Data Analytics of BOEM Dataset for CO2 Storage in Gulf of Mexico

Tim Jianqiao Leng (jianqiao.leng@beg.utexas.edu)

Seyyed Hosseini (seyyed.hosseini@beg.utexas.edu)

Motivation

- Objective: Evaluation and screening of oil and gas reservoirs for CO2 storage
- Data: 2019 BOEM Database in Gulf of Mexico (Results may be biased toward oil/gas dataset)
 - Over 80 features and 13394 entries of depleted Oil and Gas sands
 - 978 reservoirs (670 reservoirs with detailed well data)
 - Sand discovered year ranges from 1947 to 2015
 - Sand chronozone ranges from Jurassic to Pleistocene

Methodology

Composite Factor Description

CO2 Storage

- Storage window
- Fluid replacement
- Well Condition
 - Well completed
 - Well score
 - Perforation safe zone
- Economic Condition
 - Remaining oil/gas
 - Reservoir distance to coast

- Depleted Area Ratio
 - Reservoir area
 - Drainage area
- Production Decline
 - Decline duration
 - Average rate
 - Variation of Decline
- Heterogeneity
 - Lorenz coefficient

Injectivity

Security & Economy

Capacity

CO2 Storage Estimation

- Static estimation (Agartan et al.)
 - Pore volume

 $G_{CO_2} = Ah_n \phi_e (1 - S_w) B \rho_{CO_2} E_{oil/gas}$

Storage efficiency & Fluid replacement

 $HCRF = \frac{(Cum. Free Gas Prod. \times B_{gi}) + (Cum. Oil Prod. \times B_{oi} \times 5.615)}{(OGIP \times B_{gi}) + (OOIP \times B_{oi} \times 5.615)}$

 $V_{CO_2} \times B_{CO_2} = (OGIP \times B_{g_i} + OOIP \times B_{oi} \times 5.615) \times E_{Roil/gas}$

Sands

Depleted Area Ratio

- Depleted area ratio (DAR):
 - Calculated drainage re

•
$$re = \exp\left(\frac{0.0078KH}{J\mu B} + 0.5 + S\right) * rw$$

- Reservoir radius R (from BOEM)
- $DAR = A_{re}: A_R$

Production Decline

- Production decline rate and Period length
 - Average conductivity

Deeper Data Mining

• Decline slope change:

- Near wellbore situation
 - Fractures or vuggies
 - Water channels
- $(S_{D} S_{Di})$ (Wang et al.)
 - <0.1 \rightarrow Exponential
 - 0.1-0.3 \rightarrow Slight Hyperbolic
 - 0.3-0.7 \rightarrow Hyperbolic
 - >0.7 \rightarrow Harmonic

Reservoirs

Heterogeneity

- Lorenz coefficient
 - Vertical distribution
 - Permeability (flow capacity)
 - Porosity (pore volume)

Well Condition in Reservoir

- Well scoring:
 - Well number X Well condition
 - Active: 1
 - Shut-in: 0.75
 - Abandon: 0.25
 - Plugged abandon: 0

Perforation Safe Ratio

Distance to Coast

• From reservoir center to coast line

Reservoirs

Remaining Oil and Gas

- Remaining BOE:
 - $BOE_r = OIP * (1 ORF) + GIP * (1 GRF) * C$
 - EOR profit during CO2 injection

K-means based on Score

- Final score = 3D distance to 0
 - Comprehensive score of three aspects

Location of Clusters on Map

Novelty

- Comprehensive score
 - 13 factors
 - Geo/Petro
- Balanced score
 - Storage
 - Injectivity
 - Safety

1.0

Next Step

- Collection of more data to avoid bias toward BOEM dataset
- Analysis of characterization of each cluster based on safety score, injectivity score, and storage score separately
- Analysis of geological factors' impact on the clustering
- Report results on CCUS conference
- Implementation of the method to saline aquifer dataset

Thank you

