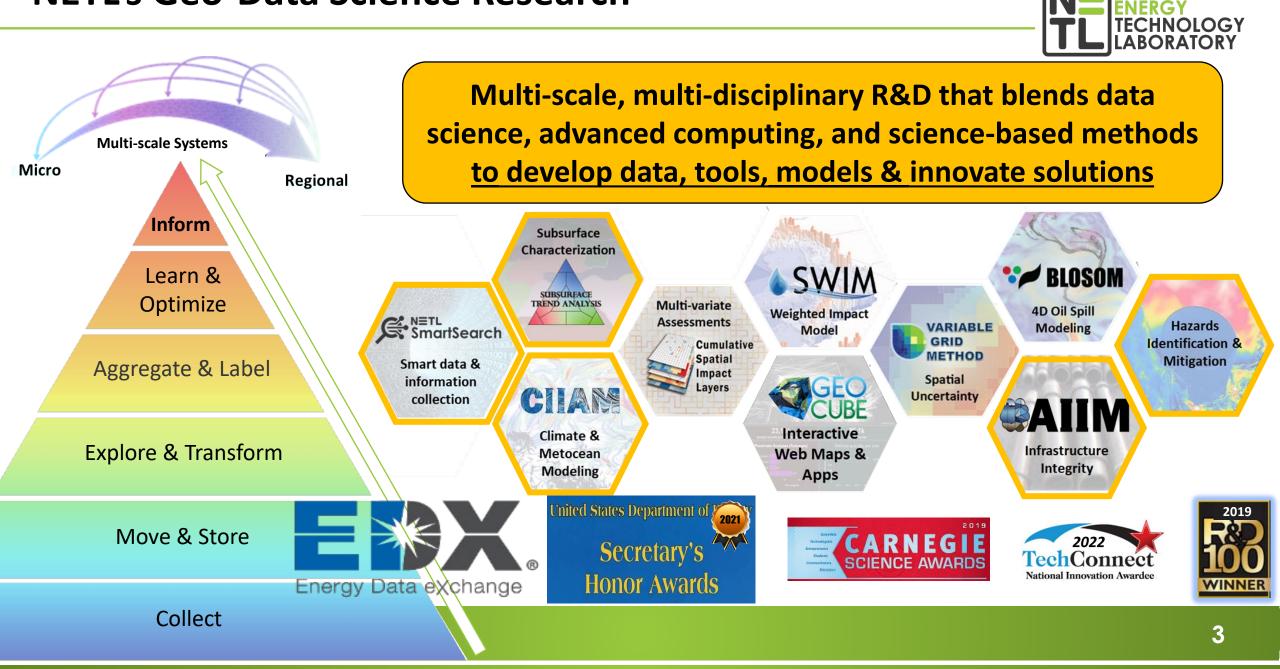

## Innovating Next-Generation AI & Data Solutions for Offshore CCS Speaker: Kelly Rose,

Technical Director, NETL's AI/ML Institute, SAMI


4/6/2023

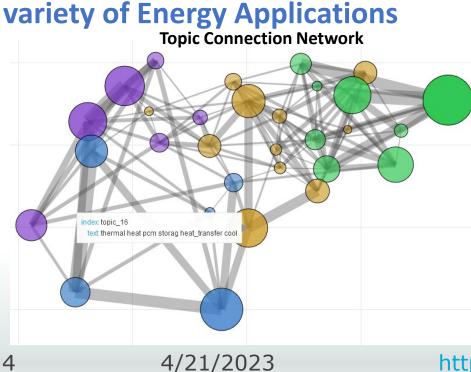
## Accelerating AI at NETL through SAMI

#### **NETL's Science-based AI/ML Institute**



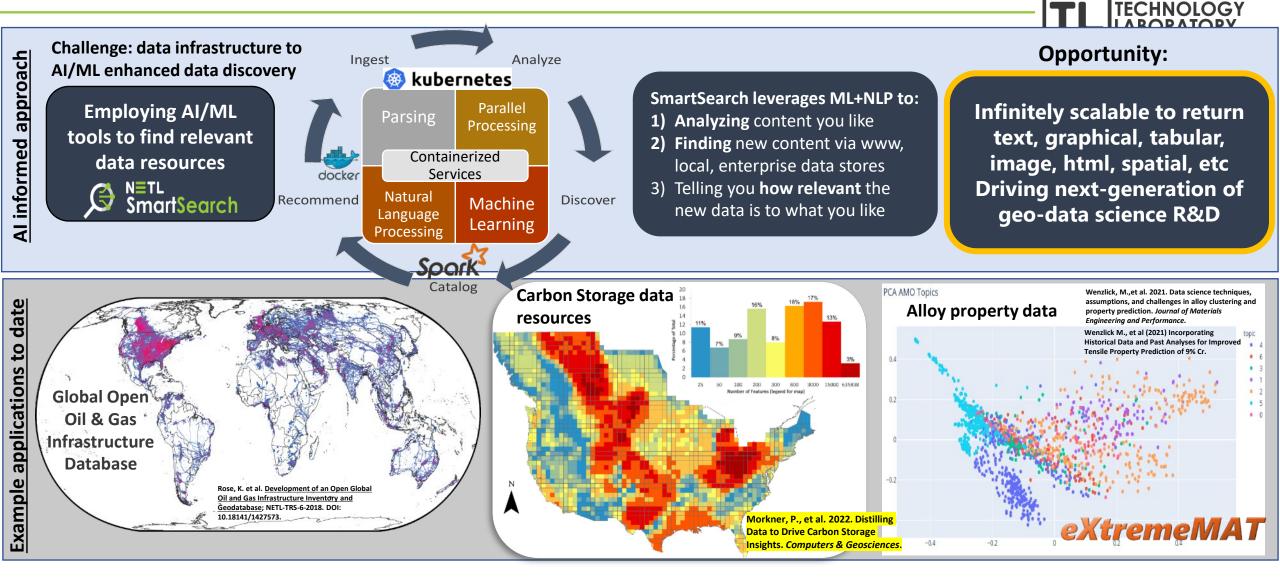
### **NETL's Geo-Data Science Research**




NATIONAL

## **SAMI-affiliated Research Highlights**




SAMI-affiliated research is at the leading edge of solving some of the most significant challenges applied energy

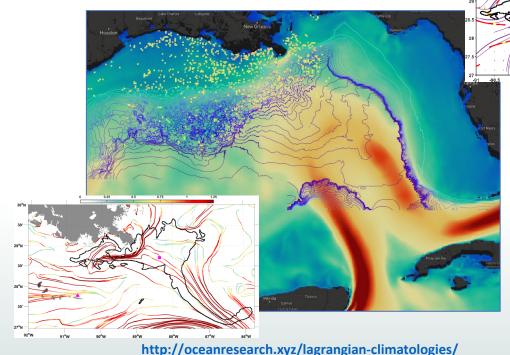
#### **Topic Modeling & NLP for a**



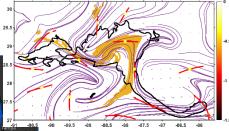
#### SmartSearch<sup>©</sup> Deep Learning/ **Generative AI for Data Discovery** Analyze Ingest 🛞 kubernetes Parallel Parsing Processing Containerized Services docker Natural Machine Recommend Language Discover Learning Processing Spark Catalog NATIONAL TECHNOLOGY

