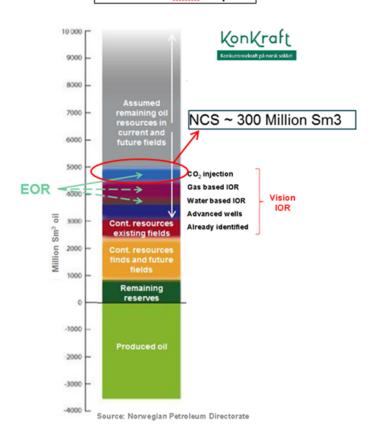


Preferred partner

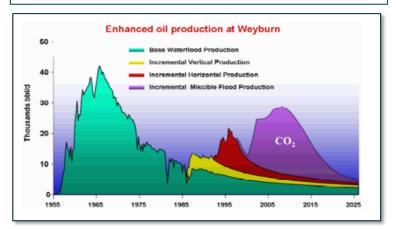

Taking CO₂ EOR offshore

Subsea well stream processing potential enabling solution / Ship transport options Austin TX, April 2016

By Pål H. Nøkleby (Aker Solutions) / Filip Neele (TNO) Presented by Philip Ringrose (Statoil)

Available Resources on the NCS for CO2 EOR

From the Am-report

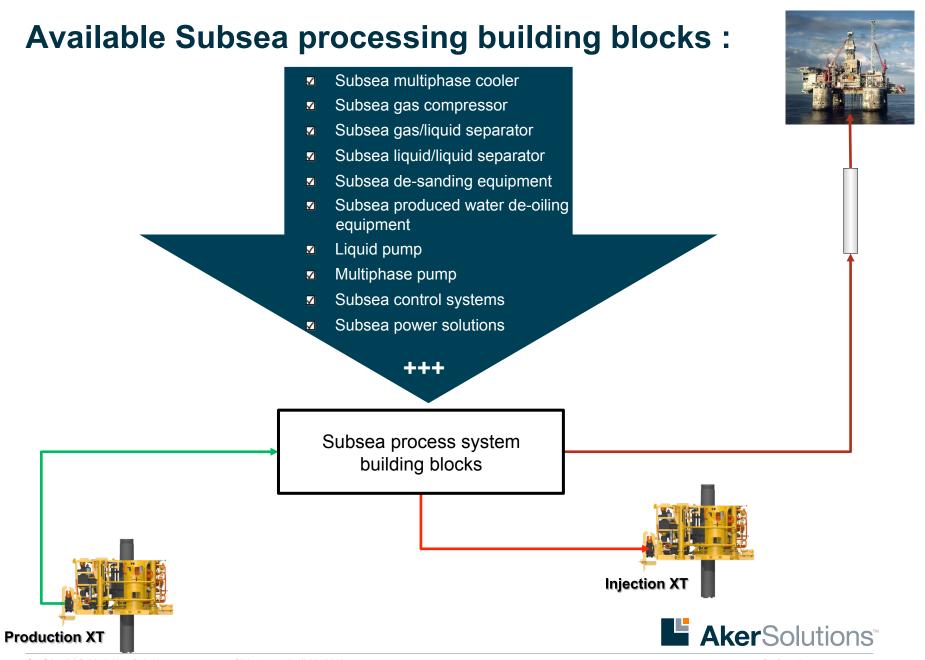

Increased Recovery Potential:

2002: Gullfaks, Heidrun; ~ 5 – 7 %

2005: NPD; $\sim 5 - 7 \%$

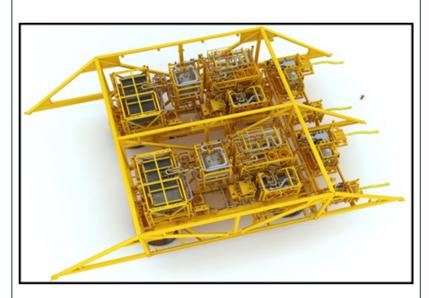
2014: Lindeberg; ~ 7 %

2014: This work; 5 – 9 %


Confidential © 2015 Aker Solutions Slide 2 April 25, 2016 Preferred partner

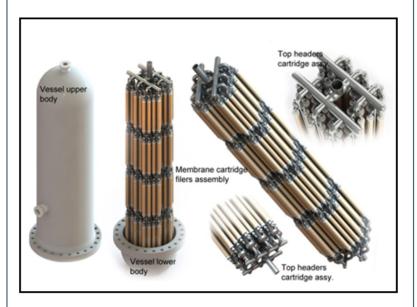
Challenges Related to Offshore CO2 EOR

- No CO₂ supply chain established limited availability – assumed need for big volumes over time
- Non-optimized well locations
- No existing pipelines
- Facilities and wells not corrosion resistant
- Limited weight and space available for topsides separation
 - Extremely costly retrofits or additional installations
- High cost of CO2 at wellhead
- Higher cost level than onshore
 - Offshore operation costs
 - Loss of production due to shut down in retrofit period
- Logistics between onshore CO₂ source and offshore



