Pressure Space: A Step Towards Realistic Capacity Maps

Alexander P. Bump (<u>alex.bump@beg.utexas.edu</u>) Susan D. Hovorka (<u>susan.hovorka@beg.utexas.edu</u>)

www.gulfcoastcarbon.org

April 5–7, 2023

Static Capacity

Great for showing big numbers....

...but not realistic ones

It Works for Oil and Gas...

...Not So Much for CCS

- Injection at industrial rates
 - Sweep efficiency is highly uneven
 - Saturation is unpredictable
- Subsurface pore space is already full
- Injection requires making space for more fluid
 - Raise the land surface—real but small effect
 - Displace pre-existing fluids
 - Only creates space if you can displace to ground surface or seabed
 - In sealed reservoirs, displacement is limited
 - Dissolution—real but limited
 - Compress rock and pre-existing fluids
- Pressure rise is inevitable and the key limit

Hovorka (2011)

Pressure Space

Pressure space = (Pore Volume)(Allowable Pressure Increase)

Calculating Capacity

Capacity= (Pore Volume)(Allowable Pressure Increase)(Total Compressibility)(CO₂ Density)

BUREAU OF ECONOMIC GEOLOGY GUE CARBON CENTER Hydrostatic or N/A

Pressure-Based Capacity vs Depth

Capacity= (Pore Volume)(Allowable Pressure Increase)(Total Compressibility)(CO₂ Density)

Bureau of Economic Geology

- Capacity is depth dependent
 - Deeper pore space has greater capacity than shallow
- Below supercritical, capacity is a ~linear function of depth
 - Can use injection zone thickness and midpoint pressure, compressibility, density values to calculate capacity
- Same algebra can be applied to map-view grids

Mapping Example: Gulf Coast Miocene

Gulf Coast Miocene

Pressure-Based Capacity

Storage Efficiency Comparison

CO₂ Storage Resource Catalog

Most published SE numbers require borrowing pressure space from neighbors

Thoughts and Next Steps

- But...
 - Assumes final pressure is 90 % of frac
 - It's capacity but maybe not achievable capacity
 - Also takes "net reservoir" at face value
 - Non-net does not contribute at all here
 - Silty interbeds and seals might contribute significant pressure space over 1-3 decades
 - This is pressure-based capacity only
 - At this scale of SE, dissolution could be a significant contributor
 - Reservoir brine can dissolve \sim 5 % of its mass in CO₂
 - If CO₂ contacts 10% of the pore space (filled with unsaturated brine), dissolution could add another ~0.5 % SE (double pressure alone!)
- Not the final word
 - Boundary conditions? How much pressure space can 1 well access?
 - Contributions from dissolution and non-net reservoir?