parameters. 

The script produces: 

• CDF of normalized cost with vertical lines at P10, P50, and P90. 

• CDF of final % CO₂ leaked with the same statistical markers. 

• Printed summary statistics for decision-making or thesis discussion. 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from scipy.interpolate import interp1d 

import math 

import random 

 

# ============================ 

# USER SETTINGS 

# ============================ 

#Insert your simulation results file name or file path 

filename = insert here 

 

n_iter = 1000 

TOTAL_INJECTED_TONS = 4e6 

PROJECT_DURATION_DAYS = 120 * 365.0 
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# Triangular detection threshold (tons/day) 

th_left, th_mode, th_right = 0.55, 10, 30 

 

# Normal fix time distribution (days), truncated≥0 

fix_mean, fix_std = 433, 154 

 

# FOAK penalty distribution: uniform(5..20) $/ton (base year=2014) 

FOAK_min, FOAK_max = 5.0, 20.0 

 

# Economic & discount parameters 

inflation_annual = 0.029 

discount_annual  = 0.029 

carbon_price_2025 = 85.0       # $/ton, base year=2025 

remediation_2010  = 56100.0    # lumpsum $/well, base year=2010 

base_year = 2025 

 

# Injection rate => 0.2 Mt/yr => ~200,000 t/yr => ~547.945 t/day 

injection_tpd = 200000.0 / 365.0 

 

# CO₂ conversion ft³/day => tons/day 

co2_ft3_to_tons   = 5.61e-5 

# Water conversion bbl/day => tons/day, ~0.159 if density=1 

brine_bbl_to_tons = 0.159 

 

# Water cost is lognormal: 

# we want "annual capital cost" and "annual operating cost" each with known p25, p50, p75 => 

base=1999 

# We'll sum them to get $/(1000 gallons). Then lumpsum at fix time for total water 0..fix_time 

# Using 1 ton water ~264.4 gallons => we can scale from $/(1000 gal) to $/ton. 

 

# We'll define function to solve mu,sigma for lognormal from p25, median, p75 

z25, z75 = -0.67449, 0.67449 

def solve_lognormal_params(p25, median, p75): 

    """ 

    Returns (mu, sigma) for lognormal s.t.  

    - p25 => x_25 => log(x_25) = mu + sigma*z25 

    - p50 => median => exp(mu)= median 

    - p75 => x_75 => log(x_75) = mu + sigma*z75 

    """ 

    mu  = math.log(median) 

    ln25= math.log(p25) 

    ln75= math.log(p75) 

    sigma = (ln75 - ln25)/(z75 - z25) 

    return mu, sigma 

 

# Suppose for the "unit annual capital cost" => p25=23, median=78, p75=350 => base=1999 
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capex_p25, capex_med, capex_p75 = 23.0, 78.0, 350.0 

capex_mu, capex_sigma = solve_lognormal_params(capex_p25, capex_med, capex_p75) 

 

# Suppose for the "unit annual operating cost" => p25=5, median=16, p75=41 => base=1999 

opex_p25, opex_med, opex_p75 = 5.0, 16.0, 41.0 

opex_mu,  opex_sigma  = solve_lognormal_params(opex_p25, opex_med, opex_p75) 

 

def sample_detection_threshold(): 

    """One threshold for entire iteration.""" 

    return np.random.triangular(th_left, th_mode, th_right) 

 

def sample_fix_time(): 

    """One fix-delay for entire iteration.""" 

    val = np.random.normal(fix_mean, fix_std) 

    return max(val, 0.0) 

 

def sample_foak(): 

    """One FOAK penalty (base 2014) for entire iteration, uniform(5..20).""" 

    return random.uniform(FOAK_min, FOAK_max) 

 

def discount_factor(fix_yr): 

    """Discount lumpsum from fix_yr => base_year(2025).""" 

    return 1/((1+discount_annual)**(fix_yr- base_year)) 

 

def sample_water_costs_lognormal(): 

    """ 

    For each well, we draw a LN for capital, LN for operating => sum => $/(1000 gal) base=1999 

    We'll do it inside the loop for each well. 

    """ 

    ln_c = random.gauss(capex_mu, capex_sigma) 

    ln_o = random.gauss(opex_mu, opex_sigma) 

    return math.exp(ln_c) + math.exp(ln_o)  # base=1999 => $/(1000gal) 

 

# ============================ 

# 1) READ & BUILD 

# ============================ 

df = pd.read_csv(filename) 

df["Time (day)"] = pd.to_numeric(df["Time (day)"], errors="coerce") 

df.sort_values("Time (day)", inplace=True) 

 

time_days = df["Time (day)"].to_numpy() 

dt_array  = np.diff(time_days, prepend=time_days[0]) 

 

# Gas columns 

gas_cols = [c for c in df.columns if ("Gas Rate" in c) and ("ft3/day" in c) and ("Water" not in c)] 

# Water columns 
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water_cols = [c for c in df.columns if ("Water Rate" in c) and ("bbl/day" in c)] 

 

wells_data= {} 

 

# Build gas interpolation 

for gcol in gas_cols: 

    wname = gcol.split("-Gas")[0].strip() 

    rate_ft3 = df[gcol].fillna(0.0).values 

    gas_rate_tpd = rate_ft3* co2_ft3_to_tons 

    incr_g= gas_rate_tpd* dt_array 

    cum_g= np.cumsum(incr_g) 

    f_gas= interp1d(time_days, cum_g, bounds_error=False, fill_value=(cum_g[0], cum_g[-1])) 

    wells_data[wname] = { 

        "gas_rate_tpd": gas_rate_tpd, 

        "gas_interp":   f_gas 

    } 

 

# Build water interpolation 

for wcol in water_cols: 

    wname= wcol.split("-Water")[0].strip() 

    if wname not in wells_data: 

        wells_data[wname] = {} 

    wrate_bbl= df[wcol].fillna(0.0).values 

    wrate_tpd= wrate_bbl* brine_bbl_to_tons 

    incr_w= wrate_tpd* dt_array 

    cum_w= np.cumsum(incr_w) 

    f_w= interp1d(time_days, cum_w, bounds_error=False, fill_value=(cum_w[0], cum_w[-1])) 

    wells_data[wname]["water_rate_tpd"]= wrate_tpd 

    wells_data[wname]["water_interp"]  = f_w 

 

