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* Offshore storage is particularly

attractive, as it provides simplified land

200 km
11 VE

(LNG).

leasing models (single governmental

land owner), proven reservoir quality, and

presents fewer risks to both protected

groundwater and populated areas.

* The region continues to evolve as an
active carbon-handling hub, and is
uniquely suited to justify additional
investment in carbon capture, utilization,
and storage (CCUS) technologies via a

large-scale integrated project

development.
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* The region is currently undergoing
globally significant industrial
expansion and investment as a
result of abundant and inexpensive
regional unconventional natural
gas availability, and is a growing
exporter of liquefied natural gas
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 |f we inject CO2 down to a syncline - analogous
to the carrier bed in the petroleum system - how

journal homepage: www.elsevier.com/locate/ijggc

m would this injection mechanism impact storage
Assessing Impacts on Pressure Stabilization and Leasing Acreage for CO5 e : : :
Storage Utilizing Oil Migration Concepts capa.(EItv and plume shape, migration. and
stabilization?

Melianna Ulfah® ", Seyyed Hosseini ", Susan Hovorka ", Alex Bump ", Sahar Bakhshian ",
Dallas Dunlap”

Gl Coat Coton Conte, Bt of eononi Gustogy 10611 vt s, At 5 75756, United St * To address this question, we built a reservoir
model, based on seismic interpretation of Middle
Miocene strata, offshore Galveston, Texas.

Accumulation
Lateral Area
Migration
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* Modeling investigated how far the CO, plume
would migrate under two scenarios:
1. injecting CO, at the base of the salt
withdrawal basin (syncline scenario) and

Source Area

’I‘ Seal Carrier o -
,ﬁ = —=——=— TN BED 2. injecting CO, at the base of the structural
Source Rocks irection |

closure, similar to a common injection well
location for EOR purposes (base scenario).

Fig. 1. Diagrammatic representation of migration pathways (modified from
Zhang et al, 2006)
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Fig. 14. Cross-section views of the plumes in all scenarios after 100 years after injection stops along with each of the lateral plume migration distances.

Average Reservoir Pressure

Base Scenario, 60 MT of COz Injected

"\ Syncline Scenario, 60 MT of CO: Injected
3™ \ Base Scenario, 30 MT of COz Injected

. / \ Syncline Scenario, 30 MT of COz Injected
2 [ e \ \

Fig. 18. Evolution of average reservoir pressure for all scenarios from the start of injection, 30 years of continuous injection, and 100 years after injection stops.

The simulation shows that injecting
the CO: into a syncline limits the
vertical migration of CO-., thus making
synclinal injection more secure.

In the syncline scenario, the
geological layer around the injection
point Is more heterogeneous than the
layer in the base scenario; thus, the
CO: tends to migrate laterally.

Moreover, the simulation also shows
that in the syncline scenario, the
times needed for the reservoir to
reach its stabilized pressure after the
end of injections are faster.

To summarize, CO: injection at the
base of a syncline could provide
additional storage, increase the safet
of the project from the limited vertica
plume migration, and expedite plume
stabilization, which could result in the
decrease of monitoring frequency as
the project runs, thus lowering the
operating cost of the project in the
long run.
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Point-Source
CO, Emissions

In this paper, we adapt the CRS process to screening for

CO, storage sites.

Critically, we redefine the process in terms of cost of
characterization and development, rather than chance of

SUCCESS.

For illustration, we apply the process to the example of the
Lower Miocene on the Texas and Louisiana Gulf Coast.

We show that the predictions are consistent with historic
hydrocarbon production volumes and rates.
The result highlights sweet spots and identifies critical risks,

suggesting a focus for further data collection and analysis.
The method developed here can be applied to both surface
and subsurface factors anywhere that there is interest in

geologic storage of CO.,,.
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Simulation results show that the domain effective CO, saturation is
strongly affected by both grain size and bedform architecture.
Differences in bedform architecture can impact how CO, saturation
values respond to other variables such as grain sorting and fluid
properties.

The value of this study is to provide a comprehensive simulation
dataset, upon which prediction models can be built for upscaling
purposes in field-scale simulations.

#67 #4
Ca=78 Ca=71
#43a #22b
Ci=62 Ca=47
#72 #46n
Ca=43 Ca=27
#59 #29
Ca=17 Ca=3




Cumulative Fraction %

e Geophysical Research Letters’
3 Geologic Heterogeneity Controls on Trapping and Migration
E of CO,
E Prasanna G. Krishnamurthy! ©, David DiCarlo' ©, and Tip Meckel?
0.4 0.6 ' 0.8 1 "Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX, USA,
Bead Diameter : 2Bureau of Economic Geology, The University of Texas at Austin, Austin, TX, USA
. fmm)

: E i Sy . p
o 0.2 04 06 0.8 1
Bead Diameter{millimeter

Constant Agueous
Head

| X

Topset Lamina (Horizontal Barriers)

Foreset Lamina (Inclined Barriers)

Key Points:

 We conduct unique intermediate-scale,
two phase flow experiments in cross-
bedded heterogeneous bead packs to
study CO2 migration and trapping

e Using real time visualization, we
illuminate dynamic flow processes at the
meter scale
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Major CO, blowouts from offshore
wells are strongly attenuated in water
deeper than 50 m

Curtis M. Oldenburg "* and Lehua Pan, Energy Geosciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA

Growing interest in offshore geologic carbon
sequestration (GCS) motivates evaluation of the
consequences of subsea CO, well blowouts.