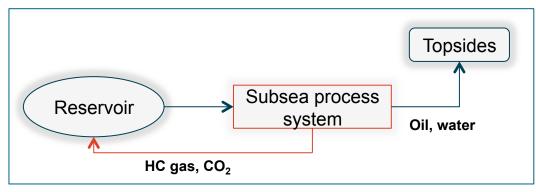
Confidential © 2015 Aker Solutions Slide 4 April 25, 2016 Preferred partner

Two important subsea building blocks

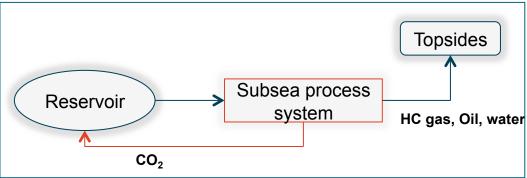

Compression System

2010 - 2015 Asgard:

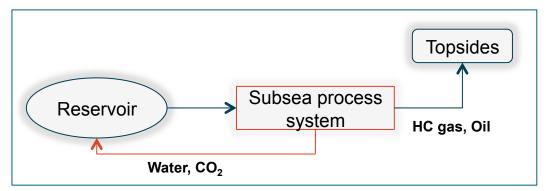
- 21 MSm³/d flow rate
- 2 x 11.5 MW compressor power
- 300 m water depth
- 40 km step-out distance
- Topside Variable Speed Drives, Circuit breakers and UPS
- Delivered by Aker Solutions


Compact membrane packing

- Onshore stacking not feasible subsea
- Compact packing arrangement developed by AKSO



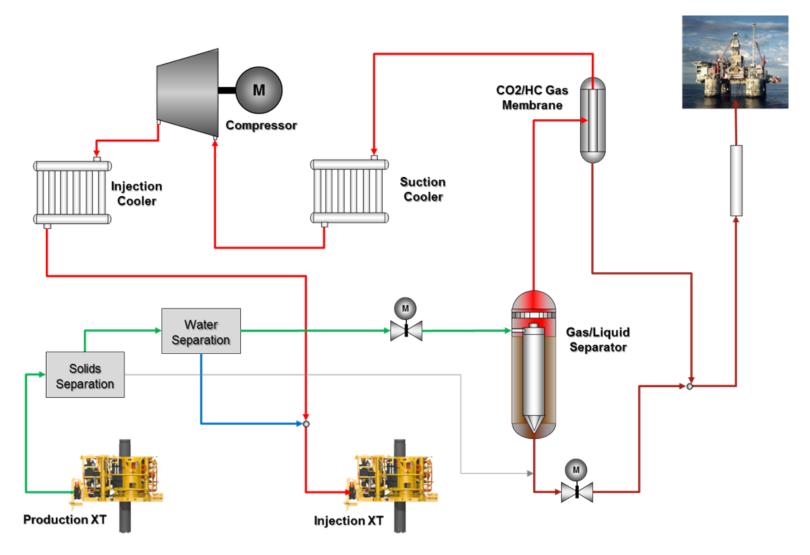
Some Subsea processing arrangements


Simplest arrangement:

Separation and reinjection of HC gas and CO2 use qualified subsea compressor system

More advanced arrangement:

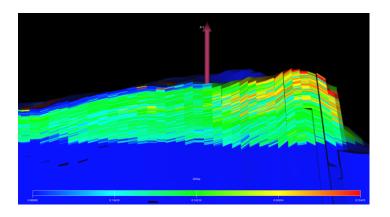
- Gas separation
- Reinjection enriched CO2

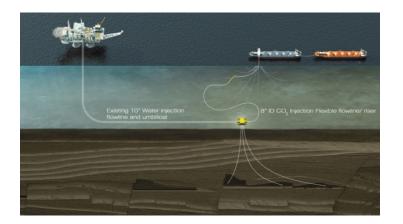

Advanced arrangement:

- Gas separation
- Water separation
- Reinjection enriched CO2

Confidential © 2015 Aker Solutions Slide 6 April 25, 2016 Preferred partner

A subsea separation solution for the well stream

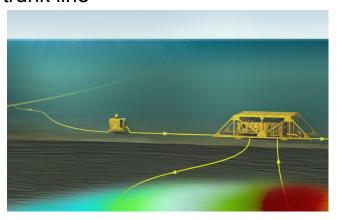




Confidential © 2015 Aker Solutions Slide 7 April 25, 2016 CONFIDENTIAL Preferred partner

Key Data Medium – Large Scale Generic CO2 EOR Project

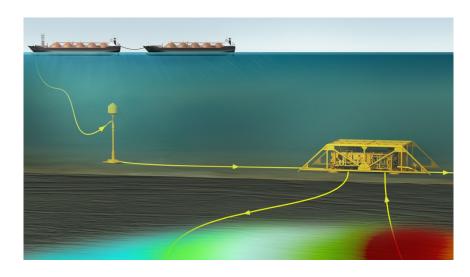
- Reservoir simulations on actual reservoir up scaled
- Increased recovery factor: ~ 7 %
- Production period: 8 years
- CO2 supply:
 - 3.5 Mt/y over a 3 years period
 - Separation system allows recirculation
- CO2 sources and transportation
 - CO2 from onshore plants
 - Onshore conditioning
 - Shuttle tankers from point sources
 - Injection vessel
 - Subsea injection system

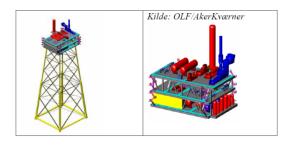


Principles and Cases Subject to Cost Estimation

Case 2 – Commercial scale –
 ship transportation

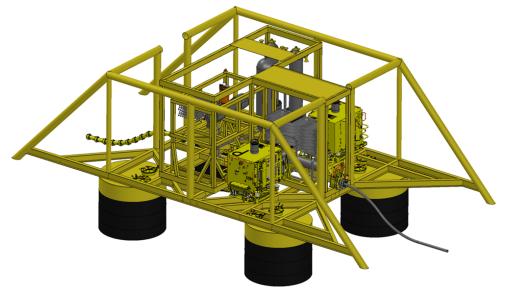
 Case 3 – CO2 supply from European trunk line




- General
 - CO2 costs as long term unit costs
 - AKSO data base and external references
 - New key components estimated as expected long term costs
 - Incremental revenue and costs

Offshore CO2 EOR Challenges - Mitigations

- No CO2 supply
 - Pipeline
 - Ship supply
- Space limitations on platforms
 - Subsea installation
- Weight limitations
 - Subsea installation
- Power availability
 - Less power needed than gas injection, heavier fluid
- Corrosion issues
 - 13% Cr needed standard for subsea wells
- High cost when modifications done topsides
 - Short/no downtime with subsea installation
- HSE concern by sudden topside release
 - No issue subsea



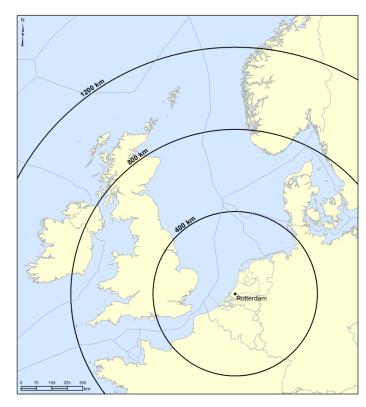
Other Aspects Subsea Technology Concept

- Reduced installation costs subsea separation
- Overlap of EOR production with conventional oil production
- Small subsea facilities serving segments in large reservoir
- Facilities available for injection of CO2 for permanent storage as a final CCS stage
- Retrievable modules –
 limited operational time reuse

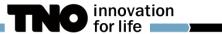
Confidential © 2015 Aker Solutions Slide 11 April 25, 2016 Preferred partner

SUMMARY

- CO2 used for increasing value through added oil production seen as a mandatory step towards CCS
- CO2 EOR combines value creation with GHG abatement
- New technology concepts provides commercially attractive solutions