#### Digitalization, data management, & AI-informed data discovery




NATIONAL




https://edx.netl.doe.gov/about

## **SAMI-affiliated Research Highlights**

SAMI-affiliated research is at the leading edge of solving some of the most significant challenges applied energy



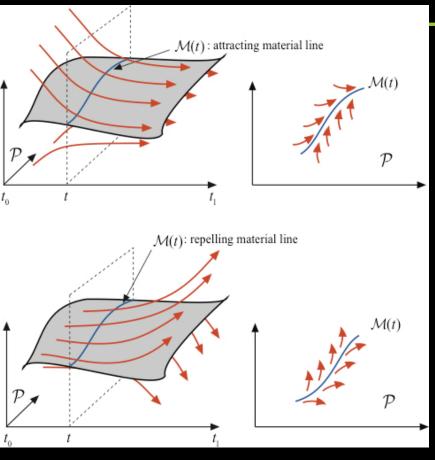
## Metocean modeling for advanced, adaptive forecasting of ocean systems





Climatological and Instantaneous Isolation and Attraction Models (CIIAM)

- **Award winning** model leverages the mathematical field of dynamical systems applied to geophysical fluids.
- Efficiently extracts climatological pathways and **trajectory patterns** from large velocity datasets.
- Leveraging of **unsupervised neural network learning**
- Identifies most influential instantaneous deformation patterns in fluid tracers bypassing inherent velocity errors.
- Used by research institutes in: USA, Mexico, Spain, UK, Brazil, India, Saudi Arabia, New Zealand.
  - Used for forecasting ocean plastic pollution, migrant boat locations, oil spill, and container ship loss trajectories, as well as fundamental ocean current patterns for transport and climate related insights


https://edx.netl.doe.gov/sami/



## Climatological Instantaneous Isolation and Attraction Model - CIIAM



https://edx.netl.doe.gov/dataset/ciam-climatological-isolation-and-attractionmodel-climatological-lagrangian-coherent-structures



Using concepts from the mathematical theory

of dynamical systems we find:

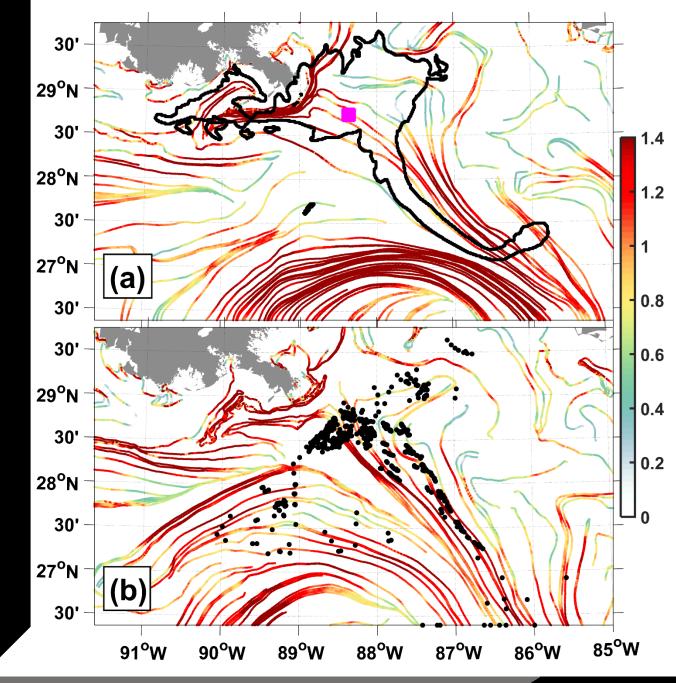
- most attracting pathways
- lack of attraction i.e. isolation



Duran, R.; Beron-Vera, F. J.; Olascoaga, M. J. <u>Extracting quasi-Steady Lagrangian transport patterns from the ocean</u> <u>circulation: An application to the Gulf of Mexico</u>. *Scientific Reports* **2018**, *8*, 10. DOI:10.1038/s41598-018-23121-y.

Gough, M. K.; Beron-Vera, F. J.; Olascoaga, M. J.; Sheinbaum, J.; Jouanno, J.; Duran, R. <u>Persistent Lagrangian</u> <u>Transport Patterns in the Northwestern Gulf of Mexico</u>. *Journal of Physical Oceanography* **2019**, 49, 353–367.




Solutions for Today | Options for Tomorrow



## Predicts likely pathways

Oil from DwH in May 2010 stretches along May climatological attracting structures.

> Drifters released in July 2012, spread along July climatological attracting structures.

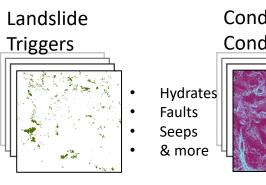




Used in domestic & international (Spain, Mexico, Brazil, etc) studies to:

- Predict changes in oceanographic currents
- Forecast fate and transport of refugee vessels
- Assess locations of sediment, chlorophyll, oil, and other particulates

Pathways: Red=attracting White=isolated

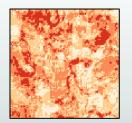



## **SAMI-affiliated Research Highlights**

SCIENCE-BASED AI/ML INSTITUTE

SAMI-affiliated research is at the leading edge of solving some of the most significant challenges applied energy

#### Artificial Intelligence (AI) Enhanced Workflow for <u>Natural Hazards Forecasting</u>




- Conducive Conditions
- Slope
- Curvature
- Sediment Type
- Geomorphology
- & more

Gradient Boosting Classifier
Artificial Neural Network







Output Landslide Susceptibility Map

https://edx.netl.doe.gov/sami/

#### https://edx.netl.doe.gov/sami **APPROVED FOR PUBLIC RELEASE**

#### catastrophic spills. Dyer, A., et al. Geohazard Analysis of Seafloor Landslide Potential for Infrastructure

Protection. In press https://www.researchsquare.com/article/rs-2070041/v1

Dyer, A.S., Mark-Moser, M., and Bauer, J., Submarine Landslide Susceptibility Mapping in the Northern Gulf of Mexico. In preparation.

Offshore Hazards include seabed instability, extreme wind/wave/current events, and earthquakes

**Technology** that integrates Artificial Intelligence and Machine Learning (AI/ML) methods with spatial data is being developed to forecast potential hazards to infrastructure

**Benefits** 

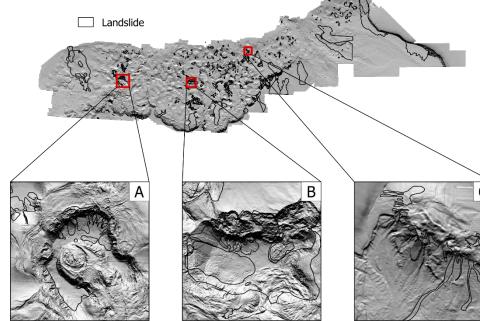
- **Risk mitigation**
- Inform decommissioning and re-use strategies
- Reduce environmental and economic impacts

