Minimizing Exposure to Legacy Wells

Alexander P. Bump (<u>alex.bump@beg.utexas.edu</u>) Susan D. Hovorka (<u>susan.hovorka@beg.utexas.edu</u>)

www.gulfcoastcarbon.org

April 5–7, 2023

Lots of wells and emissions

Bureau of Economic Geology

- GoM is highly prospective for CO2 storage
 - Large point-source emissions
 - Abundant subsurface data
 - Proven reservoirs and seals
 - Potentially re-usable infrastructure
- 1.1M legacy wells
 - Holes in confining system
 - Review and remediation add cost
- Lots of competing uses to accommodate
 - HC fields
 - SWD
 - CCS

Data: US EPA FLIGHT database and IHS Enerdeq (2022)

Area of Review

AOR size depends on

- Injection rate/duration
- Reservoir properties
- ΔP_{crit}

 ΔP_{crit} depends on:

- Depth difference between injection zone and protected zone
- Density difference between injection zone brine and USDW
 - Function of temperature and salinity

Axis of symmetry (assuming an isotropic reservoir)

After Bachu, 2015

Critical Pressure at 2500 m Depth

All cases: Injection at 2500 m depth into brine with 60Kppm TDS; USDW = 6Kppm TDS; Seawater = 35 Kppm TDS

Critical Pressure at Base of Storage Window

All cases: Injection into brine with 120K ppm TDS; USDW = 6K ppm TDS; Seawater = 35K ppm TDS

Bureau of Economic Geology The key variables are depths to base of protected zone and OP

Pressure Propagation and AoR

Prospect 1: 400 km², Open Boundaries

Geology

All models: 100 m net reservoir, 25% porosity, injecting 1 Mtpa for 20 years at 2.5 km depth

Prospect 2: 400 km², Closed Boundaries

Geology

GULF COAST CARBON CENTE

All models: 25% porosity, 100 mD, injecting 1 Mtpa for 20 years at 2.5 km depth

Geology

Prospect 3: 15 km², Isolated Fault Block

All models: 25% porosity, injecting 1 Mtpa for 20 years at 2.5 km depth

Minimizing Conflict

- Rules of thumb to minimize AoR
 - Choose deep injection zones
 - Stack multiple injection zones
 - Look for giant compartments
 - Consider isolated pressure compartments
- Minimizing conflict
 - Look for the big gaps in legacy wells
 - Down-dip fetch areas are often most favorable
 - First movers have a real advantage
 - Beware the effect of later, nearby injection
- Two wild cards
 - This does not consider the role of non-net reservoir—that may soak up significant pressure
 - Water production can mitigate pressure but adds cost and creates a new problem

