# Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment International Workshop on Offshore Geologic CO<sub>2</sub> Storage, 2016

Neeraj Gupta (gupta@battelle.org), Isis Fukai, and Lydia Cumming Battelle, Columbus, Ohio

### **PROJECT SCOPE**

#### **Goals and Objectives**

#### Define geologic characteristics of candidate storage **DOE Program Goals** sites • Use seismic data to better define continuity of Support Industry's ability to predict reservoirs Catalog hydrologic properties of mid-Atlantic offshore $CO_2$ storage capacity storage sites Determine appropriate efficiency parameters specific to offshore lithologies • Examine risk factors Develop Best • Engage stakeholders to guide future projects Practices

#### Study area

The study area consists of three major sub regions:

- Georges Bank Basin
- The Baltimore Canyon Trough
- 3. The Long Island Platform

Potential storage within the mid- and north-Atlantic Planning Areas could provide options for heavily populated states along the east coast.

#### **MID-ATLANTIC OFFSHORE STUDY AREA**



A map showing the regional study area, and its proximity to point sources of CO<sub>2</sub>

#### **Project organization**

Sponsor **Project Lead** William O'Dowd DOE/NETL Project Manager Battelle U.S. Department of Energy/NETL The Business of Innovation **Project Management (Task1)** Project Manager: Lydia Cumming Principal Investigator: Neeraj Gupta <u> Task 2</u> Task 3 Seismic Evaluation <u> Task 4</u> <u> Task 5</u> Offshore Geologica Carbon Resource Hydrologic Properties Characterization Calculations Characterizatior Greg Mountain Ken Miller Peter McLaughlin Isis Fukai (Rutgers) (Delaware Geo. Survey) (Rutgers)

Chart illustrating the project leadership by task

#### Schedule

|                                            | BP1 |        |    |    |    | BP2    |    |    |        |    |    |    |                                       |
|--------------------------------------------|-----|--------|----|----|----|--------|----|----|--------|----|----|----|---------------------------------------|
| Task Name                                  |     | FY2016 |    |    |    | FY2017 |    |    | FY2018 |    |    |    |                                       |
|                                            | Q1  | Q2     | Q3 | Q4 | Q1 | Q2     | Q3 | Q4 | Q1     | Q2 | Q3 | Q4 | I Future deliverable                  |
| Task 1: Project Management & Planning      | ł   |        |    |    |    |        |    |    |        |    |    | 1  |                                       |
| Update Project Mgmt. Plan                  | •   |        |    |    |    |        |    |    |        |    |    |    | Itemized invento                      |
| Task 2: Offshore Geologic Characterization | ł   |        |    |    |    | P      |    |    |        |    |    |    |                                       |
| Complete Initial Characterization          |     |        |    |    |    | •      |    |    |        |    |    |    | 🔹 Regional stratig                    |
| Task 3: Seismic Evaluation                 |     |        |    |    |    |        |    |    | 9      |    |    |    | Identification of                     |
| Acquire data & complete processing         |     |        |    |    |    |        |    |    | •      |    |    |    |                                       |
| Task 4: Hydrologic Props. Characterization |     |        | ſ  |    |    |        |    |    | ٩      |    |    |    | houndarios                            |
| Summarize hydrologic conditions            |     |        |    |    |    |        |    |    | •      |    |    |    | Dunuanes                              |
| Task 5: Carbon Storage Resource Calcs      |     |        |    |    |    |        | 9  |    |        | ł  |    |    | Storage Resource                      |
| Calculate Resource Estimates               |     |        |    |    |    |        |    |    |        | •  |    |    | Otorage Resour                        |
| Task 6: Risk Factors for MAC Areas         |     |        |    |    |    |        |    | ſ  |        |    | ſ  |    | <ul> <li>Offshore risk far</li> </ul> |
| Compile Risk Factor Analysis               |     |        |    |    |    |        |    |    |        |    | •  |    |                                       |
| Task 7: Stakeholder Education & Engagmnt   |     |        |    |    |    |        | •  |    |        |    | P  |    | I • Roadmap for fu                    |
| Task 8: Reporting and Tech Transfer        | •   |        |    |    |    |        |    |    |        |    |    | ٩  |                                       |







## LAMONT-DOHERTY EARTH OBSERVATORY

#### Mid-Atlantic U.S. Project Objectives



- es include: ory of existing data raphic framework report regional hydrologic
- rce Assessments ctor analysis ture CCS projects