#### https://edx.netl.doe.gov/offshore

.S. DEPARTMENT OF

ENERGY

Mexico

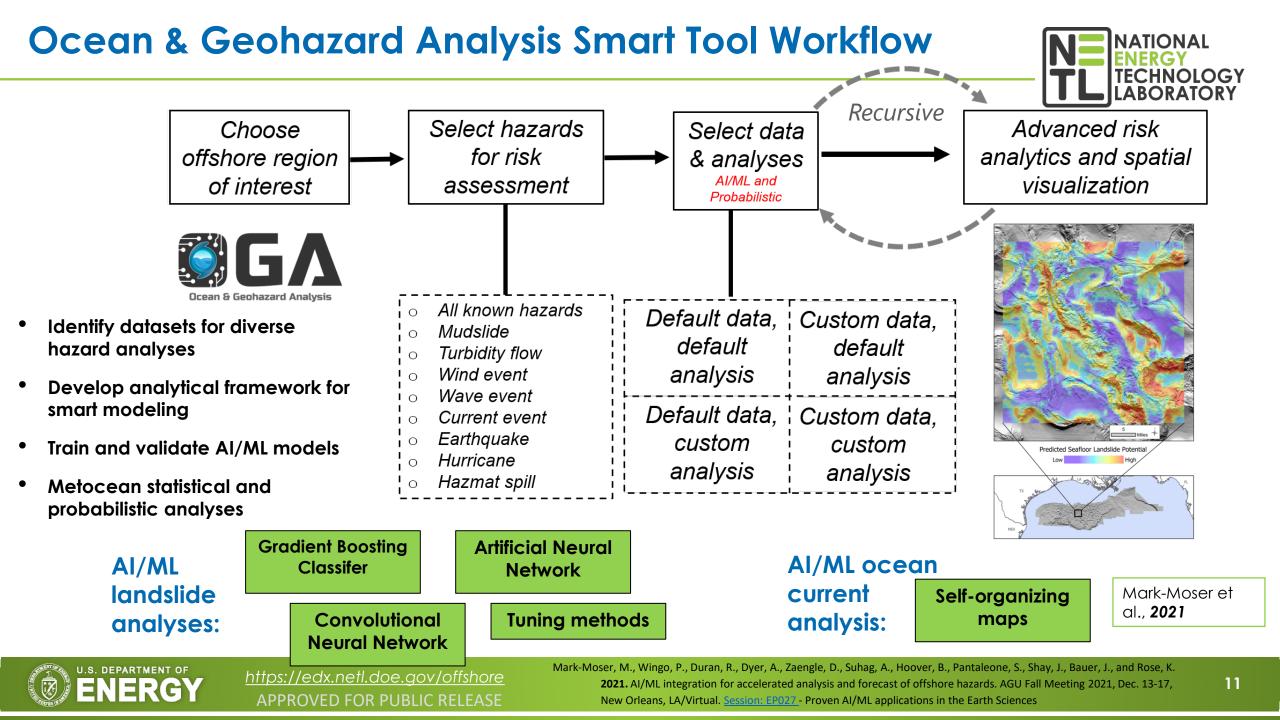

This photo from March 31, 2015, shows the wake of a supply vessel crossing an oil sheen in the Gulf of Mexico at the site of the former Taylor Energy oil rig, which was destroyed in 2004 by an underwater landslide triggered by Hurricane Ivan. PHOTOGRAPH BY GERALD HERBERT, AP PHOTO

SCIENCE | NEWS

**Offshore Geohazard Forecasting** 

#### Hidden underwater landslides pose new dangers in the Gulf of

Seismic data show that earthquakes more than 600 miles away can trigger submarine mudslides that threaten offshore oil rigs and could lead to



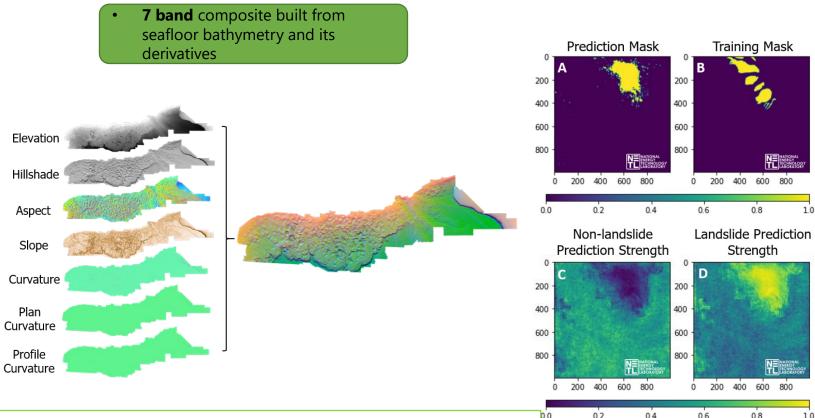












## Landslide Detection



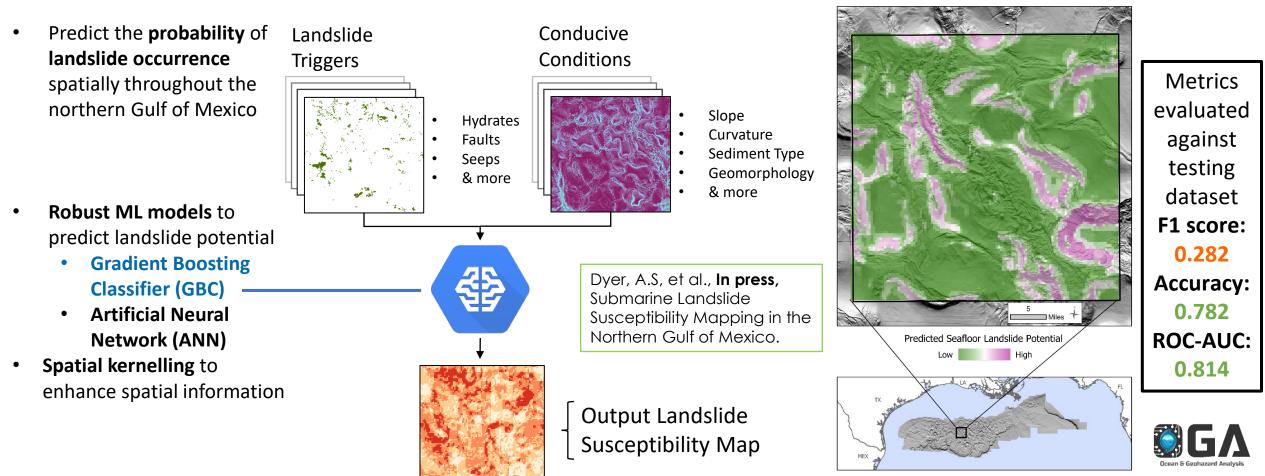


- Supervised computer vision modeling to identify historic landslides in high resolution bathymetry, decreasing time to locate and digitize training data
- Semantic segmentation deep learning framework developed using a Fully Convolutional Residual Network (ResNet50)

https://edx.netl.doe.gov/offshore



Mark-Moser et al., *in prep*, Integrated Artificial Intelligence/Machine Learning Smart Tool for Metocean and Seafloor Hazards: The Ocean & Geohazard Analysis Tool. NETL Technical Report Series.




