

Assessing Offshore Storage on Continental Shelves

International Workshop on Offshore Geological CO₂ Storage
Austin, Texas
April 19-20, 2016

Dr. Tip Meckel, Research Scientist
Gulf Coast Carbon Center

Bureau of Economic Geology

Jackson School of Geosciences The University of Texas at Austin

Three motivating messages:

- 1. For CCS to be a technology with significant atmospheric benefit on desired timelines, rapid and broad global deployment needed.
 - 6 Gt by 2050 (6,000 'Sleipners')
 - 2/3 of CCS potential will need to come from non-OECD countries (IEA)
 - Natural gas likely to be associated with many projects.
- 2. The global offshore continental shelves broadly represent the largest near-term storage for Gigaton-scale CCS.
 - CCS 'sweet spots' source-sink match, ownership; thick, sand-prone, young (ductile seals), low stress.
 - How assess storage potential?
- 3. Focus needs to be on capacity assessment, knowledge transfer, and deployment of demonstration- and industrial-scale projects.
 - This workshop!

Select Industrial CCS Projects

World Gas Reserves

Sleipner, Snohvit – North Sea In-Salah - Algeria Gorgon, NW Shelf Australia (15% CO₂) Lula – CO2/EOR ~2% production growth annually (IEA); international market Gas quality problems are holding back investment

Approximately 40% (2600 Tcf) are estimated to be sour

To the degree that our energy future includes <u>large gas fields</u>, it includes <u>CO₂ management</u>.

Table 12.2 • World proven sour gas reserves, end- 2006

	High H₂S only (tcm)	High CO₂ only (tcm)	High H ₂ S and CO ₂ (tcm)	Total	
				(tcm)	% of total reserves
Mexico & Latin America	0.3	1.1	0.3	1.7	21
Europe	0.1	0.7	0.3	1.1	19
Former Soviet Union	0.8	10.1	7.3	18.2	34
Africa	0.0	0.5	0.5	1.0	8
Middle East	2.6	0.4	40.9	44.0	60
Asia-Pacific	0.3	4.4	2.3	7.1	46
World	4.2	17.2	51.6	73.1	43

Note: Excludes North America. High H₂S is more than 100 parts per million; high CO₂ is more than 2%.

Source: Bourdarot (2007).

SOURCE: US EIA

The global offshore continental shelves broadly represent the largest near-term storage for Gigaton-scale CCS.

Very large regional static capacity estimates

Static Regional Capacity Texas Example

- NETL Methodology
- 40,000 sq. km.
- 3,300 logs
 - Tops, net sand, porosity
- 172 Gt total (TX State Waters)

Geologic Characterization: What is typical? What is notable?

Sand Thickness (meters)

Gas field Characterization: What is typical? What is notable?

Gas Field Static Replacement Capacity

Depleted gas fields are major opportunity and part of solution

Injection Simulation: Theoretical/analytical, Numerical

Analytical = Expectations

Numerical = Sensitivity

Injected CO₂ Mass (Mt)

Which models lead to <u>undesirable</u> outcomes? How can you avoid those scenarios?

Capacity Refinement

Geologic Similarities/Differences

- Deeper rift sequence ('CCS Basement') overlain by prograding fluvial/deltaic/shelf systems.
 - Thick, sand-prone (+/- CO₃), young (limited diagenesis?)
- Regional unconformities, flooding surfaces (Global vs. relative SL change)
- Basement faults, overburden growth structures.
 - Fault seal, migration routes.
- Subsidence history: monotonic, punctuated, uplift?
 - Compaction, fluid pressure
- Provenance (sediment composition)

Basin Petroleum Systems and CCS

- Broad indication of basin fluid performance (if charged)
 - Reservoirs, faults, topseals, migration routes.
- Sequence Stratigraphy effective 'tool' for understanding basin geology.
- The question of rates: geologic vs. engineered.
 - North Sumatra Basin or Gulf of Mexico?
- Engineering: Re-commissioning of infrastructure
 - Best for HC = best for CCS?
- Hazards of generalizing
- Reservoirs vs. Overburden

Key to Geologic Features and Symbols

30 mi

Focus needs to be on capacity assessment, knowledge transfer, and <u>deployment of demonstration- and industrial-scale projects</u>.

Three motivating messages:

- 1. For CCS to be a technology with significant atmospheric benefit on desired timelines, rapid and broad global deployment needed.
 - 6 Gt by 2050 (6,000 'Sleipners')
 - 2/3 of CCS potential will need to come from non-OECD countries (IEA)
 - Natural gas likely to be associated with many projects.
- 2. The global offshore continental shelves broadly represent the largest near-term storage for Gigaton-scale CCS.
 - CCS 'sweet spots' source-sink match, ownership; thick, sand-prone, young (ductile seals), low stress.
 - How assess storage potential?
- 3. Focus needs to be on capacity assessment, knowledge transfer, and deployment of demonstration- and industrial-scale projects.
 - This workshop!