# If a well missing water => zero 

for wnm in wells_data: 

    if "water_rate_tpd" not in wells_data[wnm]: 

        z= np.zeros_like(time_days) 

        wells_data[wnm]["water_rate_tpd"]= z 

        fz= interp1d(time_days, z, bounds_error=False, fill_value=(0,0)) 

        wells_data[wnm]["water_interp"]= fz 

 

def sum_rate_tpd(wdict): 

    #return wdict["gas_rate_tpd"] + wdict["water_rate_tpd"] 

    return wdict["gas_rate_tpd"] + wdict["water_rate_tpd"] 

 

def detection_time(wdict, threshold): 

    sr = sum_rate_tpd(wdict) 

    idx= np.where(sr >= threshold)[0] 

    if len(idx)>0: 
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        return time_days[idx[0]] 

    return None 

 

def leaked_co2_tons(wdict, day): 

    return float(wdict["gas_interp"](min(day, PROJECT_DURATION_DAYS))) 

 

def leaked_water_tons(wdict, day): 

    return float(wdict["water_interp"](min(day, PROJECT_DURATION_DAYS))) 

 

def lumpsum_co2_cost(co2_leaked, fix_yr, foak_base): 

    """ 

    co2_leaked => 0..fix_time 

    lumpsum => co2_leaked*(foak_base + carbon) + remediation => all inflated => discount 

    foak_base => random from [5..20], base year=2014 

    carbon => 85 $/ton base 2025 

    remediation => 56100 base 2010 

    """ 

    # inflation 

    foak_infl = (1+inflation_annual)**(fix_yr- 2014) 

    carb_infl = (1+inflation_annual)**(fix_yr- 2025) 

    rem_infl  = (1+inflation_annual)**(fix_yr- 2010) 

 

    cost_infl= co2_leaked*(carbon_price_2025* carb_infl) + remediation_2010* rem_infl 

    dfac= discount_factor(fix_yr) 

    return cost_infl* dfac 

 

def lumpsum_water_cost(water_leaked, fix_yr, unit_annual_1000gal): 

    """ 

    water_leaked => tons => convert to gallons => thousands => multiply unit_annual_1000gal( 

base=1999). 

    Then inflate => discount. 

    """ 

    gallons= water_leaked* 264.4 

    thou_gal= gallons/1000.0 

    cost_1999= thou_gal* unit_annual_1000gal 

    inf_fac= (1+inflation_annual)**(fix_yr- 1999) 

    cost_infl= cost_1999* inf_fac 

    dfac= discount_factor(fix_yr) 

    return cost_infl* dfac 

 

def lumpsum_foak_penalty(d_time, fix_time, foak_base): 

    """ 

    FOAK_base => random draw in [5..20], base=2014 

    mass not injected from detection-> fix_time up to year20 

    inflate => discount 

    """ 
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    d_yr= d_time/365.0 

    f_yr= fix_time/365.0 

    if d_yr>=20: 

        return 0.0 

    no_inject_yr= max(0, min(f_yr,20.0)- d_yr) 

    no_inject_days= no_inject_yr*365.0 

    mass_not_injected= no_inject_days* injection_tpd 

 

    fix_year= base_year+ f_yr 

    foak_infl= (1+inflation_annual)**(fix_year- 2014) 

    cost_2014= mass_not_injected* foak_base 

    cost_infl= cost_2014* foak_infl 

    disc_fac= 1/((1+discount_annual)**(fix_year- base_year)) 

    return cost_infl* disc_fac 

 

# ============================ 

# 2) MONTE CARLO 

# ============================ 

norm_costs= [] 

perc_leaked= [] 

 

for _ in range(n_iter): 

    # One detection threshold, fix_delay, FOAK penalty for entire iteration 

    iteration_threshold= sample_detection_threshold() 

    iteration_fix_delay= sample_fix_time() 

    iteration_foak_base= sample_foak()  # uniform(5..20) 

     

    total_cost= 0.0 

    total_co2_leaked= 0.0 

     

    # Now we process each well 

    for wnm, wdat in wells_data.items(): 

        # For each well, we sample lognormal for water cost 

        # => unit_annual_1000gal in base=1999 => capital+operating 

        ln_cap = random.gauss(capex_mu, capex_sigma) 

        ln_ope = random.gauss(opex_mu, opex_sigma) 

        water_unit_1999= math.exp(ln_cap) + math.exp(ln_ope)  # $/(1000 gallons) base=1999 

 

        d_time= detection_time(wdat, iteration_threshold) 

        if d_time is None: 

            # never detect => leak 0..120 => no lumpsum 

            co2_120= leaked_co2_tons(wdat, PROJECT_DURATION_DAYS) 

            total_co2_leaked+= co2_120 

        else: 

            fix_time= d_time+ iteration_fix_delay 

            if fix_time> PROJECT_DURATION_DAYS: 
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                # not fixed => leak 0..120 => no lumpsum 

                co2_120= leaked_co2_tons(wdat, PROJECT_DURATION_DAYS) 

                total_co2_leaked+= co2_120 

            else: 

                # lumpsum => co2+ water => 0..fix_time 

                co2_leak= leaked_co2_tons(wdat, fix_time) 

                water_leak= leaked_water_tons(wdat, fix_time) 

                total_co2_leaked+= co2_leak 

 

                fix_yr= base_year+ (fix_time/365.0) 

                cost_co2= lumpsum_co2_cost(co2_leak, fix_yr, iteration_foak_base) 

                cost_h2o= lumpsum_water_cost(water_leak, fix_yr, water_unit_1999) 

                cost_foak= lumpsum_foak_penalty(d_time, fix_time, iteration_foak_base) 

 

                total_cost+= (cost_co2+ cost_h2o+ cost_foak) 

