Fault Compartmentalization and its impact on storage project scale, offshore Corpus Christi

Charlie Y.C. Zheng,

Alexander P. Bump (alex.bump@beg.utexas.edu), Susan D. Hovorka (susan.hovorka@beg.utexas.edu), Carlos Uroza (carlos.uroza@beg.utexas.edu), and GCCC team

Motivation

• Pressure buildup is the key limitation of storage capacity:

Reservoir compartmentalization is a real constraint

- Gulf of Mexico is ideal for CO₂ sequestration but heavily faulted
- What are the distributions of the fault compartment sizes & their storage capacities?

Realistic view of resource

Fault Compartments in the offshore Corpus Christi

- Major fault trends dividing the area are oriented along the shelf strike
- Fault compartments "step down" and become more fragmented seawards
- A couple of sizable compartments despite the heavy faulting

GUE COAST CARBON CENTER BUREAU OF GUE COAST CARBON CENTER GEOLOGY

Size of the Fault Compartments

• Mapped compartments cover ~ 60% of the area

P 50: ~ 25 km²

30

P 90: > 100 km² (4 big compartments)

- RMS map of top Lower Miocene showing locations of two deltas and sand distributions
- Understanding the paleogeography & sedimentary system is key

Lower Miocene delta system

Middle Miocene flooding & backstepping

GoMCarb

Lower Upper Miocene shoreface system

Top Upper Miocene barrier island & lagoon system

Star compartment

~230 km²; ~ 60Mton per 100 m net reservoir

@ ~1600 ms

@~1700 ms

@ ~1800 ms

What if there are multiple injection intervals?

Where do we stand now?

- Joint compartment and reservoir maps provide a high-level assessment of the value of the area
- Insights into site selection and next phase of the project

Next steps

- Risk analysis (e.g., fault analysis)
- Precise reservoir characterization and refinement of the storage capacity at play scale
- Reservoir & fluid flow modeling

