Science-informed Machine Learning for Accelerating Real-Time Decisions in Subsurface Applications

Seyyed A. Hosseini

(seyyed.hosseini@beg.utexas.edu)

Problems and motivations

Carbon Storage

- Bring AI and machine learning (ML) capabilities to
 - Inform pre-injection permitting
 - Class VI permit (characterization, uncertain quantification, plume assessment)
 - Site development
 - History matching
 - Operation optimization
 - Induced seismicity
- Visualization (real-time)
- Idea is to use AI and ML to speed up these simulations by orders of magnitude

Task 5 Motivation

Can we rapidly develop experience among CCS stakeholders to facilitate rapid & safe deployment of largescale geologic CO₂ storage?

<u>Vision:</u> Enable a Virtual Learning Environment (VLE) for exploring and testing strategies to optimize reservoir development, management & monitoring prior to field activities

<u>Phase 1 Goal:</u> Demonstrate the proof-of-concept with a prototype

Deep-learning-based surrogate model for fast forward simulation

Hongsheng Wang

(hongsheng.wang@beg.utexas.edu)

Definitions

• Capture the relationship between the input data and output data and use neural networks as mapping function.

State variables (2D slice for visualization):

Pressure/CO2 saturation/Production rate

- Faster, more flexible, scalable, and efficient.
- Forward simulation and inverse problem (history matching).

Geological parameter: Porosity/Permeability

Table of contents

- 1. Convolutional neural network/Multilayer perceptron model
 - Dataset: The Illinois Basin Decatur Project (IBDP) simulations
 - Data size: 126, 126, 110
 - Time step: 50 (Months)

- 2. Reduced-order Model
 - Dataset: GoM simulations
 - Data size: 54, 48, 92
 - Time step: 720 (Months)

CNN/MLP on IBDP

• Model architecture: CNN-MLP

• Input and output overview

• Results: Pressure

• Results: Saturation

Model architecture: CNN-MLP

CNN/MLP on IBDP

• Model architecture: CNN-MLP

• Input and output overview

• Results: Pressure

• Results: Saturation

Input and output overview

- Training, validation, and test split
 - Training (80 realizations): [1, 2, 3, 4, 6, 7, 8, 9, 11,..., 99];
 - Validation (10 realizations): [5, 15, 25, 35, 45, 55, 65, 75, 85, 95];
 - Testing (10 realizations): [10, 20, 30, 40, 50, 60, 70, 80, 90, 100].
- Origin of tartan Input data 9.7 mile grid, [1,1,1] on Injection time: (100, 50,); the top surface • Injection rate: (100, 50,); • Permeability: (100, 126, 125, 110, 3); Porosity: (100, 126, 125, 110, 1). - 117500 - 116500 Output data \bullet • Pressure: (100, 50, 126, 125, 110, 1); Saturation: (100, 50, 126, 125, 110, 1). 114500

Figure 67. Dynamic model domain and tartan grid.

Pre-processing: Input data

• Injection rate and time

Bureau of Economic

Geology

GoMCarb

Scaled cumulative injection rate

Scaled injection time

Pre-processing: Input data

• Permeability (X, Y, and Z): scaled logK to [-1, 1];

GoMCarb

Geology

Pre-processing: Input data

• Porosity

Pre-processing: Output data Pressure: Scaled to [0, 1]

Pre-processing: Output data

Saturation

CNN/MLP on IBDP

• Model architecture: CNN-MLP

• Input and output overview

• Results: Pressure

• Results: Saturation

Pressure: Good results

Training curve

Bureau of Economic

Geology

GoMCarb

Cropped Pressure comparison (mse: 6.2715e-5)

Pressure comparison (mse: 0.001885)

Pressure: injection and monitoring well

Injection well

Monitoring well

Bureau of Economic

Geology

GoMCarb

CNN/MLP on IBDP

• Model architecture: CNN-MLP

• Input and output overview

• Results: Pressure

• Results: Saturation

Saturation: Not good

Training curve

Testing (scaled permeability) mse: 0.0001711

Saturation comparison

ROM on GoM

• Problems and motivations

• Dimension reduction and workflow

• Results: Pressure and saturation

• Future work

Problems and motivations

- ML and DL model training:
 - Massive feature numbers: hundreds of thousands or million grid cells;
 - Strong feature correlations;
 - Limited realizations;
 - High computational cost and time for model training.

- Any solutions to improve model performance?
- Can we implement model training with fewer but more representative features?

ROM on GoM

• Problems and motivations

• Dimension reduction and workflow

• Results: Pressure and saturation

• Future work

Dimension reductions

- What can DR do?
 - Reduce feature numbers;
 - Retain important information.

 \widetilde{P}

Dimension reductions

GoMCarb

Geology

Workflow diagram

- Step 1: Dimension reduction models for Geological Parameters and State Variables;
- Step 2: Construct mapping function in latent spaces with less features;
- Step 3: Apply to new realizations or new datasets.

ROM on GoM

• Problems and motivations

• Dimension reduction and workflow

• Results: Pressure and saturation

• Future work

Preliminary results: GoM datasets

• 3D Pressure: Good with less than 1% errors.

Comparison between Ground Truth and Model Predicted PCA reconstruction

• 3D Saturation: Bad with more than 20% errors.

Bureau of Economic

Geology

Comparison between Ground Truth and Model Predicted PCA reconstruction

ROM on GoM

• Problems and motivations

• Dimension reduction and workflow

• Results: Pressure and saturation

• Future work

Future works

- Pressure prediction: from good to better
 - Improve the accuracy on the large-scale domain
 - Coarsened input data for higher model efficiency
 - ...
- Saturation prediction: from bad to good
 - Custom loss function
 - Attention mechanism
 - More powerful models
 - ...

Thank you!