#### **METHODOLOGY**

#### **1. Assess the geologic characteristics within the study area**

- Compilation and review of all existing data
- Construction of a digital database
- Interpretation of the porosity and mineralogy via well log and core analysis

#### 2. Utilize seismic data to define reservoir continuity

- Strategic selection of seismic lines for reprocessing: Bureau of Ocean Energy Management (BOEM) newly
- released multichannel seismic data from 1970's-1980's
- USGS, academic, and other seismic surveys

#### 3. Catalog hydrologic properties

- Lithologic, porosity, and permeability data generated from core and well logs will be used to determine the amount of pore space available for storage
- Data will be obtained from original reports, public databases, and new analysis of core material located at the Delaware Geological Survey

| Geochronology               |                         |                                         | Palynostratigraphy                              | Lithostratigraphy                             |                                     |                                          |                        |                                             |                                                |                                                     |                        |  |  |  |  |
|-----------------------------|-------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------|------------------------------------------|------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------|--|--|--|--|
|                             |                         |                                         | Hochuli et al. Doyle & Robbins<br>(2006) (1975) | Maryland                                      | New J                               | ersey                                    | C                      | Long Island                                 |                                                |                                                     |                        |  |  |  |  |
| 05.14                       |                         |                                         | A 6 A 8                                         |                                               | Fort Mott Medford                   | Formations                               | B-2                    |                                             | B-3                                            | Sand units                                          |                        |  |  |  |  |
| -1<br>-1                    | -71.3-                  | Maastrichtian                           |                                                 | Monmouth & Matawan Gps.<br>(undifferentiated) | Red Bank/Navesink                   | Red Bank/Navesink                        | Age Depth<br>71.5 5015 |                                             |                                                | Dawson Canyon                                       | Monmouth               |  |  |  |  |
|                             | -                       | Campanian                               |                                                 | ?                                             | Mt. Laurel/ Wenonah<br>Marshalltown | Mt. Laurel/ Wenonah<br>Marshailtown      | 10                     |                                             |                                                | Ganda                                               | &<br>Matawan<br>Groups |  |  |  |  |
|                             | -83.5-                  | Santonian                               | Zone VII                                        | Magothy Fm.                                   | Merchantville<br>Cheesequake        | Merchantville<br>Cheesequake             | .84?                   | 6009                                        |                                                |                                                     |                        |  |  |  |  |
| Late                        | LateConiacian           |                                         |                                                 |                                               | 0.000                               | 85.9                                     | 76382                  | 85.9 7370<br>897 7505                       | Middle<br>Sandstone                            | Magothy                                             |                        |  |  |  |  |
| Tur                         | Turonian                | Zone V                                  |                                                 | Magothy                                       | Magothy                             |                                          |                        |                                             |                                                |                                                     |                        |  |  |  |  |
| -98.9<br>-112<br>Early -121 | -93.0-                  | Cenomanian                              | Zone IV                                         | Raritan Fm.                                   | Bass River/Raritan                  | Bass River/Raritan                       | 96                     | 8220                                        | 95.5 8200                                      | Logan Canyon<br>Lower<br>Logan Canyon<br>Missisauga | Raritan                |  |  |  |  |
|                             | -                       |                                         | C Zone III                                      | Patapsco Fm.                                  | 364 786                             | Potomac Fm. Unit 3<br>Potomac Fm. Unit 2 | 99                     | 8600                                        |                                                |                                                     |                        |  |  |  |  |
|                             | -112.2                  | Albian                                  | upper                                           | Arundel and Patuxent                          | 600 983                             | Potomac Pint Dint 2                      |                        | 8840<br>9344<br>10230<br>12<br>711448<br>13 | 8642<br>8790<br>9113<br>121 9873<br>127 ?11629 |                                                     |                        |  |  |  |  |
|                             | -121.2-                 | Aptian                                  | lower Zone I                                    | Gp. Fms. (undifferentiated)                   | and the second second               | Potomac Fm. Unit 1                       | 120?-                  |                                             |                                                |                                                     |                        |  |  |  |  |
|                             | -127-<br>-132-<br>-137- | Barremian<br>Hauterivian<br>Valanginian | ?<br>Pre-Zone I                                 | Waste Gate Fm.                                |                                     | ?Waste<br>Gate Fm ?-                     | 127                    |                                             |                                                |                                                     |                        |  |  |  |  |
| 144.2                       | Juras                   | Berriasian                              |                                                 | Unnamed Jurassic (?) Kocks                    |                                     | _2_                                      |                        |                                             |                                                |                                                     |                        |  |  |  |  |

