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Introduction and Problem Statement Natural Analog: West Texas Playa Lake, USA Industrial Analog: Cranfield Oilfield, Mississippi, USA
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Question: How can a CO, release from a storage formation be identified in the near surface, ) _ y _ _ _ 157 Qranflgld Oiltield kel R
where CO, is naturally abundant, temporally and spatially variable, and difficult to quantify? » Location: Southern High Plains, West Texas, USA. f“ Ol production from 1944 through 1967. A 2
» Playas are broad, gently sloping, circular basins that perch surface runoff before infiltration. f 9‘%‘ plugged and'abandoned wells. s, S — o i
Current Approach: Measure natural “background” CO, concentrations over 1 year to & _ L _ , _ _ » Field reentered in 2008 for CO,-EOR. SR chsround
explain range of seasonal CO, variation. Anything different signals a release » Systematic variations in environmental factors among geomorphic zones (figs. 4 and 9) provide ooy
‘ ' ' an opportunity to study the effects of environmental variability on soil-gas geochemistry. 8 P-Site

Problem: ’ e . » Targeted area to test soil gas at an
N ) o . . oor nnulus ope 2 ’ :
» 1 year cannot capture the full magnitude of variation in natural CO, concentrations. _ e . engineered site (fig. 10).
i _ _ _ Water Fl High, through  Only during high  Little flux, mostly . ] )
» Background measurements are time, cost, and labor intensive. MELFUR  cracksinclay floor  waterlevels  evapotranspiration » 13 gas stations with 27 gas wells. Fig. 10. P-site sampling locations.
» Background concentrations cannot be measured everywhere. Organic Carpon 1B Oxidizedto o Low, concentrated » Monitored since September 2008, before 105 104 103 102 101 P&Awell 100
: - : CO tly at surf ini A S
» Concentration variations cannot be used to detect a release in the early stages. e s Injected CO, reached the area. CO, .o 4
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flushed to depth mostly at surface 8 RIes u ItS 135 | | | |
Answer: Focus on process to identify the origin of CO,. The various processes that produce | :
and consume CO, also affect O, CH,, and N, in predictable ways. Chemical ratios can identify Fig. 4. Playa geomorphic zones. Fig. 0. Environmental variability'In playa zones. » CO, and CH, anomaly
whether a signal is natural background noise or a leakage signal. concentrated at well 103 (fig. 11). E;f:i;
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» 3 years' monitoring soil gas during Playa CO, Cycling > |sotopes indicate that CH, is N, 42-85%
NO BACKGROUND MEASUREMENTS REQUIRED! historic water-level fluctuations. — = exogenous from the oil and gas 025 21%
» 24 gas stations, 54 gas wells. l_ S K_ reservoir and CO, Is from
i L i l oxidation of methane. _ _ _
MethOdS and Materlals » Wells <15 m deep. l b Fig. 11. Cross section of gas concentrations along
. " water + arganics _ai - — hi -
> >1000 real-time analyses of CO,, = Bt | transect 1 at the P-site. Light colors = high concentrations.
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1. Semipermanent Soil-Gas Wells CHy4, N5, O,. (~60 meters) el produces CO; Background 100 (pad) 101 (pad) 03 (anomaly) 105 (pit)
5 —LUs F10) | :
. - : » CH, is produced when microbial O =20 Trend indicates Trend CH, oxidation. Oxidation of Decrease in
» Provide depth pmﬂles that show Soil-Gas Well Design a4 FJ _ Reaction with soil carbonate consumes CO; B carbonate EalEE ¢ exogenous exogenous
subsurface gas distribution respiration outpaces O, Influx, CO; + CaCO; + H;0 — 2HCOy + Ca®! N : cesomtlon. mostly CH,. H,.carbonas
| G forming anoxic conditions. i areas of high wates i (pkaya oor) kn” ictobe Ao S0y
T : 4 - and removable cap. - . 5 | | 5. 9
» Provide soll cores for analysis. R < o _ | | . AN A\ | .
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» Require a driller ($) i .. 40 1 N2 enriched by | N, supports | N, diluted by _ N, diluted by | | N, indicates
Sohirbloas I / S Slope and most annulus samples are consistent with biologic respiration and/or oxidation of R o | oty | exogenous | it |- e
% : : _ : ) : : S : microbia 1 gas input. : ) ;
» F_{eqmre a tt’f_"QEtEd approach with Lo 1 methane to CO, and fall between the lines representing these processes (fig. 7). However, é’zu- o | with litle ; o | | microbial CO,.
imited spatial coverage. Porous sand- 1 floor samples show CO, less than expected for their O, compositions, indicating a CO,, sink. S ot dissolution.  _ X
pack forgas i ) : 10 - e _ : I [ _ "
sampling. The same samples show N, > atmosphere (78%) and correlate with CO, (fig. 8). Nitrogen ( | o
2 : ¥ ¥ g ; _ = . - ) il . . . . . . . . : : : . : : ﬂ: .
_ _ _ _ | _ Isotopes indicate that denitrification is not responsible for high N, concentrations. " w0 80 20 40 60 80 10 30 50 70, 90 10 30 50 70 90 10 30 50 70 90
: i Fig. 1. Semipermanent soil-gas station design. Installing gas wells. N2 (vol %) N2 fvel %) N2 fvol %) N2 fvol %) N2 fvol %)
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Fig. 12. Gas-concentration relationships identify processes affecting CO, at the P-site.
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otention [t , ! - i G 5 le N Fig. 8. CO, and N, concentrations correlate in the annulus during .
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» Real-time results. e s wT co2 vol % soil carbonate are high.
Fig. 2. Real-time soil-gas analysis. Fig. 7. CO, vs. O, for various g _ b o 5 Relati i o 1 ¢
bingenlc prncesses- r_.f Addition of F e a' IOnS- Ips among Slmp e SGI _gas parame ers
20 @ M — T can identify carbon-cycling processes.
i i : . . . _ _ Advection of air into pore 9 B it O, . Co, = H,0 " i .
C02 CVCIIng ln the vadose Zone > COZ dlSSDIVES !nto recharglng water and reacts thh SGII :-g 15 - R . ' 4 PI‘DCESS can dlStlﬂgUlSh bEtween baGkgI'DUﬂd noise
carbonate. Total pore pressure drops, causing advection of \ / q 10 - W, iR, - o+ 10 and |leakage signal.
3. Processes: WP i atmosphere (78% N,) into soil pores, increasing the volume g A Wiue L gvogancus cH » ldentifying process may eliminate the need for
N ol > Gas concentrations are ' % of N, substantially above atmospheric (fig. 9). . . e . background measurements at carbon storage sites.
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» Methane oxidation  g4dition or subtraction of a gas  jawms o CoianCh d _ _ —
” T . . oxidized S and CHs " _ _ Fig. 12. Approach for separating leakage signal (gray) from background (tan) processes.
» Evapotranspiration component will, by definition, to C0: v e » Relationships among CO,, O,, and N, can be used to
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