## Landslide Susceptibility





#### **GBC Model Prediction**



https://edx.netl.doe.gov/sami









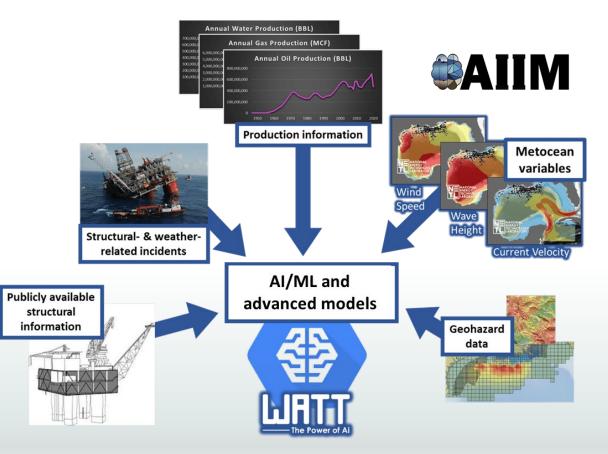
#### Key Takeaways

- AI/ML methods offer near-real time assessment of risks to offshore infrastructure from submarine landslides.
- Spatial workflow is generalizable, offering implications to accelerate other risk applications extending to other geohazard targets both offshore and onshore.

#### **Challenges**

- Landslides are **heterogeneous** in shape and structure, making them **difficult to identify** by computer models.
- Data availability throughout the Gulf of Mexico regarding seafloor properties is spatially sparse.






### **SAMI-affiliated Research Highlights**

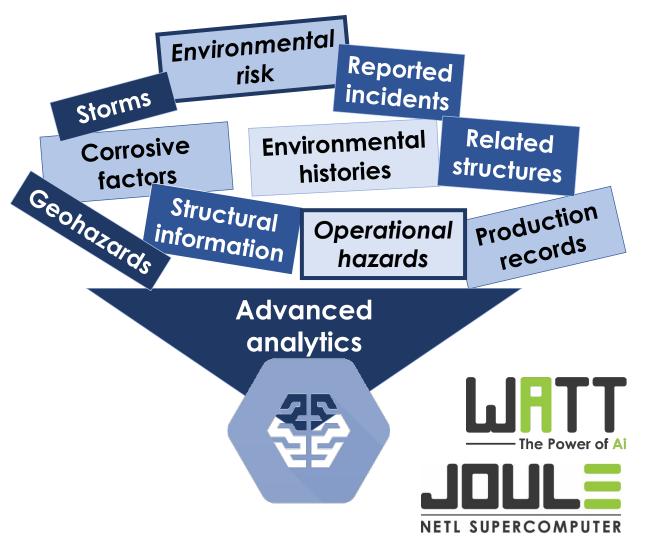


SAMI-affiliated research is at the leading edge of solving some of the most significant challenges applied energy

#### Applied AI/ML Multi-Model Forecasting Infrastructure Integrity



https://edx.netl.doe.gov/sami/


## **AIIM**: <u>A</u>dvanced <u>I</u>nfrastructure <u>I</u>ntegrity <u>M</u>odel



AIIM utilizes big data, big data computing, multiple predictive machine learning (ML), spatiotemporal, and advanced analyses to **evaluate the current state of platforms, pipelines, and wells** in the U.S. Federal Waters of the Gulf of Mexico.

#### AIIM results can help:

- Identify assets vs. liabilities
- Inform life extension, remediation, & safe use strategies
- Assess infrastructure hazards and reuse potential for other energy sources
- Support environmental & operational risk prevention





# **AIIM** Analytical Approach

NATIONAL ENERGY TECHNOLOGY LABORATORY

Metocean &

Biochemical

variables

Geohazard

data

#### Multiple Machine Learning (ML) and Advanced Modeling

#### Machine Learning Models (Dyer et al. 2022)

- Gradient Boosted Decision Trees (2 models)
- Artificial Neural Network (2 models)
- Bayesian Network

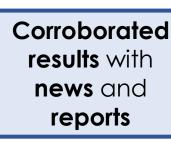
#### **Advanced Analytics**

- Geographically Weighted Regression
   (Nelson et al. 2021)
- Causality/Time Series Analytics

#### Why multiple models?

- Evaluate strengths vs. weaknesses
- Internal cross-validation

Identified **significant connections** among **biochemical** variables and **incidents** 