Stratigraphic column illustrating the stratigraphy and targeted sand intervals (yellow) within the study area (modified from Seker, 2012)

#### 4. Calculate Prospective CO<sub>2</sub> Storage Resources

- Development of first approximations of offshore CO<sub>2</sub> storage efficiency
- Examination of differences in storage efficiency between onshore and offshor environments
- Calculation of prospective storage resource assessments following the DOE methodology (US-DOE-NETL, 20

#### 5. Examine risk factors that may impact storage resource estimates



Geological and other risk factors impacting operations will be considered. The map to the left displays known behavior of faults, fractures, and dipping strata (source: USGS). The map to the right illustrates environmental risks such as marine protected areas, hazardous waste dumping areas, and shipping anes (source: BOEM).





Core from the COST G-2 well currently being inventoried and assessed for additional analysis

#### $\mathbf{G}_{\mathbf{CO2}} = \mathbf{A}_{t} \mathbf{h}_{a} \phi_{tot} \rho_{\mathbf{CO2}} \mathbf{E}_{\mathbf{saline}}$

|     |                  |                                | 9                                                                                                                         |  |  |  |  |  |
|-----|------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | Parameter        | Dimension *                    | Description                                                                                                               |  |  |  |  |  |
|     | G <sub>CO2</sub> | М                              | Mass CO <sub>2</sub> storage resource of reservoir                                                                        |  |  |  |  |  |
|     | A <sub>t</sub>   | L <sup>2</sup>                 | Total area of reservoir                                                                                                   |  |  |  |  |  |
| re  | h <sub>g</sub>   | L                              | Gross thickness of reservoir within the area defined by ${\rm A}_{\rm t}$                                                 |  |  |  |  |  |
|     | $\phi_{tot}$     | L <sup>3</sup> /L <sup>3</sup> | Total pore/void space in the volume of rock defined by $A_t h_q$                                                          |  |  |  |  |  |
| 12) | ρ <sub>co2</sub> | M/L <sup>3</sup>               | Density of CO <sub>2</sub> at anticipated pressure and temperature conditions of storage                                  |  |  |  |  |  |
|     | E                | L <sup>3</sup> /L <sup>3</sup> | Storage efficiency factor that represents the fraction of the total volume of the reservoir accessible for $CO_2$ storage |  |  |  |  |  |

\*M is mass; L is length



#### 6. Engage stakeholders to guide future projects

• Several workshops will be held with the objective to seek input for road mapping

storage resources, and identifying key formations that exist offshore of the Mid-Atlantic U.S. with the greatest potential for effective, permanent storage of CO<sub>2</sub>. The anticipated outcomes are high level storage resource assessments of areas of the mid-Atlantic not previously characterized and improved storage resource estimates. The Project Team will also review and update guidance on efficiency factors for offshore resource assessment and best practices for site selection criteria.



This material is based upon work supported by the Department of Energy under Award Number DE-FE0026087. The Project Team is led by Battelle and includes the state geological surveys of Delaware, Maryland, and Pennsylvania; United States Geological Survey; Lamont-Doherty Earth Observatory at Columbia University; and Rutgers University. In addition, Harvard University, Texas Bureau of Economic Geology, and Virginia Department of Mines, Minerals, & Energy serve as technical advisors.

### REFERENCES

BOEM, MMS Mapping & Boundary Branch, Jan 27, 2004 303 275-7186 /wind2/use.map Seker, Z., 2012, Cretaceous well-log and sequence stratigraphic correlation of the outer continental shelf and upper slope off of New Jersey [M.S. thesis]: Rutgers University, 155 p. US-DOE-NETL, 2012, Carbon Utilization and Storage Atlas. U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory.



Harvard University Center for the Environment



### DISCUSSION

Attention towards offshore prospects for CCS in the U.S. is required to address numerous large-point sources located along the U.S. Atlantic Coast. Research is underway to develop a reliable method for screening candidate offshore storage formations, producing data-driven, probabilistic estimates of the prospective CO<sub>2</sub>



The first batch of seismic data selected for reprocessing consists of over 1000 km of seismic lines; ultimately, a total of 4000 km lines will be selected (source: Lamont-Doherty)

Cross section constructed using data from wells located within the Great Stone Dome in the Baltimore Canyon Trough, North (left) to South (right) (source: Rutgers University)

#### ACKNOWLEDGEMENTS