 

    norm_c= total_cost/ TOTAL_INJECTED_TONS 

    perc_l= (total_co2_leaked/ TOTAL_INJECTED_TONS)*100.0 

    norm_costs.append(norm_c) 

    perc_leaked.append(perc_l) 

 

norm_costs= np.array(norm_costs) 

perc_leaked= np.array(perc_leaked) 

 

def stats_dict(arr): 

    return { 

        "p10":  np.percentile(arr,10), 

        "p50":  np.percentile(arr,50), 

        "p90":  np.percentile(arr,90), 

        "mean": np.mean(arr) 

    } 

 

cstats= stats_dict(norm_costs) 

pstats= stats_dict(perc_leaked) 

print("Normalized Cost Stats ($/ton):", cstats) 

print("Final % CO₂ Leaked Stats:", pstats) 

 

# plotting 

sns.set_theme(style="white", palette="colorblind") 

plt.rcParams["font.family"]= "Arial" 

plt.rcParams["font.size"]  = 12 

 

fig, (ax1,ax2)= plt.subplots(1,2, figsize=(10,4)) 

 

# cost cdf 

sorted_c= np.sort(norm_costs) 
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cdf_c= np.arange(1,len(sorted_c)+1)/len(sorted_c) 

ax1.step(sorted_c, cdf_c, where="post", label="Norm Cost") 

ax1.set_xlabel("Normalized Cost ($/ton)") 

ax1.set_ylabel("Cumulative Probability") 

ax1.set_title("CDF of Normalized Cost") 

ax1.axvline(cstats["p10"], color="r", ls="--", label=f"p10={cstats['p10']:.2f}") 

ax1.axvline(cstats["p50"], color="g", ls="--", label=f"p50={cstats['p50']:.2f}") 

ax1.axvline(cstats["p90"], color="orange", ls="--", label=f"p90={cstats['p90']:.2f}") 

ax1.legend() 

 

# final % leaked cdf 

sorted_p= np.sort(perc_leaked) 

cdf_p= np.arange(1,len(sorted_p)+1)/len(sorted_p) 

ax2.step(sorted_p, cdf_p, where="post", color="g", label="Final % Leaked") 

ax2.set_xlabel("Final % of CO2 Leaked (%)") 

ax2.set_ylabel("Cumulative Probability") 

ax2.set_title("CDF of Final % Leaked") 

ax2.axvline(pstats["p10"], color="r", ls="--", label=f"p10={pstats['p10']:.2f}") 

ax2.axvline(pstats["p50"], color="g", ls="--", label=f"p50={pstats['p50']:.2f}") 

ax2.axvline(pstats["p90"], color="orange", ls="--", label=f"p90={pstats['p90']:.2f}") 

ax2.legend() 

 

plt.tight_layout() 

plt.show() 

A.8. ANNUAL PROBABILITIES OF WELL FAILURE ADJUSTMENT – PYTHON CODE 

 

This code estimates the financial and environmental impacts of CO₂ and brine leakage from 

geologic carbon storage (GCS) sites. It uses leakage rates derived from dynamic multiphase 

simulations and calculates associated costs using a probabilistic Monte Carlo approach. The model 

assumes open wellbores as leakage pathways and evaluates the influence of failure probabilities, 

detection thresholds, fix times, and cost factors. 

 

The script performs the following tasks: 

• Reads leakage rate data from a CMG simulation CSV file. 

• Computes CO₂ and brine leakage volumes over time for each leaky well. 

• Simulates detection and remediation events. 

• Calculates associated costs using economic assumptions and leakage impact valuation. 
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• Repeats this process under various annual well failure probabilities using Monte Carlo 

simulation. 

The code generates: 

• Box plots of: 

o Normalized remediation cost per ton of injected CO₂. 

o Final percentage of CO₂ leaked. 

• Cumulative Distribution Functions (CDFs) of cost and leakage across scenarios. 

• A summary table with p10, mean, and p90 statistics of costs and leakage for each 

probability scenario. 

 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from scipy.interpolate import interp1d 

import random 

import math 

 

# ========================================== 

# USER SETTINGS 

# ========================================== 

#Insert file path  

filename = insert file path 

 

n_iter = 1000  # Monte Carlo iterations per probability 

 

# Single failure probability scenario 

p_values = [1e-6, 1e-4, 1e-3, 0.01, 0.1] 

p_labels = ["0.0001%", "0.01%", "0.1%", "1%", "10%"] 

 

TOTAL_INJECTED_TONS = 4e6 

PROJECT_DURATION_DAYS = 120 * 365.0 

PROJECT_YEARS = 120 

PROJECT_DAYS  = PROJECT_YEARS * 365 

 

# Detection threshold: Triangular distribution (tons/day) 

th_left, th_mode, th_right = 0.55, 10, 30 
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# Fix time: Normal distribution (days), truncated≥0 

fix_mean, fix_std = 433, 154 

 

# STP conversion for CO₂: 1 ft³/day => ~5.61e-5 tons/day 

ft3_to_tons = 5.61e-5 

 

# Economic & discount parameters 

inflation = 0.029 

discount = 0.029 

FOAK_penalty_base = 20    # $/ton, base year=2014 

carbon_price_base = 85    # $/ton, base year=2025 

remediation_base = 56100  # $/well, base year=2010 

base_year = 2025 

 

# Water conversion 

gallons_per_ton = 264.4    # 1 ton water ~264.4 gallons 

 

# -------------------------------- 

# Water Lognormal Distribution (base 1999) 

# -------------------------------- 

def solve_lognormal_params(p25, median, p75): 

    z25, z75 = -0.67449, 0.67449 

    mu = math.log(median) 

    sigma = (math.log(p75) - math.log(p25)) / (z75 - z25) 

    return mu, sigma 

 

capex_mu, capex_sigma = solve_lognormal_params(23.0, 78.0, 350.0) 

opex_mu, opex_sigma   = solve_lognormal_params(5.0, 16.0, 41.0) 

 

def sample_water_unit_cost(): 

    """Sample water treatment unit cost in $/(1000 gallons), base=1999.""" 

    ln_cap = random.gauss(capex_mu, capex_sigma) 

    ln_ope = random.gauss(opex_mu, opex_sigma) 

    return math.exp(ln_cap) + math.exp(ln_ope) 

 

# FOAK penalty: Uniform distribution from $5 to $20 (base=2014) 

FOAK_min, FOAK_max = 5.0, 20.0 

 

def sample_foak(): 

    return random.uniform(FOAK_min, FOAK_max) 

 

# ---------------------------- 

# Cost Calculation Helpers 

# ---------------------------- 

def discount_factor(fix_yr): 
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    return 1 / ((1 + discount) ** (fix_yr - base_year)) 

 

def lumpsum_co2_cost(co2_leaked, fix_yr, foak_val): 

    """ 

    In this code snippet, we ignore the FOAK_val per-ton cost for CO2, 

    and only inflate the carbon_price_base + remediation for demonstration. 

