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Problems and motivations
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• Bring AI and machine learning (ML) capabilities to

• Inform pre-injection permitting

• Class VI permit ( characterization, uncertainty 
quantification, plume assessment)

• Site development

• History matching

• Operation optimization

• Induced seismicity

• Visualization ( real-time)

• Idea is to use AI and ML to speed up these simulations by orders 
of magnitude 



Task 5 Motivation
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Phase 1 Goal: Demonstrate 
the proof-of-concept with 

a prototype 

Vision: Enable a Virtual Learning 

Environment (VLE) for exploring 

and testing strategies to 

optimize reservoir development, 

management & monitoring prior 

to field activities

Can we rapidly develop experience 
among CCS stakeholders to facilitate 
rapid & safe deployment of large-
scale geologic CO2 storage?

Interactively gain 

intuitive understanding 

of  CO2 storage site 

behavior by: 
3d Reservoir Permeability

Manipulating 
Inputs

Exploring 

Outputs



Deep-learning-based surrogate model for 
fast forward simulation
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Definitions
• Capture the relationship between the input data and output data and use neural networks as 

mapping function.

• Faster, more flexible, scalable, and efficient.

• Forward simulation and inverse problem (history matching).
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Mapping function

(Neural networks)

Geological parameter:

Porosity/Permeability

State variables (2D slice for visualization):

Pressure/CO2 saturation/Production rate



Table of contents

• 1. Convolutional neural network/Multilayer perceptron model

• Dataset: The Illinois Basin – Decatur Project (IBDP) simulations

• Data size: 126, 126, 110

• Time step: 50 (Months)

• 2. Reduced-order Model

• Dataset: GoM simulations

• Data size: 54, 48, 92

• Time step: 720 (Months)
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CNN/MLP on IBDP
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• Model architecture: CNN-MLP

• Input and output overview

• Results: Pressure

• Results: Saturation



Model architecture: CNN-MLP
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CNN/MLP on IBDP
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• Model architecture: CNN-MLP

• Input and output overview

• Results: Pressure

• Results: Saturation



Input and output overview

10

• Training, validation, and test split
• Training (80 realizations): [1, 2, 3, 4, 6, 7, 8, 9, 11,…, 99];

• Validation (10 realizations): [5, 15, 25, 35, 45, 55, 65, 75, 85, 95];

• Testing (10 realizations): [10, 20, 30, 40, 50, 60, 70, 80, 90, 100].

• Input data
• Injection time: (100, 50,);

• Injection rate: (100, 50,);

• Permeability: (100, 126, 125, 110, 3);

• Porosity: (100, 126, 125, 110, 1).

• Output data
• Pressure: (100, 50, 126, 125, 110, 1);

• Saturation: (100, 50, 126, 125, 110, 1).

Origin of tartan 
grid, [1,1,1] on 
the top surface



Pre-processing: Input data
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• Injection rate and time

Scaled cumulative injection rate

Scaled injection time



Pre-processing: Input data
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• Permeability (X, Y, and Z): scaled logK to [-1, 1]; 
X Y Z

Original

Scaled LogK



Pre-processing: Input data
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• Porosity



Pre-processing: Output data
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• Pressure: Scaled to [0, 1]



Pre-processing: Output data

15

• Saturation



CNN/MLP on IBDP
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• Model architecture: CNN-MLP

• Input and output overview

• Results: Pressure

• Results: Saturation



Pressure: Good results
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Training curve Cropped Pressure comparison (mse: 6.2715e-5)

Pressure comparison (mse: 0.001885)



Pressure: injection and monitoring well
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Injection well Monitoring well



CNN/MLP on IBDP
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• Model architecture: CNN-MLP

• Input and output overview

• Results: Pressure

• Results: Saturation



Saturation: Not good
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Training curve

Testing (scaled permeability) mse: 0.0001711 

Saturation comparison



ROM on GoM
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• Problems and motivations

• Dimension reduction and workflow

• Results: Pressure and saturation

• Future work



Problems and motivations
• ML and DL model training:

• Massive feature numbers: hundreds of thousands or million grid cells;

• Strong feature correlations;

• Limited realizations;

• High computational cost and time for model training.
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• Any solutions to improve model performance?

• Can we implement model training with fewer but more 
representative features?



ROM on GoM
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• Problems and motivations

• Dimension reduction and workflow

• Results: Pressure and saturation

• Future work



Dimension reductions
• What can DR do? 

• Reduce feature numbers;

• Retain important information.
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Latent variables:

෩𝑷

Geological 

parameters: P

Reconstructed Geological 

parameters: P’

Reconstruction error



Dimension reductions
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Dimension reduction approaches

Feature selection Dimension reduction

• Missing value ratio
• Low variance filter
• High correlation filter
• Random forest
• Backward feature extraction
• Forward feature selection
• …

Component-based Projection-based Deep learning

• Factor analysis
• Principal component 

analysis (PCA)
• Independent 

component analysis
• …

• ISOMAP
• t-SNE
• UMAP
• …

• Autoencoder
• Variational 

autoencoder
• GANs
• …



Workflow diagram
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Mapping 

Training time: T2

Prediction time: t2

Geological 

parameters: P

Simulation 

variables: V

Any Encoder

Training time: T1, P

Prediction time: t1, P

Any Decoder

Training time: T3, P

Prediction time: t3, P

Any Encoder

Training time: T1, V

Prediction time: t1, V

Any Decoder

Training time: T3, V

Prediction time: t3, V

Latent 

variables:
෩𝑷

Latent 

variables:
෩𝑽

Pre-trained models

• Step 1: Dimension reduction models for Geological Parameters and State Variables;

• Step 2: Construct mapping function in latent spaces with less features;

• Step 3: Apply to new realizations or new datasets.



ROM on GoM
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• Problems and motivations

• Dimension reduction and workflow

• Results: Pressure and saturation

• Future work



Preliminary results: GoM datasets
• 3D Pressure: Good with less than 1% errors.

• 3D Saturation: Bad with more than 20% errors.
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Comparison between Ground Truth and Model Predicted PCA reconstruction

Comparison between Ground Truth and Model Predicted PCA reconstruction



ROM on GoM
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• Problems and motivations

• Dimension reduction and workflow

• Results: Pressure and saturation

• Future work



Future works

• Pressure prediction: from good to better

• Improve the accuracy on the large-scale domain

• Coarsened input data for higher model efficiency

• …

• Saturation prediction: from bad to good

• Custom loss function

• Attention mechanism

• More powerful models

• …
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Non-zero saturation grid number 

fraction versus time



Thank you!
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