Sandbox model results and implications for CO₂ migration and trapping

HAILUN NI¹, ALEX BUMP¹, TIP MECKEL¹, PRASANNA KRISHNAMURTHY², DAVID DICARLO², RICARDO BRAGANCA³, NICOLA TISATO³

¹Gulf Coast Carbon Center, Bureau of Economic Geology, The University of Texas at Austin ²Department of Petroleum and Geosystems Engineering, Cockrell School of Engineering, The University of Texas at Austin ³Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin

Hailun Ni: hailun.ni@beg.utexas.edu

The flow regime of CO_2 geologic storage is capillary- and buoyancy-dominated

Barrier Systems

Spatially

Introduction

- Away from the injection well
- Temporally
 - During the entire postinjection period

Ultrasonic Sensing

Experiment: Intermediate-scale beadpack experiments have unique advantages

- Customizable domain
 - Different types and degrees of heterogeneity
- High-resolution imaging
 - Light transmission visualization
 - Both in time and space
- Buoyancy-driven flow
 - Most closely matches CO₂ geologic storage flow regime

Krishnamurthy, 2020

Ultrasonic Sensing

Alternative confining system: composite confining system

50 yr

What makes a good barrier?

- Which barrier properties affect the CO₂ retention capacity of the composite confining system
 - Barrier length
 - Barrier shape
 - Barrier gradation (Fining upward sequence)

Experimental domains and results

Barrier Systems Introduction **Flow Pulsation Ultrasonic Sensing** Exp. A Exp. B Exp. C **Saturation** results at domain breakthrough Snw 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Bureau of Economic 0.2 GoMCarb Geology 0.1

N:G = 75%

Field-scale simulation as validation

 As long as the injected CO₂ amount does not exceed the storage capacity, plume vertical migration is contained.

10 km

Introduction

Barrier Systems

Introduction

Flow Pulsation

Ultrasonic Sensing

Ultrasonic Sensing

Dynamic flow behavior: heterogeneity induced CO_2 flow pulsation

Introduction

Flow Pulsation

Ultrasonic Sensing

Modeling the probability of early breaching with simulation

Single simulation run

Multiple simulation runs combined Bureau of Economic GoMCarb

Geology

12

In geologic CO_2 storage, time-lapse seismic survey is an important monitoring method

- To monitor the CO₂ plume saturation and migration extent
- Sandbox models provide an alternative to simulations for uncertainty quantification

4D seismic quantification of a growing CO₂ plume at Sleipner, North Sea

Lab-scale ultrasonic sensing system

Barrier Systems

Ultrasonic imaging

Introduction

- Same principle as seismic reflection
- Offshore CO₂ plume monitoring
 - Transducer frequency is 1MHz. At a typical scale for sandbox of 10,000:1, this represents a field source with a center frequency of 100 Hz. (Sherlock et al., 1997)

Flow Pulsation

Zero offset panels

Lab-scale ultrasonic sensing system setup

• Main components:

Introduction

- Ultrasonic signal generation and receiving system
- Motors and their control system

GoMCarb

Geology

Flow Pulsation

60 cm

Ultrasonic Sensing

Experimental procedure

After air injection: an air cap is now present

- Wet packing
- Fine-bead anticline structure
- Water and air
- Two scans: before and after air injection

Compare the images before and after air injection

Sandbox model results and implications for $\rm CO_2$ migration and trapping

Flow Pulsation: Can lead to early breakthrough of capillary barriers

GoMCarb

Economic

Geology

Ultrasonic Sensing: The presence of a gas cap is detectable

Barrier Systems: Barrier area and frequency matter