    """ 

    foak_infl = (1 + inflation) ** (fix_yr - 2014) 

    carb_infl = (1 + inflation) ** (fix_yr - 2025) 

    rem_infl  = (1 + inflation) ** (fix_yr - 2010) 

    cost_infl = co2_leaked * (carbon_price_base * carb_infl) + remediation_base * rem_infl 

    return cost_infl * discount_factor(fix_yr) 

 

def lumpsum_water_cost(water_leaked, fix_yr, water_unit_1999): 

    gallons = water_leaked * gallons_per_ton 

    thou_gal = gallons / 1000.0 

    cost_1999 = thou_gal * water_unit_1999 

    inf_fac = (1 + inflation) ** (fix_yr - 1999) 

    return cost_1999 * inf_fac * discount_factor(fix_yr) 

 

def lumpsum_foak_penalty(d_time, fix_time, foak_val): 

    d_yr = d_time / 365.0 

    f_yr = fix_time / 365.0 

    if d_yr >= 20: 

        return 0.0 

    no_inject_yr = max(0.0, min(f_yr, 20.0) - d_yr) 

    no_inject_days = no_inject_yr * 365.0 

    mass_not_injected = no_inject_days * (200000.0 / 365.0)  # injection_tpd 

    fix_year = base_year + f_yr 

    foak_infl = (1 + inflation) ** (fix_year - 2014) 

    cost_2014 = mass_not_injected * foak_val 

    return cost_2014 * foak_infl * discount_factor(fix_year) 

 

# ---------------------------- 

# Data Reading & Interpolation 

# ---------------------------- 

df = pd.read_csv(filename) 

df["Time (day)"] = pd.to_numeric(df["Time (day)"], errors="coerce") 

df.sort_values("Time (day)", inplace=True) 

 

time_days = df["Time (day)"].values 

dt_array  = np.diff(time_days, prepend=time_days[0]) 

 

gas_cols = [c for c in df.columns if "Gas Rate" in c and "ft3/day" in c and "Water" not in c] 

water_cols = [c for c in df.columns if "Water Rate" in c and "bbl/day" in c] 
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well_data = {} 

 

# Build gas interpolation 

for col in gas_cols: 

    well_name = col.split("-Gas")[0].strip() 

    rate_ft3 = df[col].fillna(0.0).values 

    gas_rate_tpd = rate_ft3 * ft3_to_tons 

    incr_tons = gas_rate_tpd * dt_array 

    cum_tons = np.cumsum(incr_tons) 

    f_interp = interp1d(time_days, cum_tons, bounds_error=False, 

                        fill_value=(cum_tons[0], cum_tons[-1])) 

    well_data[well_name] = { 

        "gas_rate_tpd": gas_rate_tpd, 

        "cum_interp":   f_interp 

    } 

 

# Build water interpolation 

for col in water_cols: 

    well_name = col.split("-Water")[0].strip() 

    if well_name not in well_data: 

        well_data[well_name] = {} 

    rate_bbl = df[col].fillna(0.0).values 

    water_rate_tpd = rate_bbl * 0.159 

    incr_tons = water_rate_tpd * dt_array 

    cum_tons = np.cumsum(incr_tons) 

    f_interp = interp1d(time_days, cum_tons, bounds_error=False, 

                        fill_value=(cum_tons[0], cum_tons[-1])) 

    well_data[well_name]["water_rate_tpd"] = water_rate_tpd 

    well_data[well_name]["water_interp"] = f_interp 

 

# If missing water data => assign zero 

for wnm in well_data: 

    if "water_rate_tpd" not in well_data[wnm]: 

        zarr = np.zeros_like(time_days) 

        well_data[wnm]["water_rate_tpd"] = zarr 

        fz = interp1d(time_days, zarr, bounds_error=False, fill_value=(0, 0)) 

        well_data[wnm]["water_interp"] = fz 

 

def sum_rate_tpd(wdict): 

    gas = wdict["gas_rate_tpd"] 

    water = wdict.get("water_rate_tpd", 0.0) 

    return gas + water 

 

def detection_time_instantaneous(wdict, threshold, failure_time): 

    sr = sum_rate_tpd(wdict) 

    mask = time_days >= failure_time 
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    sr_after = sr[mask] 

    time_after = time_days[mask] 

    idx = np.where(sr_after >= threshold)[0] 

    if len(idx) > 0: 

        return time_after[idx[0]] 

    return None 

 

def leaked_co2_tons(wdict, day): 

    return float(wdict["cum_interp"](min(day, PROJECT_DURATION_DAYS))) 

 

# ---------------------------- 

# Main Simulation Function 

# ---------------------------- 

def run_one_iteration(p_fail): 

    iteration_threshold = np.random.triangular(th_left, th_mode, th_right) 

    iteration_fix_delay = max(np.random.normal(fix_mean, fix_std), 0.0) 

    iteration_foak_base = sample_foak() 

 

    total_cost = 0.0 

    total_leaked = 0.0 

 

    for wname, wdat in well_data.items(): 

        # Year-by-year failure check 

        failure_year = None 

        for y in range(int(PROJECT_DAYS/365.0)): 

            if random.random() <= p_fail: 

                failure_year = y 

                break 

 

        if failure_year is None: 

            continue 

 

        failure_time = failure_year * 365.0 

        d_time = detection_time_instantaneous(wdat, iteration_threshold, failure_time) 

        if d_time is None: 

