Carbon Storage Potential in Chandeleur Sound, Louisiana

Yushan Li Supervisor: Dr. Susan Hovorka

(susan.hovorka@beg.utexas.edu)

M.S. Committee members: Dr. Carlos Uroza, Ramon Gil-Egui

Project Introduction

Problem:

Is Chandeleur Sound geologically and economically viable for CCS?

Major Steps:

- Geological characterization
- Storage capacity estimation
- Source-sink matching
- Pipeline regulations
- Pipeline routing and costs estimation

Sum Negative Amplitude – Upper Miocene

Root Mean Square (RMS) Amplitude

High amplitudes appear at:

• UM south

Low amplitudes appear at :

- UM north
- MM shelf

Geobodies extraction – from bright amplitude areas

Spectrum Decomposition

upper UM

Bureau of Economic Geology lower UM

MM

- UM: 25, 45, 65 Hz (100 slices)
- MM: 15, 35, 55 Hz (120 slices)

Major channel system appears near UM horizon, indicates possible sand flow.

Possible paleo Tennessee River distributary.

Interpretation is that of the University of Texas. Data owned or controlled by Seismic Exchange, Inc.

Conclusions on CCS Viability outside of the Canyon

Most viable storage location:

- UM shelf (south) continuous sand
- Channel system near UM Top- massive, does not reach supercritical cut-off

Not ideal:

- MM shelf low amplitude & lack of well control
- UM shelf (north) above supercritical cutoff or lack of continuous seal

Well Analysis

GULF COAST CARBON CENTER

Net Sand Map

Net sand thickness of the whole UM interval

Measured using a Gamma Ray cut-off value of 50

Thickest at the Mid UM shelf (white color in the map), > 700 ft (214m) thick

Reservoir Identification and Their Properties

Seven continuous sand bodies have been selected

Name	Depth (m)	Pressure (Mpa)	Temperature (C)	Porosity	Permeabilit y (mD)	Thickness (m)	Area (km²)
S1	1694.84	17.79	57.36	0.27	77.01	42.16	278.59
S2	1694.48	16.53	54.36	0.23	11.32	53.34	283.51
S 3	1473.84	15.48	51.85	0.25	36.84	49.02	301.02
S4	1359.75	14.28	48.99	0.26	168.01	64.01	261.81
S5	1242.23	13.04	46.06	0.29	216.19	61.72	477.52
S 6	1188.36	12.48	44.71	0.31	362.24	47.55	450.55
S 7	1099.29	11.54	42.48	0.31	451.92	47.85	405.78

Static Storage Capacity Estimation

 $G_{CO2net} = A_t h_{net} \phi_{tot} \rho E_{net}$

 $A_t = Total area$

 h_{net} = Net sandstone thickness

 $\phi_{tot} = Total \ porosity$

 $\rho = CO_2$ density

 E_{net} = Net storage efficiency factor in a saline aquifer (using 2% in this study)

Name	Density (kg/m³)	Total Porosity	Thickness (m)	Area (km²)	Estimated Capacity (Mt)
S1	703	33.46%	42.16	278.59	55.26
S2	700	33.28%	53.34	283.51	70.46
S 3	696	34.87%	49.02	301.02	71.63
S4	691	34.37%	64.01	261.81	79.60
S 5	685	34.68%	61.72	477.52	152.15
S 6	681	35.39%	47.55	450.55	103.26
S7	673	36.54%	47.85	405.78	95.50
Total					627.86

Dynamic Storage Capacity Estimation - EASiTool

Economic Viability of Chandeleur Sound

- Large amount of carbon sources
 - Close to major industrial cities like: New Orleans, Baton Rouge, Pascagoula, etc.
 - Chemical corridor in LA
- Large, offshore, state water location
 - ~ 650 mi²
 - Does not affect USDW
- Transport method: pipeline

Source: EPA FLIGHT Database

Regulations on Pipeline Sitting

Regulatory agency:

Department of Transportation - United States Pipeline and Hazardous Materials Safety Administration (PHMSA) Title: 49 C.F.R. §195

§ 195.210 Pipeline location.