Annual Water

Incident

reports

Production

information



Structural

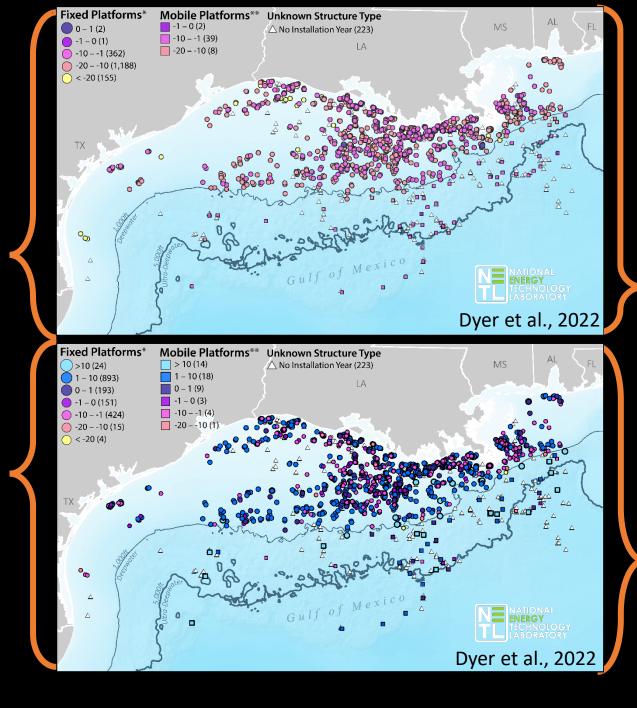
information

AI/ML &

Advanced

Modeling

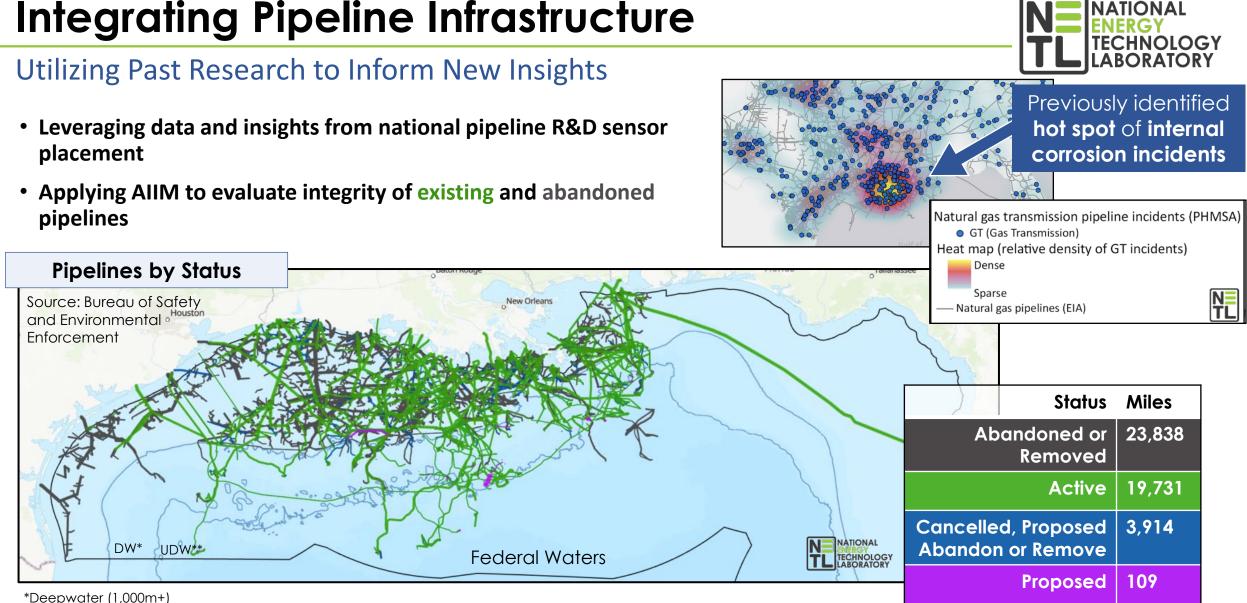
The Power of Ai


ML models capable of predicting **removal age <u>< 3 years</u>** 



## Predicting remaining platform lifespan

Gradient Boosted Regression Tree 97% accuracy 23 features


Artificial Neural Network 95% accuracy 792 features

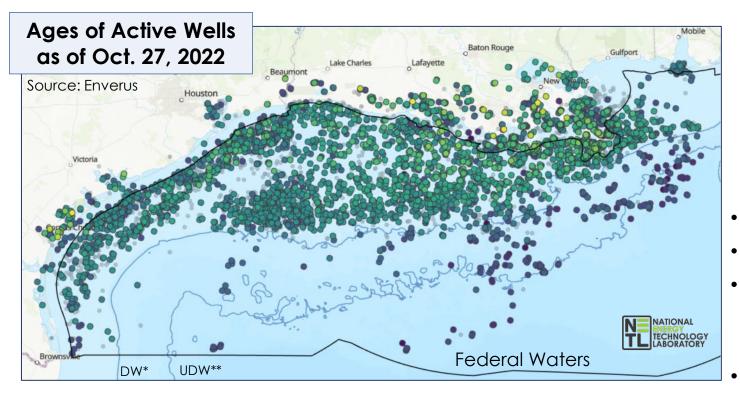


Running *multiple models* allows us to *internally validate results* 

> <u>Key Variables:</u> Metocean Production Structural Location

Key variables: Metocean Production Structural Location Incidents Geohazards

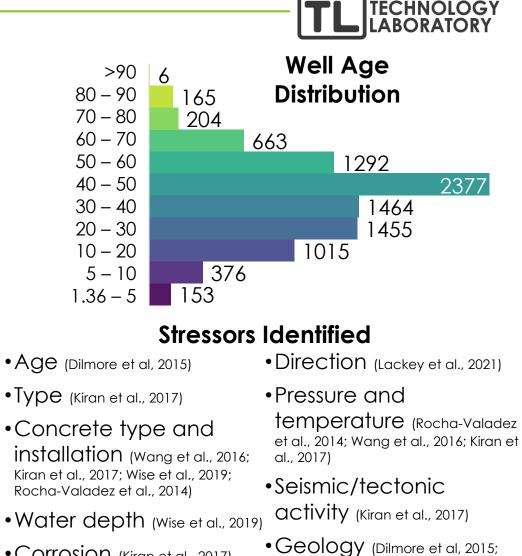



\*\*Ultra-deepwater (5,000m+)



## Integrating Well Infrastructure

#### Utilizing Past Research to Inform New Insights


- Leveraging data and insights from onshore well integrity testing
- Evaluating well integrity for reuse potential



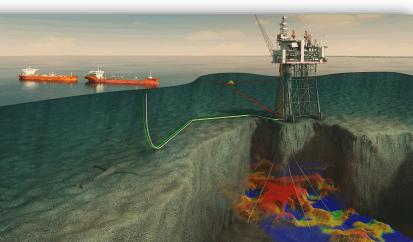
\*Deepwater (1,000m+) \*\*Ultra-deepwater (5,000m+)

DEPARTMENT OF

**ENERGY** 



ATIONAL


- Corrosion (Kiran et al., 2017)
  - https://edx.netl.doe.gov/offshore 20

Kiran et al., 2017)

## **AIIM** Applications



Assess what infrastructure is available or could be reused to support offshore carbon sequestration



Legend
×

Pipelines

Pipelines

Gas\_TG\_4\_20\_18\_Flag\_Offshe

Buston

Plaforms

Plaforms

Past Incident

Severity\_1

0.03 0.644

0.01 0.04

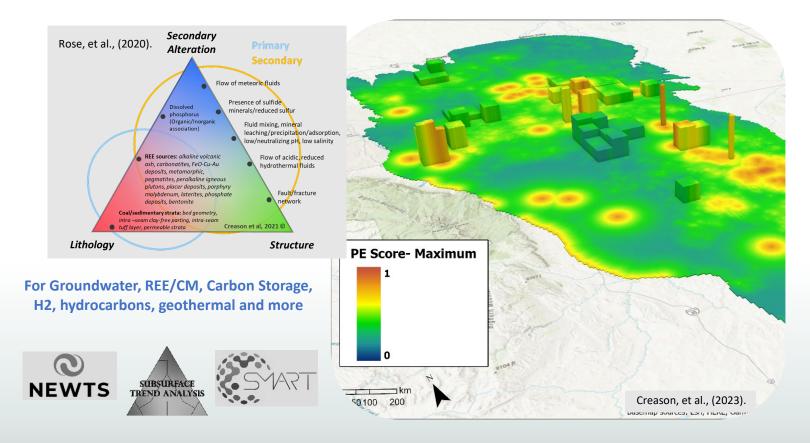
Understand what infrastructure could pose a risk to a project (example – preliminary

assessment with USCG)

What are the most traversed lease blocks by ship development to help traffic? users interrogate data & model results: What is the remaining lifespan of a platform? Alpha version Spring 2023 What is the What environmental history of a vulnerabilities exist in platform? the area? Lease block? **Pipeline?** Where are operational

risks more likely?






### **SAMI-affiliated Research Highlights**

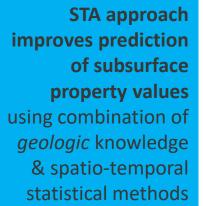
SCIENCE-BASED AI/ML INSTITUTE

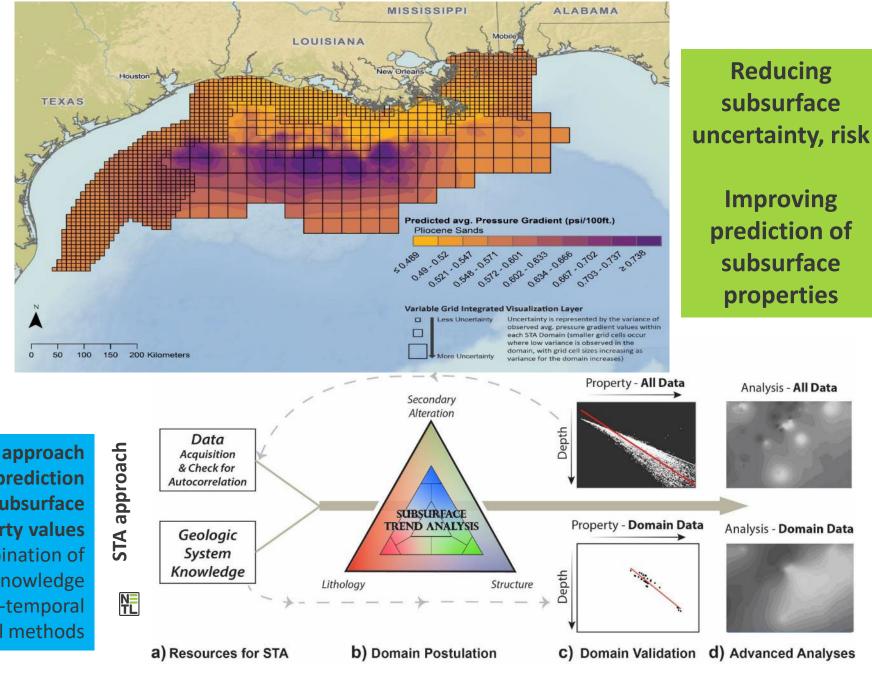
SAMI-affiliated research is at the leading edge of solving some of the most significant challenges applied energy