            # Not detected => leak from failure_time to end 

            total_leaked += (leaked_co2_tons(wdat, PROJECT_DURATION_DAYS) 

                             - leaked_co2_tons(wdat, failure_time)) 

            continue 

 

        f_time = d_time + iteration_fix_delay 

        if f_time > PROJECT_DURATION_DAYS: 

            # Not fixed => leak from failure_time to end 

            total_leaked += (leaked_co2_tons(wdat, PROJECT_DURATION_DAYS) 

                             - leaked_co2_tons(wdat, failure_time)) 

            continue 
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        # If fixed at f_time 

        co2_leak = leaked_co2_tons(wdat, f_time) - leaked_co2_tons(wdat, failure_time) 

        water_leak = (float(wdat["water_interp"](min(f_time, PROJECT_DURATION_DAYS))) 

                      - float(wdat["water_interp"](failure_time))) 

        total_leaked += co2_leak 

 

        fix_yr = base_year + (f_time / 365.0) 

        water_unit_1999 = sample_water_unit_cost() 

 

        cost_co2 = lumpsum_co2_cost(co2_leak, fix_yr, iteration_foak_base) 

        cost_h2o = lumpsum_water_cost(water_leak, fix_yr, water_unit_1999) 

        cost_foak = lumpsum_foak_penalty(d_time, f_time, iteration_foak_base) 

 

        total_cost += (cost_co2 + cost_h2o + cost_foak) 

 

    norm_cost = total_cost / TOTAL_INJECTED_TONS 

    perc_leaked = (total_leaked / TOTAL_INJECTED_TONS) * 100.0 

    return norm_cost, perc_leaked 

 

def run_monte_carlo(p_fail, n_iter=1000): 

    cost_arr = [] 

    perc_arr = [] 

    for _ in range(n_iter): 

        c, p = run_one_iteration(p_fail) 

        cost_arr.append(c) 

        perc_arr.append(p) 

    return np.array(cost_arr), np.array(perc_arr) 

 

# ---------------------------- 

# Run for Each Probability & Collect Results 

# ---------------------------- 

scenario_results = {} 

for pval, label in zip(p_values, p_labels): 

    cost_vals, perc_vals = run_monte_carlo(pval, n_iter) 

    scenario_results[label] = (cost_vals, perc_vals) 

 

# ---------------------------- 

# Create DataFrames for Box Plots 

# ---------------------------- 

box_data_cost = [] 

box_data_perc = [] 

for label in scenario_results: 

    cost_arr = scenario_results[label][0] 

    perc_arr = scenario_results[label][1] 

    for cval in cost_arr: 
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        box_data_cost.append({"Scenario": label, "Normalized Cost": cval}) 

    for pval in perc_arr: 

        box_data_perc.append({"Scenario": label, "Final % Leaked": pval}) 

 

df_cost = pd.DataFrame(box_data_cost) 

df_perc = pd.DataFrame(box_data_perc) 

 

# ---------------------------- 

# Box Plots 

# ---------------------------- 

sns.set_theme(style="white", palette="colorblind") 

plt.rcParams["font.family"] = "Arial" 

plt.rcParams["font.size"] = 12 

 

fig, axes = plt.subplots(1, 2, figsize=(10,4)) 

sns.boxplot(x="Scenario", y="Normalized Cost", data=df_cost, ax=axes[0]) 

axes[0].set_title("Box Plot of Normalized Cost by Scenario") 

axes[0].tick_params(axis='x', rotation=45) 

axes[0].set_ylim([0,100]) 

 

sns.boxplot(x="Scenario", y="Final % Leaked", data=df_perc, ax=axes[1]) 

axes[1].set_title("Box Plot of Final % Leaked by Scenario") 

axes[1].tick_params(axis='x', rotation=45) 

 

plt.tight_layout() 

plt.show() 

 

# ---------------------------- 

# Overlaid CDF Plots 

# ---------------------------- 

fig2, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,4)) 

 

# CDF of Normalized Cost 

for label in scenario_results: 

    sorted_vals = np.sort(scenario_results[label][0]) 

    cdf = np.arange(1, len(sorted_vals)+1) / len(sorted_vals) 

    ax1.step(sorted_vals, cdf, where="post", label=label) 

ax1.set_title("CDF of Normalized Cost ($/ton injected)") 

ax1.set_xlabel("Normalized Cost ($/ton)") 

ax1.set_ylabel("Cumulative Probability") 

ax1.legend() 

 

# CDF of Final % Leaked 

for label in scenario_results: 

    sorted_vals = np.sort(scenario_results[label][1]) 

    cdf = np.arange(1, len(sorted_vals)+1) / len(sorted_vals) 
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    ax2.step(sorted_vals, cdf, where="post", label=label) 

ax2.set_title("CDF of Final % Leaked") 

ax2.set_xlabel("Final % Leaked (%)") 

ax2.set_ylabel("Cumulative Probability") 

ax2.legend() 

 

plt.tight_layout() 

plt.show() 

 

# ---------------------------- 

# Generate Table of Statistics (p10, mean, p90) for Each Scenario 

# ---------------------------- 

stats_dict = {} 

def compute_p10_mean_p90(arr): 

    return np.percentile(arr, 10), np.mean(arr), np.percentile(arr, 90) 

 

print("\n===== Summary Table: Normalized Cost and % Leaked (p10, mean, p90) =====\n") 

print(f"{'Scenario':<12}{'Cost_p10':>12}{'Cost_mean':>12}{'Cost_p90':>12}" 

      f"{'Leak_p10':>12}{'Leak_mean':>12}{'Leak_p90':>12}") 

 

for label in scenario_results: 

    cost_arr = scenario_results[label][0] 

    perc_arr = scenario_results[label][1] 

    cost_p10, cost_mean, cost_p90 = compute_p10_mean_p90(cost_arr) 

    leak_p10, leak_mean, leak_p90 = compute_p10_mean_p90(perc_arr) 

    print(f"{label:<12}" 

          f"{cost_p10:12.3f}{cost_mean:12.3f}{cost_p90:12.3f}" 

          f"{leak_p10:12.3f}{leak_mean:12.3f}{leak_p90:12.3f}") 

 

 

A.9. BAYESIAN UPDATING ADJUSTMENT – PYTHON CODE 

This Python script simulates the evolution of CO₂ leakage risk, detection, and financial 

impact over a 120-year geologic carbon storage (GCS) project using Bayesian updating. It supports 

multiple well failure probability scenarios and tracks year-by-year risk and costs via a parallelized 

Monte Carlo simulation. 

