Offshore CO₂ Storage in Korea: Progress, Future Plans and Needs

Sang Hoon Lee Korea Institute of Ocean Science and Technology (F sanglee@kiost.ac.kr

International Workshop on Offshore Geologic CO_2 Storage 19 21 April 2016 Austin, Texas, US

Functions of Ministries and R&Ds in CCS

Four ministries involved in CCS (including R&Ds)

Ministry of Science, ICT & Future Planning

Basic science & technology on CCS

Korea CCS 2020 Project (2011 2019): Development of next generation CCS technology

Ministry of Trade, Industry and Energy

CO₂ capture and transportation/storage (land)

 CO_2 capture Tech. Project (2011 $\boxed{\mathbb{W}}$): 0.1 Mt CO_2 capture (2014, completion); 1 Mt CO_2 capture (2017/18 $\boxed{\mathbb{W}}$)

Ministry of Oceans & Fisheries

Offshore CO₂ storage, transportation & environmental management

R&D Project for preparing offshore CO₂ storage, transportation & environment management (2010 ☒ 2016)

Ministry of Environment

Environmental management (land)

CO₂ Environmental Management Project (2014 🕱)

Condition for Conducting Large-Scale Offshore CO, Storage

 Difficult to store large amount of CO₂ in land because of bad geological conditions, high population density and less public acceptance

Geologic Map

Satellite image (Night)

Koreans strong opposition

Large-scale CO₂ storage in offshore areas

Status of CO₂ Source and Capture Identification

- Major coal-used power plants in the western and southern coastal area of Korea
- 0.1 Mt CO₂ capture facilities at Boryoung (wet-style) and Hadong (dry-style) power plants (2014)

- 1 Mt CO₂ capture (wet-style?) demonstration project (from 2018)
 - ✓ One (Boryoung or Hadong?) of major coal-used power plants
 - ✓ Cost assessment (2016 🕱 2017) by Korean Government (MTIE)
 - ✓ Funding: Korean Government (major) with some industrial companies (minor)

Offshore CO₂ Storage/Transportation R&D Project (2010 2016) by MOF

Prepare for core technologies to transport and store CO₂ captured from large-scale (1 Mt/year) sources (coal-used power plants) into the subsurface geological formations

Budget : about US\$40M

Framework of R&D Project

Status of Offshore Geologic Storage Assessment

 SE continental shelf of Korea based on the regional-scale studies for potential CO₂ storage sites using previous oil/gas exploration data by KNOC

- 9 prospects (oil & gas targets in previous exploration stages) for CO₂ storage
- 2 prospects (depleted gas fields): Priority sites for large-scale (1 Mt/year) CO₂ storage demonstration project for ca. 20 ⋈ 30 years

Status of Offshore Geologic Storage Assessment

- Monitoring strategy in subsurface and sea-water column for largescale (1 Mt CO₂) storage demonstration project: nearly set up
- Risk assessment for large-scale (1 Mt CO₂) storage demonstration project: less in the subsurface, more in sea-water column

Status of Transportation Assessment

- Major coal-used power plants for large-scale CO₂ source in the western and southern coastal areas: long distance to promising storage sites
- Less public acceptance about CO₂ transportation/storage in land

- Onshore pipeline transportation: expensive cost and less public acceptance
- Ship transportation from CO₂ sources to Hub terminal
- Offshore pipeline transportation from Hub terminal to storage sites

Status of Transportation Assessment

PreFEED Package (transportation) for Offshore CO₂ (1 Mt/year)

Storage

Design of CO₂ tank in ship

Engineering drawing of offshore CO₂ pipeline

Contents (Draft)

- Ch1. Executive summary
- Ch2. Project design
 - 2.1 Integrated project design basis
 - 2.2 Value chain interface design
 - 2.3 Base and alternative scenarios
- Ch3. Technical design
 - 3.1 Technical analysis/design of Carrier
 - 3.2 Technical analysis/design of Hub storage
 - 3.3 Technical analysis/design of Offshore pipeline
 - 3.4 Technical analysis/design of Platform
- Ch4. Engineering document
 - 4.1 Process Flow Diagram (PFD)
 - 4.2 Heat and Mass Balances (HMB)
 - 4.3 Piping and Instrumentation Diagrams (P&ID)
 - 4.4 Layout (Plot Plan)
 - 4.5 Major Equipment List and Specification
 - 4.6 Process data sheet
 - 1.7 Subsurface Engineering Report

National Policy and Status of Large-Scale CCS Projects

- Increase in CO₂ emission rate because of Korean economic system dependent on export-industry structure
- CCS: one of the national strategies to reduce $CO_2 \rightarrow National$ plan in 2015: ca. 8 10 Mt CO_2 reduction by CCS until 2030

CO₂ emission (IEA, 2014)

National Policy, Status and Plans of Large-Scale CCS Projects

- Korean Government examines all aspects (cost, value, etc.) of CO₂ reduction projects including large-scale CCS projects in 2016
- Korean Government will decide whether large-scale CCS will be started or stopped in 2017
- Make a plan for large-scale CCS projects in 2017 2018
- Try to conduct large-scale offshore CO₂ storage demonstration projects (1 Mt/year) as soon as possible (from 2018)
- Draft of regulation for (large-scale) CCS: prepared by MOF,
 ME and MTIE since 2015

Public Knowledge and Acceptance

- Reduction of CO₂ (emission): very important issue in Koreans because of rapid climate change and environmental issues (e.g., yellow dust, fine dust, etc.)
- About 60 70% of Koreans were willing to pay for CO₂ reduction
- Large-scale CCS: public project
- Less public acceptance for onshore large-scale CO₂ storage & transportation, but better public acceptance for offshore large-scale CO₂ storage & transportation in Korea

Other Important National Conditions and Needs

- Pilot-scale (10,000 tons/year) CO₂ injection and storage in land: start December 2016.
- Major power-plant (e.g., KEPCO) and oil/gas companies (e.g., KNOC & KOGAS) in Korea: mostly funded by Korean Government
- Large-scale CCS projects in Korea: mostly funded by Korean Government; can be highly dependent on the policy of Korean Government, especially in the area of CO₂ storage
- Less experience, less data and small-sized research team for offshore large-scale CO₂ storage and subsurface risk assessment (or evaluation) in major oil/gas companies, research institutes, universities in Korea: need collaboration with foreign community (major oil/gas companies, research institutes, university, etc.)

Thank you very much.