

19-21 April 2016, Gulf Coast Carbon Centre, University of Texas, Austin, Texas.

How to do environmental monitoring offshore, Japan case study

Jun Kita

Research Institute of Innovative Technology for the Earth Marine Ecology Research Institute

Tomakomai CCS Demonstration Project

- Ministry of Economy, Trade and Industry (METI)
- Japan CCS Co., Ltd. http://www.japanccs.com
- 100,000 tonnes/year or more CO₂ is to be stored under the seabed.
- CO₂ injection will start in 2016 and continued to 2018.

Offshore CO₂ storage and London Protocol

London Protocol

- London Convention: An agreement to control pollution of the sea by dumping.
- 1996 Protocol: The Parties are obligated to prohibit the dumping of any waste or other matter that is not listed in Annex 1 (the reverse list).
- Adopted on 2006: Carbon dioxide streams may only be considered for dumping, if disposal is into a sub-seabed geological Formation"

Act for the Prevention of Marine Pollution and Maritime Disasters

- May 2007: The act was amended for permit procedure on dumping CO₂ stream into sub-seabed formation.
- Prevention of marine environment impact from potential CO₂ leakage

Operator of Offshore CO₂ storage,

- Shall receive permission from environment minister.
- Shall implement Environmental Impact Assessment.
- Shall monitor surrounding sea environment.

Environmental Impact Assessment (EIA) in the ACT

Objective

 Estimation of CO₂ dispersion and its impact assessment on the assumption that stored CO₂ leaks out to the sea

Process

- Consideration of leakage scenarios and its simulation
 - CO₂ migration in the geological formation
 - CO₂ dispersion in the seawater column
- Base-line survey for the existing marine environment
- Impact assessment

Example of leakage simulations

CO₂ migration in the geological formation

<u>Scenario</u>: Leakage through faults undetectable by seismic survey

Simulator: TOUGH2 with ECO2M (LBNL)

Output: CO₂ flux at the seafloor

Example of leakage simulations

CO₂ dispersion in the seawater

<u>Input</u>: CO₂ flux at the seafloor

Simulator: MEC-CO2 two-phase flow model

Kano et al., 2010. Model prediction on the rise of pCO_2 in uniform flows by leakage of CO_2 purposefully stored under the seabed. International J. Greenhouse Gas Control 3, 617-625.

Output: CO₂ concentration gradient in the seawater column

Example of determination of threshold for ecological impact

Ecological CO₂ impact estimated from a biological impact database

CO₂ dispersion in the seawater

Example of measurements in the base-line survey

Seawater: pH, TCO₂, Alkalinity, DO, etc.

Sediment: pH, pore-water chemistry, etc.

Seabed: side scan sonar, sub-bottom profiler

Biology: micro-, meio-, macro-, mega-benthos, etc.

Water sampling

Sediment sampling

ROV for mega-benthos observation

Seawater CO₂ system

As CO₂ dissolves in seawater,

$$CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+ \Leftrightarrow CO_3^{2-} + 2H^+$$
 (CO_2aq)

Thus, to increase concentration of

carbonic acid $(H_2CO_3) \implies pCO_2$ increase

proton (H⁺)

bicarbonate ion(HCO₃-)

while decrease concentration of carbonate ion(CO₃²⁻)

<u>pCO₂ increase</u> pH decrease, acidification

Parameters for description of seawater CO₂ system

- Total dissolved inorganic carbon (DIC)
- Total alkalinity (AT)
- pH
- Partial pressure of CO₂ (pCO₂)

+

- Salinity and Temperature
- ✓ Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. **Guide to Best Practices for Ocean CO₂ Measurements**. PICES Special Publication 3, 191 pp
- ✓ DIC and AT measurement can be recommended
- ✓ CO₂ system can be calculated by CO2SYS
 http://cdiac.ornl.gov/oceans/co2rprt.html
- ✓ IEAGHG, 2016. Offshore Monitoring for CCS Projects, Report 2015/02, May 2015

CO₂ Effects on fish growth

Growth of young Sillago japonica under sublethal CO₂ concentration.

CO₂ effects on fish physiology

Hayashi et al. 2004.

Acid-base change of Japanese flounder during CO_2 exposure of 10,000matm (\blacksquare), 30,000matm (\blacksquare) and 50,000matm (\blacksquare).

Effects of high-CO₂ on coccolithophores, phytoplankton with calcite plates

Calcification of the coccolithophorids *Emiliania huxleyi* (\circ) and *Gephyrocapsa oceanica* (\square) as a function of CO₂ concentration.

Effects of high-CO₂ on marine organisms

Organisms	pCO ₂	Effect
CalcifiersMolluscsEchinodermsCoralsCoccolithophores	D200µatm <	Calcification decrease
Non-calcifiersFishMolluscsCopepods	D2,000µatm <	Physiological disturbance

Collaboration with QICS project UK

Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage

- If CO₂ leaked into the living marine environment what are the likely ecological impacts, would they be significant?
- What are the best tools, techniques and strategies for the detection and monitoring of leaks – or assurance that leakage is not happening, in the vicinity of the sea floor.

Summary from QICS

Diving surveys & sampling

In situ sensors & mesurements

Ship-board mesurements

- The biological impact was minimal and the recovery was rapid.
- Multiple monitoring methodologies in a staged approach are recommended.
- Impacts of CCS leakage should not be seen as an impediment to the development of full scale CCS.

Outputs from QICS

www.qics.co.uk

nature climate change 4, 1011-1016 (2014)

Blackford et al.

Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage

Monitoring program required in the ACT

Conformance:

 Observed behavior of CO₂ should fall into line with prediction.

Containment:

- Secure retention of CO₂ should be demonstrated.
 - ✓ Distribution of CO_2 in the reservoir needs to be tracked.
 - ✓ No sign of leakage needs to be shown in marine environment.

Contingency:

- If leakage dose occur,
 - ✓ Amount of leakage needs to be quantified.
 - ✓ Any environmental impacts need to be assessed.

Required monitoring items

CO₂ injection:

 Volume (flow meter), concentration (gas chromatography), injection condition (pressure, rate, temperature)

Wellbore condition:

Pressure and Temperature of injection well and observation well

Reservoir:

Location and dimension of stored CO₂ (time-lapse (4D) seismic)

Marine environment:

- Seawater chemistry (pH, TCO₂, Alkalinity, DO, etc.)
- Maine biota (micro-, meio-, macro-, mega-benthos)
- Marine activities (fisheries, maritime affairs, protected reserves, etc.)

Tiered monitoring plan in the Act

Three tiered monitoring plan must be implemented depending on the severity of changes that could occur following CO₂ storage

Routine monitoring:

- No indication of leakage
- Distinguish leakage signal from natural variability

Precautionary monitoring:

- Possible leakage
- Confirm existence or non-existence of leakage

Emergency monitoring:

- Leakage has taken place
- Determine location and extent of the leakage and its impact

Summary - Tomakomai

- The regulation of offshore CO₂ storage in Japan is covered by the Act for the Prevention of Marine Pollution and Maritime Disasters
- The act requires adherence to "conformance", "containment" and "contingency" criteria

Current status:

Environmental impact assessment
 Permission
 Monitoring
 Immediately after CO₂ injection

Concluding Remarks

Environment impact assessment and marine monitoring for offshore CCS:

- ✓ Important for public acceptance
- ✓ Necessitates a wider dialogue between scientists, policymakers, the public and civil society groups
- ✓ International collaboration is highly desirable