 

This script is designed to: 

• Simulate well failures under different prior failure probability distributions. 
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• Implement Bayesian learning to update leakage risk based on whether leakage is 

observed. 

• Quantify annual CO₂ leakage and associated financial costs using stochastic 

modeling. 

• Output year-by-year trends in leakage, normalized cost, and failure probabilities for 

policy and risk assessment. 

This script outputs:  

• Three line plots: 

o Normalized Cost vs Year 

o % CO₂ Leaked vs Year 

o Failure Probability vs Year 

• All plots differentiate the scenarios using distinct colorblind-friendly color 

schemes. 

• Console output shows progress of iterations and number of wells processed. 

 

 

 

import math 

import random 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from scipy.interpolate import interp1d 

import concurrent.futures 

 

# ============================================ 

# USER SETTINGS 

# ============================================ 

#Insert simulation results file name or file path 

filename = insert here 

 

n_iter = 1000             # Monte Carlo iterations per scenario 
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PROJECT_YEARS = 120      # Project duration in years 

PROJECT_DAYS  = PROJECT_YEARS * 365 

TOTAL_INJECTED_TONS = 4e6 

 

# Scenarios: Each tuple is (label, alpha0, beta0) 

scenarios = [ 

     ("0.0001%", 0.0001, 99.9999), 

     ("0.01%",   0.01, 99.99), 

     ("0.1%",    0.1, 99.9), 

     ("1%",      1, 99), 

     ("10%",     10, 90) 

 ] 

 

# Distributions for detection threshold, fix time, FOAK penalty (iteration-level) 

th_left, th_mode, th_right = 0.55, 10, 30   # Triangular detection threshold (tons/day) 

fix_mean, fix_std = 433, 154                # Normal fix time (days) 

FOAK_min, FOAK_max = 5.0, 20.0              # Uniform FOAK penalty (base year=2014) 

 

# Economic & discount parameters 

inflation_annual  = 0.029 

discount_annual   = 0.029 

carbon_price_2025 = 85.0 

remediation_2010  = 56100.0 

base_year         = 2025 

 

# Injection rate (~200,000 t/yr => ~548 t/day) 

injection_tpd = 200000.0 / 365.0 

 

# Conversions 

co2_ft3_to_tons   = 5.61e-5 

brine_bbl_to_tons = 0.159 

gallons_per_ton   = 264.4 

 

# Lognormal water cost parameters (base=1999) 

def solve_lognormal_params(p25, median, p75): 

    z25, z75 = -0.67449, 0.67449 

    mu = math.log(median) 

    sigma = (math.log(p75) - math.log(p25)) / (z75 - z25) 

    return mu, sigma 

 

capex_mu, capex_sigma = solve_lognormal_params(23.0, 78.0, 350.0) 

opex_mu, opex_sigma   = solve_lognormal_params(5.0, 16.0, 41.0) 

 

# ============================================ 

# 1) READ & BUILD WELL DATA (CUMULATIVE ARRAYS) 

# ============================================ 
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def build_well_data(csv_file): 

    print("Loading well data from file...") 

    df = pd.read_csv(csv_file) 

    df["Time (day)"] = pd.to_numeric(df["Time (day)"], errors="coerce") 

    df.sort_values("Time (day)", inplace=True) 

    time_arr = df["Time (day)"].values 

    dt_array  = np.diff(time_arr, prepend=time_arr[0]) 

    gas_cols   = [c for c in df.columns if ("Gas Rate" in c) and ("ft3/day" in c) and ("Water" not in 

c)] 

    water_cols = [c for c in df.columns if ("Water Rate" in c) and ("bbl/day" in c)] 

    well_data = {} 

 

    # For each well, store time array and cumulative gas and water (in tons) 

    for col in gas_cols: 

        wname = col.split("-Gas")[0].strip() 

        rate_ft3 = df[col].fillna(0.0).values 

        gas_rate_tpd = rate_ft3 * co2_ft3_to_tons 

        gas_cum = np.cumsum(gas_rate_tpd * dt_array) 

        well_data.setdefault(wname, {})["time_arr"] = time_arr 

        well_data[wname]["gas_cum"] = gas_cum 

 

    for col in water_cols: 

        wname = col.split("-Water")[0].strip() 

        rate_bbl = df[col].fillna(0.0).values 

        water_rate_tpd = rate_bbl * brine_bbl_to_tons 

        water_cum = np.cumsum(water_rate_tpd * dt_array) 

        well_data.setdefault(wname, {})["time_arr"] = time_arr 

        well_data[wname]["water_cum"] = water_cum 

 

    # For wells without water data, fill with zero array. 

    for w in well_data: 

        if "water_cum" not in well_data[w]: 

            well_data[w]["water_cum"] = np.zeros_like(time_arr) 

    print("Well data loaded for", len(well_data), "wells.") 

    return well_data 

 

# ============================================ 

# 2) COST FUNCTIONS 

# ============================================ 

def discount_factor(fix_yr): 

    return 1.0 / ((1.0 + discount_annual) ** (fix_yr - base_year)) 

 

def lumpsum_co2_cost(co2_leaked, fix_yr, foak_val): 

    foak_infl = (1 + inflation_annual) ** (fix_yr - 2014) 

    carb_infl = (1 + inflation_annual) ** (fix_yr - 2025) 

    rem_infl  = (1 + inflation_annual) ** (fix_yr - 2010) 
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    cost_infl = co2_leaked * (carbon_price_2025 * carb_infl) + remediation_2010 * rem_infl 

    return cost_infl * discount_factor(fix_yr) 