We have simulated a hypothetical major CO, well
blowout in shallow water of the Texas Gulf Coast.

We use a coupled reservoir-well model (T2Well) to
simulate the subsea blowout flow rate for input to an
integral model (TAMOC) for modeling CO,, transport in the
water column. Bubble sizes are estimated for the blowout
scenatrio for input to TAMOC.
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Atmosphere

Water
Column
C ]
Well ——
Reservoir

Figure 1. Conceptual model of an offshore CO, well with
blowout near the wellhead showing the reservoir, well, short
pipe segment, water column, and atmospheric regions.
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Modeling and Analysis g g

Downwind dispersion of CO, from a
major subsea blowout in shallow
offshore waters

Curtis M. Oldenburg "' and Yingqi Zhang, Lawrence Berkeley National Laboratory, Berkeley, CA,
USA

GULF COAST CARBON CENTER

In the context of risk assessment of human health and
safety, we have used previously simulated coupled well-
reservoir and water column model results as a source
term for dense gas dispersion of CO, above the sea
surface. B

The models are linked together by one-way coupling, that
is, output of one model is used as input to the next
model.

These first-of-their-kind coupled flow results are
applicable to assessing the hazard of CO, to people at
and downwind of the sea surface location of emission.
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Atmosphere MSLR
5/ Sea surface :
Water
Column TAMOC
seafloor [ ]
Well
) T2Well

Reservoir
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Figure 3. Downwind dispersion length (DDL) for the subsea CO, blowout scenarios for different water

column heights (different surface leakage rates) and wind speeds for two different critical concentrations: (a)

Cn/Cy = 0.05; (b) C,,,/Cy = 0.015 (note the different y-axis scales)

Figure 4. DDL as a function of windspeed for three different
water column depths and two different critical
concentrations. The plot shows that a maximum DDL
occurs for windspeeds of 2-5 m/s depending on the case

» Hazard is quantified by plotting the downwind dispersion length (DDL), which we define in the study as the distances from the

emission source to the point at which the emitted CO, has been diluted to 5% and 1.5% in air by volume.
* Results suggest that large-scale blowouts in shallow water (10 m) may cause hazardous CO, plumes extending on the order of

several hundred meters downwind.

* Details of the modeling show DDL has a maximum for windspeed (at an elevation of 10 m) of approximately 5 m/s, with

smaller DDL for both weaker and stronger winds.
* This is explained by the fact that wind favors transport but also causes dispersion; therefore there is a certain wind speed that

maximizes DDL.
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Chemical Engineering Journal Advances 8 (2021) 100162
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El

Estimation of COz emissions from petroleum refineries based on the total
operable capacity for carbon capture applications

. : 1 . . c
Adhish Chandra Saketh Madugula®, Darshan Sachde ”, Susan D. Hovorka “, Timothy A. Meckel ,
Tracy J. Benson™
* Department of Chemical and Biomolecular Engineering, Lamar University, P.O. Box 10053, Beawmont, TX, United States

" Trimeric Corporation, 100 8. Main St., Buda, TX 78610, United States
© Bureau of Economic Geology, University of Texas at Austin, Box X, Austin, TX 78713, United States
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Petroleum refineries, in particular, produce several streams that are
CO,-rich, including fluidized catalytic cracking, steam methane
reforming, and natural gas combustion processes that generate
heat for re- finery operations.

Of these, stationary combustion processes account for nearly two-
thirds of all CO, generated within a refinery.

In this work, a regression analysis was performed to correlate the
size and power requirements for the combined capture,
compression, and dehydration process dependent upon a refinery’s
operating capacity.

Refinery capacity and CO, generation data from 128 U.S. refineries
were normalized, and a linear regression model was developed.




. CO, Generation — Combustion Reaction

. CO, Capture using Amine (MEA) — Amine Absorber and Stripping Column
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Fig. 2. Aspen HYSYS Simulation of the capture, compression, and dehydration of flue gas CO, from stationary combustion source

A capture, compression, and dehydration
process model was developed using Aspen
HYSYS for delivery of CO, (10-15 wt. % in
steam) to pipeline specifications (500 ppm
H,0, 15.2 MPa).

Predicted CO, emissions were 0.1 to 7.7 %
of actual emissions, depending on whether
a refinery had a low, medium, or high
carbon emission/capacity ratio.
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