

Short-offset, multi-streamer 3D seismic arrays for overburden characterization and monitoring

Jackson School of Geosciences

Modified from Hill et al., 2015, Leading Edge

Geometry Detail: UT System

Conventional 3D

 $=\left(\frac{1}{25\ hz}*1500\ m/s\right)/4$

Vertical Resolution

 $=\left(\frac{1}{f}*V\right)/4$

HR3D - PCable

$$=\left(\frac{1}{150\ hz}*1500\ m/s\right)/4$$

Existing conventional 3D

1500 ms ~ 1125 meters depth

2012 UT Pcable HR3D

P-Cable Development History

2001: P-Cable concept testing

2004: P-Cable1 prototype; patent

- 2006: P-Cable2 system / 24 streamer digital system
- **2007:** P-Cable2 Peon survey; better resolution than conventional 3D
- 2008: P-Cable 3D Seismic established
- 2009: Commercial P-Cable2 data on Peon , Statoil (188 km²)
- 2010: P-Cable3 tested
- 2011: Commercial P-Cable3 sales
- 2011: P-Cable3 Snøhvit survey
- 2011: P-Cable3 San Luis Obispo survey

2012-14: Three UT GoM surveys

rveys 137 km²

2014: NCS, WGP commercial system orders

2015: NCS GOM SAFEBAND

2016: NSF Langseth – New Jersey Shelf

~6 active systems globally; 70 surveys

DATE	TX LOCATION	AREA (sq. km.)	LINE KM	AIRGUN SOURCE
July, 2012	San Luis Pass	58	1,077	Two 210 cu. in. Gl
October, 2013	San Luis Pass	31.5	420	One 90 cu. in. Gl
April, 2014	High Island	47	627	Two 90 cu. in. Gl

UT System/Survey Specifications

- Water Depth = 10-15 m (CA, NS, NCS-SB much deeper)
- ~3-4 knots through water
- 12 streamers: GeoEel Solid
- 25 m streamer length (short offset, low fold)
- 8 Channels per streamer (3.125 spacing; 96 total)
- Streamer separation: ~12.5m
- CC compasses for orientation, positioning.
- Source: 90-420 in³ Sercel GI (compressed air)
- 12.5 m shot spacing (6.25 m² bins, 4 fold)
- Dominant frequency: 150 Hz (50-250 Hz typical)
- Coverage and positioning: 3rd party navigation hardware/software with proprietary processing

No ITAR restrictions

A(%)

753

50

25

100

200

300

Study Area and Dataset - San Luis Pass Area, Offshore TX:

Depth Converted OBS 3-D Seismic Data

95°20'0"W 95°0'0"W 94°40'0"W N A OK restonIslam NM AR WestBoy LA ΤХ mar 10 Brazoria County Mexico Gulf of Mexico San Luis 0 50100 200 300 Pass 29°0'0"N--29°0'0"N Freeport **Gulf of Mexico** 0 1.5 3 6 9 12 15 Miles 95°20'0"W 95°0'0"W 94°40'0"W **Key to Features and Symbols** 2013 GCCC P-Cable 3-D Seismic Data Study Area Bathymetry (ft TVDSS) Texas State Waters Boundary 2013 - 2015 UT 2-D Seismic and CHIRP Data 0 SEI Conventional OBS 3-D Seismic Data **IHS Well Data**

- 120

Figure 1.1

Interpreted Seismic-Section B to B' - San Luis Pass Area, Offshore

Figure 1.3B

B.)

LM2 Lower Miocene 2 Siliciclastics

Faults

Subsurface Geology – Seismic Section

Primary Observations

- Structurally complex area.
- Evidence of charge.
- Non-economic well history locally.
- Is this a good place to inject CO₂?
- HR3-D seismic
 - Near-surface faults
 - Anomalies: chimney and shallow
 - (Quaternary stratigraphy)

OCTOBER 2013 and April 2014 R/V Brooks-McCall based out of Freeport, TX 50 m length, A-Frame Primary operations: Sediment coring

JPC

2013 Survey: San Luis Pass, TX

Gulf Coast Carbon Center

BE

C

Photo by Eddie Tausch, courtesy of TDI-Brooks, Int.

Nested Geophysical Datasets

6

AK. 8 (217)

Meckel and Mulcahy, 2016, INTERPRETATION

Shallow Sediment Piston Coring San Luis Pass HR3D Gas Anomalies February, 2015

SUMMARY

• <u>3 acquisitions using P-Cable HR3D system in GoM</u>.

- 2012 2014: 130 km² total to date.
- Learnings from surveys:
 - Vessel, deployment, positioning, array geometry, source, processing.

<u>Technology & datasets achieve 2 primary goals:</u>

<u>Characterization</u>: Success imaging overburden in detail.

- 1) <u>GEOLOGY</u>: Well-resolved faults and stratigraphy down to 1+ sec (90 cu. in. source)
 - Complex stratigraphic heterogeneity (inner shelf)
 - Subtle fault expression toward seafloor.
- 2) <u>FLUIDS</u>: Identification of leaky/non-leaky geo-systems.
 - Potential migration pathways & re-accumulations not seen in conventional data.
 - Integration with Coring.

TOMAKOMAI CO2 Injection Project

Seismic Monitoring Program

Copyright 2015 Japan CCS Co., Ltd.

QUESTIONS?