 

def lumpsum_water_cost(water_leaked, fix_yr, water_unit_1999): 

    gallons  = water_leaked * gallons_per_ton 

    thou_gal = gallons / 1000.0 

    cost_1999 = thou_gal * water_unit_1999 

    inf_fac = (1 + inflation_annual) ** (fix_yr - 1999) 

    return cost_1999 * inf_fac * discount_factor(fix_yr) 

 

def lumpsum_foak_penalty(d_time, fix_time, foak_val): 

    d_yr = d_time / 365.0 

    f_yr = fix_time / 365.0 

    if d_yr >= 20: 

        return 0.0 

    no_inject_yr = max(0.0, min(f_yr, 20.0) - d_yr) 

    no_inject_days = no_inject_yr * 365.0 

    mass_not_injected = no_inject_days * injection_tpd 

    fix_year = base_year + (f_yr) 

    foak_infl = (1 + inflation_annual) ** (fix_year - 2014) 

    cost_2014 = mass_not_injected * foak_val 

    return cost_2014 * foak_infl * discount_factor(fix_year) 

 

def sample_water_unit_cost(): 

    ln_cap = random.gauss(capex_mu, capex_sigma) 

    ln_ope = random.gauss(opex_mu, opex_sigma) 

    return math.exp(ln_cap) + math.exp(ln_ope) 

 

# ============================================ 

# 3) OPTIMIZED DETECTION/ FIX LOGIC 

# ============================================ 

def detection_time_after_fail_opt(wdat, threshold, fail_time): 

    """ 

    Vectorized detection time using precomputed cumulative arrays. 

    Computes instantaneous rates for gas and water (from the cumulative arrays) 

    and returns the first time at which their sum exceeds the threshold. 

    """ 

    time_arr = wdat["time_arr"] 

    gas = wdat["gas_cum"] 

    water = wdat["water_cum"] 

    # Compute instantaneous rates for each interval: 

    dt = np.diff(time_arr) 

    # Avoid division by zero: 

    dt[dt == 0] = 1.0 

    gas_rate = np.diff(gas) / dt 

    water_rate = np.diff(water) / dt 
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    rates = gas_rate + water_rate 

    start_idx = np.searchsorted(time_arr, fail_time) 

    if start_idx >= len(time_arr) - 1: 

        return None 

    condition = rates[start_idx:] >= threshold 

    if np.any(condition): 

        idx = start_idx + int(np.argmax(condition)) 

        return time_arr[idx] 

    return None 

 

# ============================================ 

# 4) VECTORIZED COST & LEAK CALCULATION 

# ============================================ 

def compute_cost_leak_from_t_onward_vectorized(well_data, fail_year, t, iter_threshold, 

iter_fix_delay, iter_foak_val, well_keys): 

    total_cost = 0.0 

    total_leak = 0.0 

    day_t   = t * 365.0 

    day_end = PROJECT_YEARS * 365.0 

    for i, wname in enumerate(well_keys): 

        fy = fail_year[i] 

        if fy >= PROJECT_YEARS or fy < t: 

            continue 

        day_fail = fy * 365.0 

        if day_fail > day_end: 

            continue 

        wdat = well_data[wname] 

        # Vectorized detection: 

        d_time = detection_time_after_fail_opt(wdat, iter_threshold, day_fail) 

        if d_time is None or d_time > day_end: 

            leak_co2 = np.interp(day_end, wdat["time_arr"], wdat["gas_cum"]) - np.interp(day_fail, 

wdat["time_arr"], wdat["gas_cum"]) 

            total_leak += leak_co2 

            continue 

        fix_time = d_time + iter_fix_delay 

        if fix_time > day_end: 

            leak_co2 = np.interp(day_end, wdat["time_arr"], wdat["gas_cum"]) - np.interp(day_fail, 

wdat["time_arr"], wdat["gas_cum"]) 

            total_leak += leak_co2 

            continue 

        co2_leak = np.interp(fix_time, wdat["time_arr"], wdat["gas_cum"]) - np.interp(day_fail, 

wdat["time_arr"], wdat["gas_cum"]) 

        total_leak += co2_leak 

        water_leak = np.interp(fix_time, wdat["time_arr"], wdat["water_cum"]) - 

np.interp(day_fail, wdat["time_arr"], wdat["water_cum"]) 

        fix_yr = base_year + (fix_time / 365.0) 



150 

 

        cost_co2 = lumpsum_co2_cost(co2_leak, fix_yr, iter_foak_val) 

        cost_h2o = lumpsum_water_cost(water_leak, fix_yr, sample_water_unit_cost()) 

        cost_foak = lumpsum_foak_penalty(day_fail, fix_time, iter_foak_val) 

        total_cost += (cost_h2o + cost_co2 + cost_foak) 

    return total_cost, total_leak 

 

# ============================================ 

# 5) VECTORIZED YEAR-BY-YEAR FAIL LOGIC WITH BETA UPDATE 

# ============================================ 

def run_one_iteration_new_logic_fast_opt(well_data, alpha_0, beta_0, well_keys): 

    num_wells = len(well_keys) 

    # Represent "no failure" as PROJECT_YEARS 

    fail_year = np.full(num_wells, PROJECT_YEARS, dtype=float) 

    cost_year = np.zeros(PROJECT_YEARS + 1) 

    leak_year = np.zeros(PROJECT_YEARS + 1) 

    prob_year = np.zeros(PROJECT_YEARS + 1) 

    # Sample iteration-level parameters once: 

    iter_threshold = random.triangular(th_left, th_mode, th_right) 

    iter_fix_delay = max(random.gauss(fix_mean, fix_std), 0.0) 

    iter_foak_val = random.uniform(FOAK_min, FOAK_max) 

    alpha = alpha_0 

    beta = beta_0 

    p_f = alpha / (alpha + beta) 

    alpha_lgivenf = 100 

    beta_lgivenf = 0 

 

    for t in range(PROJECT_YEARS): 

        p_l = p_f * alpha_lgivenf / (alpha_lgivenf + beta_lgivenf) 

        prob_year[t] = p_l 

 