Confidential © 2015 Aker Solutions Slide 12 April 25, 2016 Preferred partner



CO₂ TRANSPORT BY SHIP: FLEXIBILITY FOR STORAGE AND EOR

- Offshore CO₂ storage or CO₂-EOR in Europe
 - Demand driven but only if there is sufficient supply
 - > Typical CO₂-EOR project: ~5 Mtpa
 - > Typical commercial CO₂ capture project: 1-4 Mpta
- Transport by ship offers flexibility in connecting supply and demand of CO₂
- Is ship transport feasible?
 - Heating & compression on board ship
 - Offloading / injection rates

Distances from Rotterdam: 400, 800 and 1200 km

SHIP TRANSPORT RESERVOIRS

	Depth (m)	Unit cost	Capacity	Number of	Utilisation	CAPEX]	
		€/tCO2	Mtpa	ships	%	M€		
Saline Fm	1000							
Good quality	2000							
reservoir	3000	S	aline formations at					
	4000		depths 1	4 km	Inie	Injection rates limited by:		
Saline Fm	1000	Go	od quality	(100 mD)		reservoir p		
High quality	2000	Hic	ıh quality (1000 mD)			ed vibrations	
Reservoir	3000		122 3 (<u> </u>				
	4000					in well,	to also to	
HC reservoir	1000					• thermal effects in		
Depleted 80%	2000		epleted hydro ervoirs, same 80% deple	me depths		reservoir,		
	3000					hydrate for		
	4000				•	 offloading 	pressure	
HC reservoir	1000						I	
Depleted 50%	2000		50% dep	oleted				
	3000				l			
	4000							

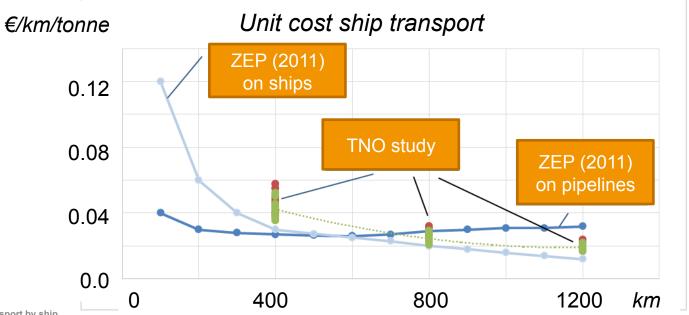
14 CO2 transport by ship April 20.2016

Transport distance 400 km, ship capacity 30 kt and offloading into temporary storage:

- Unit cost 14 21 €/tCO₂
- Capacity 2.6 4.7 Mtpa

SHIP TRANSPORT RESERVOIRS

	Depth (m)	Unit cost	Capacity	Number of	Utilisation	CAPEX
		€/tCO2	Mtpa	ships	%	M€
Saline Fm	1000	15,9	4,5	3	68	394
Good quality	2000	15,4	3,6	2	93	308
reservoir	3000	18,5	3,0	2	85	308
	4000	21,0	2,6	2	81	308
Saline Fm	1000	15,2	4,7	3	70	394
High quality	2000	15,4	3,6	2	93	308
Reservoir	3000	18,5	3,0	2	85	308
	4000	21,0	2,6	2	81	308
HC reservoir	1000	15,1	4,7	3	70	394
Depleted 80%	2000	13,2	4,3	2	100	308
	3000	14,6	3,8	2	95	308
	4000	16,4	3,3	2	90	308
HC reservoir	1000	15,1	4,7	3	70	394
Depleted 50%	2000	13,5	4,2	2	98	308
	3000	15,9	3,5	2	91	308
	4000	19,4	3,3	2	89	308


Same ship design can serve most storage options

15 CO2 transport by ship April 20.2016

CO₂ TRANSPORT BY SHIP: CONCLUSIONS

- Direct injection from ship or to temporary storage (lowest cost) is feasible
- Unit cost 14 28 €/tCO₂, depending on ship size, distance, etc.
- ▶ Rates 2.5 4.7 Mtpa, with ships 30-50 kt, depending on reservoir depth, etc.

Acknowledgements

AKER:

- CLIMIT/Gassnova for funding the project
- Statoil for funding, performing reservoir simulations and valuable discussions
- Centre for Integrated Petroleum Research, CIPR, for valuable simulations and discussions

TNO:

- CATO for funding the project
- ENGIE, RWE and ROAD for co-funding the project

Confidential © 2015 Aker Solutions Slide 17 April 25, 2016 Preferred partner