#### Federated-AI modeling for improving Natural Resource Assessments



https://edx.netl.doe.gov/sami/





## Subsurface Trend Analysis

Subsurface Hazards and Reservoir Resource Prediction

Rose, Bauer, Mark-Moser, 2021, Subsurface Trend Analysis, a Multi-Variate Geospatial Approach for Evaluation of Geologic Properties and Uncertainty Reduction, *Interpretation*.

ENERGY





https:/edx.netl.doe.gov/offshore 23

# Reframing Resources: Offshore $CO_2$ Storage in the Gulf of Mexico

Calculating safe resource storage potential to support decarbonization

Injected CO, Groundwater Caprock/Seal Chemosynthetic communities (tube worms) Fault Injected CO. the the Saline Formation Fault **Saline Formation** 

JATIONAL

ECHNOLOGY ABORATORY

## **Offshore CO<sub>2</sub> Saline Storage Methodology**

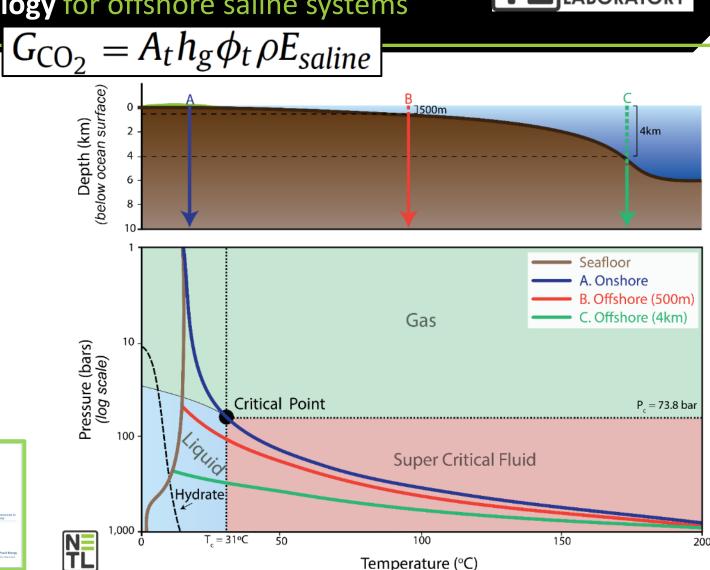
Built off the DOE CO<sub>2</sub> Storage Methodology for offshore saline systems

NETL

Goodman et al., 2016

Cameron et al., 2018

- Long-term volumetric estimation in saline formations
- Gigatons of CO<sub>2</sub> based on:
  - Area 
     Density
  - Height Efficiency
  - Porosity

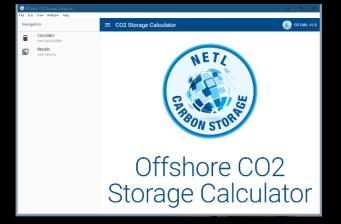

U.S. DEPARTMENT OF

## In Offshore Systems:

- **CO<sub>2</sub>** behaves differently • *Pressure, temperature, density*
- **Sediments** also behave differently
  - More porous & permeable

• Unlithified

NE ENERGY TECHNOLOGY LABORATORY



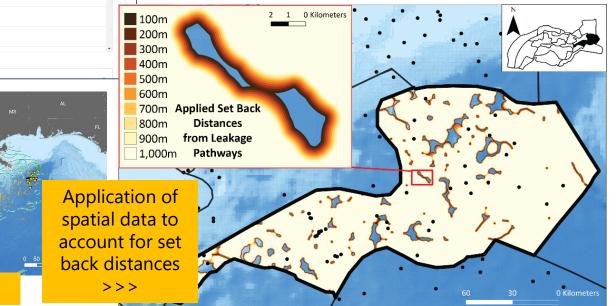





## **Offshore CO<sub>2</sub> Saline Storage Calculator**

Romeo, L., et al IJGGC 2022

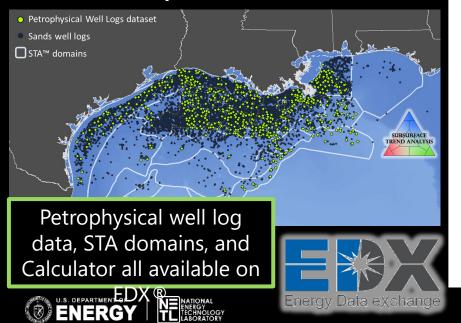


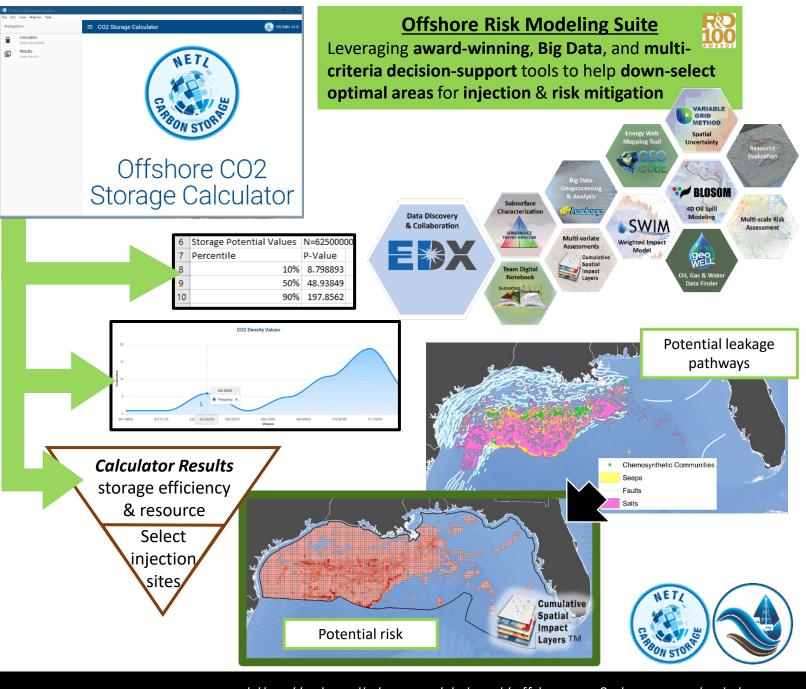

- Accounts for changes in CO<sub>2</sub> density given the overlying water column (Lemmon et al.)
- Enables the integration of setback distances from potential leakage pathways