        # Candidate wells: fail_year is None OR fail_year >= t 

        # meaning they haven't failed before year t 

        candidates = [] 

        for widx in range(len(fail_year)): 

            if fail_year[widx] is None or fail_year[widx] >= t: 

                candidates.append(widx) 

 

        fails_at_t = 0 

        # Nested loop to assign a fail year in [t..PROJECT_YEARS) 

        for widx in candidates: 

            fail_assigned = False 

            for yr in range(t, PROJECT_YEARS): 

                if random.random() < p_l: 

                    fail_year[widx] = yr 

                    if yr == t: 

                        fails_at_t += 1 



151 

 

                    fail_assigned = True 

                    break 

 

            # If fail_assigned remains False, the well's fail_year stays None 

            # meaning it never fails within the project horizon. 

 

        # Bayesian update: treat any well assigned fail_year == t 

        # as a "predicted fail" that didn't truly occur, so we add that count to beta 

        beta_lgivenf += fails_at_t 

 

        c_t, l_t = compute_cost_leak_from_t_onward_vectorized(well_data, fail_year, t, 

iter_threshold, iter_fix_delay, iter_foak_val, well_keys) 

        cost_year[t] = c_t / TOTAL_INJECTED_TONS 

        leak_year[t] = (l_t / TOTAL_INJECTED_TONS) * 100.0 

 

    prob_year[PROJECT_YEARS] = p_l 

    cost_year[PROJECT_YEARS] = 0.0 

    leak_year[PROJECT_YEARS] = 0.0 

    return cost_year, leak_year, prob_year, fail_year 

 

# ============================================ 

# 6) PARALLELIZED MONTE CARLO WRAPPER FOR MULTIPLE SCENARIOS 

# ============================================ 

def run_monte_carlo_new_logic_fast_opt(well_data, n_iter, alpha0, beta0): 

    well_keys = list(well_data.keys()) 

    cost_arrays = [] 

    leak_arrays = [] 

    prob_arrays = [] 

 

    # Use ProcessPoolExecutor for parallel Monte Carlo iterations. 

    with concurrent.futures.ProcessPoolExecutor() as executor: 

        futures = [executor.submit(run_one_iteration_new_logic_fast_opt, well_data, alpha0, beta0, 

well_keys) 

                   for _ in range(n_iter)] 

        for i, fut in enumerate(concurrent.futures.as_completed(futures)): 

            if i % 10 == 0: 

                print(f"Completed Monte Carlo iteration {i+1}/{n_iter}") 

            costY, leakY, probY, _ = fut.result() 

            cost_arrays.append(costY) 

            leak_arrays.append(leakY) 

            prob_arrays.append(probY) 

 

    mean_cost = np.mean(cost_arrays, axis=0) 

    mean_leak = np.mean(leak_arrays, axis=0) 

    mean_prob = np.mean(prob_arrays, axis=0) 

    return mean_cost, mean_leak, mean_prob 
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# ============================================ 

# 7) PLOTTING FUNCTION WITH IMPROVED STYLE 

# ============================================ 

def plot_results(years, results_cost, results_leak, results_prob): 

    sns.set(style="white") 

    plt.rcParams.update({ 

        "figure.figsize": (12, 6), 

        "figure.dpi": 100, 

        "font.size": 14, 

        "axes.titlesize": 16, 

        "axes.labelsize": 14, 

        "legend.fontsize": 12 

    }) 

 

    palette = sns.color_palette("colorblind", n_colors=len(results_cost)) 

 

    # Plot Average Normalized Cost vs. Year 

    plt.figure() 

    for (label, cost), color in zip(results_cost.items(), palette): 

        plt.plot(years, cost, label=label, color=color, linewidth=2) 

    plt.xlabel("Year") 

    plt.ylabel("Normalized Cost ($/ton)") 

    plt.title("Year-by-Year Average Normalized Cost") 

    plt.legend(title="Scenario", loc="upper right") 

    plt.tight_layout() 

    plt.show() 

 

    # Plot Average % CO2 Leaked vs. Year 

    plt.figure() 

    for (label, leak), color in zip(results_leak.items(), palette): 

        plt.plot(years, leak, label=label, color=color, linewidth=2) 

    plt.xlabel("Year") 

    plt.ylabel("CO2 Leaked (%)") 

    plt.title("Year-by-Year Average % CO2 Leaked") 

    plt.legend(title="Scenario", loc="upper left") 

    plt.tight_layout() 

    plt.show() 

 

    # Plot Average Failure Probability p(t) vs. Year 

    plt.figure() 

    for (label, prob), color in zip(results_prob.items(), palette): 

        plt.plot(years, prob, label=label, color=color, linewidth=2) 

    plt.xlabel("Year") 

    plt.ylabel("Failure Probability p(l)") 

    plt.title("Year-by-Year Average Failure Probability") 
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    plt.legend(title="Scenario", loc="best") 

    plt.tight_layout() 

    plt.show() 

 

# ============================================ 

# 8) MAIN FUNCTION 

# ============================================ 

def main(): 

    print("Setting up simulation and plotting...") 

    sns.set_theme(style="white", palette="colorblind") 

    plt.rcParams["font.family"] = "Arial" 

    plt.rcParams["font.size"] = 14 

 

    well_data = build_well_data(filename) 

    years = np.arange(PROJECT_YEARS + 1) 

    results_cost = {} 

    results_leak = {} 

    results_prob = {} 

 

    # Run simulation for each scenario 

    for label, alpha0, beta0 in scenarios: 

        print(f"\nRunning scenario {label} with initial alpha0={alpha0} and beta0={beta0}") 

 

        mean_cost, mean_leak, mean_prob = run_monte_carlo_new_logic_fast_opt(well_data, 

n_iter, alpha0, beta0) 

        results_cost[label] = mean_cost 

        results_leak[label] = mean_leak 

        results_prob[label] = mean_prob 

 

    plot_results(years, results_cost, results_leak, results_prob) 

 

if __name__ == "__main__": 

    main() 
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