- (a) Pipeline right-of-way must be selected to avoid, as far as practicable, areas containing private dwellings, industrial buildings, and places of public assembly.
- (b) No pipeline may be located within **50 feet (15 meters)** of any **private dwelling, or any industrial building or place** of public assembly in which persons work, congregate, or assemble, unless it is provided with at least 12 inches (305 millimeters) of cover in addition to that prescribed in <u>§ 195.248</u>.
- Extra plans in High Consequence Areas (HCAs)
 - Commercially navigable waterways
 - High population areas (> 1,000 people per mi²)
 - Other populated areas
 - Unusually Sensitive Areas (USAs)

Marine protected areas near Chandeleur Sound (NOAA, 2020)

Pipeline Capital Costs – NETL Model

Proposed pipeline route:

CF Industries Nitrogen to Central Chandeleur Sound

Pipeline length: 112.07 miles

Average flow rate: 9 Mt/yr

- Diameter: 20 in
- **Region: Southwest**
- Injection period: 30 yr
- Construction period: 3 yr
- Capacity factor: 85%

Tool Used: FECM/NETL CO2 Transport Costs Model (2022)

Capital Costs Breakdown Using Three Models

Costs (2023\$)	Parker	McCoy and Rubin	Rui et al.
Materials	59,824,581	32,870,731	31,830,417
Labor	121,002,768	44,401,000	43,077,299
ROW	7,782,117	10,584,751	12,578,299
Miscellaneous	40,091,569	27,227,101	25,065,154
CO2 Surge Tanks	1,616,184	1,616,184	1,616,184
Pipeline Control System	145,301	145,301	145,301
Pumps	6,923,719	6,923,719	6,923,719
Contingency	35,607,936	18,565,318	18,185,456
Capital Costs	272,994,174	142,334,104	139,421,829

Pipeline Capital Costs – Terrain Based

Pipeline Capital Costs – Terrain Based

Terrain	Capital Cost (\$/in-mi)	
Flat, dry	\$50,000	
Mountainous	\$85,000	
Marsh, wetland	\$100,000	
River	\$300,000	
High population	\$100,000	
Offshore (150-foot [ft] – 200-foot depth)	\$700,000	

	Land Cover	Length (km)	Total Length (mi)	Terrain	Costs (\$/in-mi)	Total Costs
	Open Water	79.53	49.31	Offshore	700,000	\$ 690,320,389.40
and a	Developed Open Space	2.94				
-	Developed Low Intensity	15.33				
	Developed Medium Intensity	14.22				
	Developed High Intensity	7.14	23.14	High Population	100,000	\$ 46,276,800.07
A A	Barren Land	0.63				
	Deciduous Forest	0.03				
-	Evergreen Forest	0.06				
1 - Car	Mixed Forest	0.24				
the second	Shrub or Scrub	0.03				
	Grassland or Herbaceous	0.30				
	Pasture or Hay	1.65				
- M .	Cultivated Crops	10.59	8.39	Flat, Dry	50,000	\$ 8,388,600.08
100 3.4	Woody Wetlands	22.17				
	Emergent Herbaceous Wetlands	30.75	32.81	Marsh, Wetland	100,000	\$ 65,620,800.09
	Total		112.07			\$ 810,606,589.64
	0 10 20 40 Miles Exr. NASA. NGA. USGS, CONANP, Exr. HERE, Garmun, SateGraph, FAO, METI/NASA, USGS, EPA. NPS					

Cost (\$/in-mi) is based on Kinder Morgan pipeline cost metrics (Layne, 2009)

Future Work

Incorporate FECM/NETL model with terrain-based costs and regulatory restrictions

- Create a cost layer on ArcGIS, classified by land cover types
- Identify and overlay the Unusually Sensitive Areas (USAs) on top of the cost layer
- Identify and apply restriction level on the USAs (federal and state level)
- Generate pipeline route with the least capital costs and lowest restriction

Thank You!