| CO2 Storage Calculator                                                                                          |                              | _ 🗆 ×                       |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|
|                                                                                                                 | E B<br>PUTS OUTPUTS          | Sections                    |
| Use Previous Output Parameters 0                                                                                |                              | •                           |
| Data Table 🖲                                                                                                    | efine Data Table             |                             |
| Click to select a data table or drag-ni-drop one                                                                | here                         |                             |
| Net &                                                                                                           | Total Height Values          | •                           |
| Net Height 9                                                                                                    | Total Height 0               |                             |
| Please select an option 👻 Meters                                                                                | ✓ Please select an option    | Meters 👻                    |
|                                                                                                                 | ency & Total Porosity Values |                             |
| Porosity Efficiency range based on geologic factors from                                                        |                              |                             |
| Lithology De                                                                                                    | epositional Environment      |                             |
| Clastics Cl                                                                                                     | lastics                      |                             |
| Dolomite Do                                                                                                     | olomite                      |                             |
| Limestone Lin                                                                                                   | imestone                     |                             |
| Clastics Al                                                                                                     | lluvial fan                  |                             |
| Clastics De                                                                                                     | elta                         | <b>100m</b>                 |
| Clastics Ec                                                                                                     | olian                        | 200m                        |
| Total Porosity 0                                                                                                |                              | 400m                        |
| Diasco coloct an option                                                                                         |                              | 500m                        |
| Faults                                                                                                          | <u>.</u>                     | 600m                        |
| Chemosynthetic Community                                                                                        | MS                           | <sup>∧∟</sup> 700m <b>A</b> |
| Plume Location     Seeps and Plumes                                                                             |                              | 800m                        |
| TX                                                                                                              | A Company 2                  | 900m                        |
| the second se | ke. 🥵 📈                      | 1,000m                      |
|                                                                                                                 |                              |                             |
|                                                                                                                 |                              |                             |
| VIII CONTRACTOR                                                                                                 | Sector And I all             | Application of              |
| MR CONSTRUCTION                                                                                                 |                              |                             |
| MARCE SZELEZ                                                                                                    | 19985                        | spatial data to             |
| WW 3 15 - Line ( - 4)                                                                                           | 19 - C                       | account for set             |
|                                                                                                                 | J 0 50                       |                             |

Leakage pathways


- Open-source and standalone
- Enables multi-scale assessments
- Leverages power of spatial data
- Flexible tool enables customization
  - 10-20 parameters
- Applicable to multiple **lithologies** and **depositional environments** in saline formations (Gorecki et al., 2009)




https://edx.netl.doe.gov/dataset/offshore-co2-storage-calculator 26

## Improving Offshore CO<sub>2</sub> Capacity Estimates

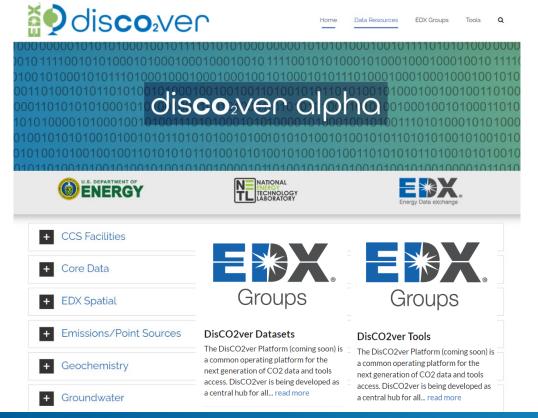
- Offshore CO<sub>2</sub> Storage Calculator outputs <u>distributions</u> of CO<sub>2</sub> storage, data, stats, and graphs
- Enables multi-scale calculations
- Demonstrated by calculating resource distributions for geologic domains as defined by Subsurface Trend Analysis<sup>™</sup> (Mark-Moser et al., 2020)





https://edx.netl.doe.gov/dataset/offshore-co2-storage-calculator 27

## EDX DisCO2ver Platform


Digital Resources for the Carbon Storage Community

#### Near term (coming live, spring 2023):

#### EDX DisCO2ver Alpha Website

DEPARTMENT O

 Static website hosting CCS specific data, tools, and resources for user community as we wait for DisCO2ver Beta to launch.







#### Long term (winter/spring 2024):

#### EDX DisCO2ver Beta Platform

https://edx.netl.doe.gov/

- Launch with EDX++ Deployment, expected Summer 2023
- **Dynamically** pull data from EDX into platform leveraging the EDX API
  - **Real time updates** to platform resources based on EDX query capabilities as submissions are published on EDX
  - Integration of cloud compute tools in future such as SmartSearch (out-year integration).

| Database (NATCARB) is a geographic information system (GIS)-based tool for viewing carbon literature review performed to define the primary difference of the submission. The following submission of the submission. The following submission of the submission of the submission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bis<br>Do, Home Data Tools<br>V⊖r                                                                                                                                    |                                      |                                                                                       |                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NATCARB 34 CO2 33 Saline 18 saline basin 17 volume estimate 17 Atlas 16 CCS 16 INATCARB 44 CO2 33 Saline 18 volume estimate 17 volume estimate 17 Atlas 16 CCS 16 Interventional Carbon Sequestration Dataset Size: 0 Bytes Interventional Carbon Sequestration Dataset Size: 91.55 KB Interventional Carbon Sequestration Date Created: 2015-111-10 About: This dataset summarize the results of a literature review performed to define the primary lithologies and depositional environments for the target reservoir units defined by the National Carbon Sequestration Database (NATCARB Saline 10km grid Jayar as defined in May, 2022, and added to target reservoirunits defined by the N                                                                                                                                                                                                                                                                                                                   | ← View Different Category                                                                                                                                            | EDXS                                 | Spatial                                                                               |                                                                                                                                                                                                                                                                                                                                 |
| Hide 3 Tags     How 3 Tags     Hermone T |                                                                                                                                                                      |                                      |                                                                                       |                                                                                                                                                                                                                                                                                                                                 |
| Interface, NATCARB displays location.       Lithologies and Depositional Environments for the NATCARB Saline Reservoirs       NATCARB_AllData_v1502         Interface, NATCARB       Interface, NATCARB       NATCARB_CAILData_v1502       Interface, NATCARB         Nature       Dataset Size: 0 Bytes       Interface, NATCARB       Interface, NATCARB       Interface, NATCARB       NATCARB       NATCARB Atlas Saline Basin 10km Grid         Nature       Dataset Size: 0 Bytes       Interface, NATCARB       Interface, NATCARB       Interface, NATCARB       Interface, NATCARB       Interface       NATCARB       Interface       NATCARB       Interface       Interface       NATCARB       Interface       Interface       NATCARB       Interface       NATCARB       Interface       Interface       NATCARB       Interface       NATCARB       Interface       NATCARB       Interface       NATCARB       Interface       NATCARB       Interface       Interface       NATCARB       Interface       Interface       NATCARB       Interface       Interface       NATCARB       Interface       Interfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NATCAR                                                                                                                                                               | 34 🛞 CO2 33 🛞 Saline 18 🛞 saline bas | in 17 🕸 volume estimate 17 🚯 Atlas 16                                                 | CCS 16                                                                                                                                                                                                                                                                                                                          |
| NATCARB       Lithologies and Depositional Environments for the NATCARB Saline Reservoirs       NATCARB AllData_v1502       NATCARB Atlas Saline Basin 10km Grid         Intel       Dataset Size: 0 Bytes       Dataset Size: 121.71 MB       Dataset Size: 121.71 MB       Interconstruct         Dataset Size: 0 Bytes       Dataset Size: 0.22-03-10       About: This dataset summarize the results of a literature review performed to define the primary lithologies and depositional environments for the target reservoir units defined by the National Carbon Sequestration Database (NATCARB) Saline       About: The entire NATCARB v1502 Data release       About: An update to the NATCARB Saline 10km, y1502.4p, + U original NATCARB saline 10km, y1502.4p, + U original NATCARB saline 10km grid layer as defined by the National Carbon Sequestration Database (NATCARB) Saline       About: The entire NATCARB v1502 Data release       About: An update to the NATCARB Saline 10km grid layer as defined by the National Carbon Sequestration Database (NATCARB) Saline       About: The entire NATCARB v1502 Data release       About: An update to the NATCARB Saline 10km grid layer as defined by the National Carbon Sequestration Database (NATCARB) Saline       About: An update to the NATCARB Saline 10km grid layer as defined by the National Carbon Sequestration Database (NATCARB) Saline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      | - Hide 3 Tags Show 3 T               | igs 🕂 Remove Tags 🗐                                                                   |                                                                                                                                                                                                                                                                                                                                 |
| NATCARB       Lithologies and Depositional Environments for the NATCARB Saline Reservoirs       NATCARB AllData_v1502       NATCARB Atlas Saline Basin 10km Grid         Intel       Dataset Size: 0 Bytes       Dataset Size: 91.55 KB       Dataset Size: 21.21.71 MB       Dataset Size: 34.31 MB       Cataset Size: 34.31 MB         Interview       Dataset Size: 0 Bytes       Dataset Size: 21.21.71 MB       Dataset Size: 34.31 MB       About: A track Cataset Size: 34.31 MB         Interview       Dataset Size: 0.22-03-10       About: This dataset summarize the results of a literature review performed to define the primary lithologies and depositional environments for the target reservoir units defined by the National Carbon Sequestration pature, use and storage (CCUS) potential across the United States. Through a graphical user       About: A nugdate to the NATCARB Saline 10km, yf102.3, pt - to original NATCARB displays locat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h                                                                                                                                                                    | ( 1 2                                | 3 4 )                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| Interaction of the NATCARB Saline Reservoirs       Interaction Saline R                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                      |                                      |                                                                                       |                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HTML<br>Dataset Size: 0 Bytes<br>Thesource<br>Date Created: 2013-07-18<br>About: The National Carbon Sequestration<br>Database (NATCARB) is a geographic information | the NATCARB Saline Reservoirs        | FILE GLODATALASE<br>Dataset Size: 121.71 MB<br>1 Resource<br>Date Created: 2015-11-10 | Dock     Dataset Size: 34.31 MB     A Resources     Otate Created: 2020-06-29     About: An update to the NATCARB Saline 10km     grid was completed in May, 2022, and added to     this submission. The following submission     contains: - Natcarb_Saline_10km_v1502.shp - th     original NATCARB saline 10km grid layer as |



## **Additional Resources & References**

- CIIAM Model story: <u>NETL's Ocean Current Forecasting Tool Used in Great Pacific Garbage Patch Cleanup Effort</u> | netl.doe.gov
- Bauer, J., Justman, D., Mark-Moser, M., Romeo, L., Creason, C.G., and Rose, K., Exploring beneath the basemap, in Wright, D.J. and Harder, C. (Ed.), GIS for Science: Applying Mapping and Spatial Analytics: Volume 2, Redlands, CA: Esri Press, pp. 51-67, 2020, plus supplemental material
- Bauer, J. R., and Rose, K., 2015, Variable Grid Method: an Intuitive Approach for Simultaneously Quantifying and Visualizing Spatial Data and Uncertainty, *Transactions in GIS*. 19(3), p. 377-397. <u>https://doi.org/10.1111/tgis.12158</u>
- Duran, R.; Beron-Vera, F. J.; Olascoaga, M. J. <u>Extracting quasi-Steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico</u>. *Scientific Reports* 2018, *8*, 10. DOI:10.1038/s41598-018-23121-y
- Dyer, A.S, Mark-Moser, M., and Bauer, J., Submarine Landslide Susceptibility Mapping in the Northern Gulf of Mexico, in press, https://www.researchsquare.com/article/rs-2070041/v1
- Dyer, A.S., Zaengle, D., Nelson, J.R., Duran, R., Wenzlick, M., Wingo, P.C., Bauer, J.R., Rose, K., and Romeo, L. (2022). Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks, Marine Structures, Volume 83, 103152. <u>https://doi.org/10.1016/j.marstruc.2021.103152</u>
- Mark-Moser, M.; Miller, R.; Rose, K.; Bauer, J.; Disenhof, C. <u>Detailed Analysis of Geospatial Trends of Hydrocarbon Accumulations, Offshore Gulf</u> of <u>Mexico</u>; NETL-TRS-13-2018; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2018; p 108. DOI: 10.18141/1461471
- Morkner, P., Bauer, J., Creason, C., Sabbatino, M., Wingo, P., Greenburg, R., Walker, S., Yeates, D., Rose, K. 2022. Distilling Data to Drive Carbon Storage Insights. *Computers & Geosciences*. <u>https://doi.org/10.1016/j.cageo.2021.104945</u>
- Nelson, J. R., Romeo, L., & Duran, R. (2021). Exploring the Spatial Variations of Stressors Impacting Platform Removal in the Northern Gulf of Mexico. Journal of Marine Science and Engineering, 9(11), 1223
- Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. <u>https://www.sciencedirect.com/science/article/pii/S1750583622001542</u>
- Romeo, L., Nelson, J., Wingo, P., Bauer, J., Justman, D., Rose, K. 2019. Cumulative spatial impact layers: A novel multivariate spatio-temporal analytical summarization tool. Transactions in GIS.00:1–29. <u>https://doi.org/10.1111/tgis.12558</u>
- Rose, K., Bauer, J.R., and Mark-Moser, M., 2020, A systematic, science-driven approach for predicting subsurface properties, *Interpretation*, 8:1, 167-181 <a href="https://doi.org/10.1190/INT-2019-0019.1">https://doi.org/10.1190/INT-2019-0019.1</a>



https://edx.netl.doe.gov/sami/



29

## Disclaimer



This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

#### Acknowledgements

Work in this presentation spans a number of DOE Office of Fossil Energy & Carbon Management's National Energy Technology Laboratory R&D Programs and projects including Carbon Storage Data, EDX4CCS (BIL), Advanced Offshore Research, and Critical Minerals related R&D.







Innovating science-based, AI/ML solutions for applied energy challenges

# Thank you!

Speaker: Kelly Rose, PhD, <u>kelly.rose@netl.doe.gov</u>

Contact: NETL's Al Institute, SAMI Email: <u>sami@netl.doe.gov</u> Learn more: <u>https://edx.netl.doe.gov/sami</u>



U.S. DEPARTMENT OF ENERGY TECHNOLOGICAL LABORATOF