

Establishing CO₂ Utilization, Storage and Pipeline Systems for Oil Fields in Shallow and Deep Waters of the Gulf of Mexico

Prepared for: 2nd International Workshop on Offshore CO₂ Geologic Storage

Session 4: Changing the Game for CO₂-EOR Offshore

Prepared By: Vello Kuuskraa, President Advanced Resources International, Inc.

Lamar University Beaumont, Texas June 19, 2017

Presentation Outline

	Executive Summary
1	Eastern and East Central GOM Shallow Water CO ₂ Pipeline System
2	Eastern and East Central GOM Deepwater CO ₂ Pipeline System
3	Next Steps

Executive Summary

The large oil fields in the Eastern and East Central GOM offshore offer significant opportunities for productively utilizing and storing CO_2 while helping increase domestic oil production and Federal revenues.

- The 52 moderate to large oil fields in the shallow Federal waters of the GOM will need a three CO₂ pipeline system to deliver 40 million metric tons per year (2.1 Bcfd) for use and storage by CO₂ enhanced oil recovery,
- The 63 large oil fields in the deep Federal waters of the GOM will need a three CO₂ pipeline system to deliver 57 million metric tons per year (2.9 Bcfd) for use and storage by CO₂ enhanced oil recovery,
- The capital costs for these six CO₂ pipelines is estimated at nearly \$6 billion,
- The Federal royalties provided from the recovery of 7.3 billion barrels by CO₂ enhanced oil recovery (assuming all 7.3 B bbls would be economically viable to develop) would equal \$104 billion dollars, assuming an \$80 per barrel (WTI) oil price, as estimated by EIA for Year 2025.

Eastern and East Central GOM Shallow Water CO₂ Pipeline System

4 | JAF2017_049.PPT | May 31, 2017 | www.adv-res.com

Pipeline Systems for Delivering CO₂ to Shallow Water Eastern and East Central GOM Oil Fields

The Eastern and East Central portions of the Gulf of Mexico (GOM) shallow water offshore hold 52 moderate- to large-size oil fields. These oil fields contain 8.2 billion barrels of original oil reserves, with 97% of these original reserves already produced.

We started our study by targeting the largest 29 of these oil fields, each with original oil reserves of over 100 million barrels.

We plotted the location of each of these 29 oil fields, estimated their technically viable oil recovery potential and CO_2 injection requirements, and then designed three CO_2 pipelines that would connect these 29 oil fields with CO_2 supply from onshore Louisiana and Mississippi.

- Eastern GOM CO₂ Pipeline System
- East Central GOM CO₂ Pipeline System #1
- East Central GOM CO₂ Pipeline System #2

Finally, we prepared an initial estimate of the capital costs of installing these three CO₂ pipeline systems in the shallow waters of Eastern and East Central GOM.

Initial Eastern and East Central GOM Shallow Water CO₂ Pipeline System

Three CO_2 pipelines would deliver about 1.6 Bcfd of CO_2 (32 million metric tons per year) to 29 "targeted" shallow water Eastern and East Central GOM oil fields.

Pipeline System		No. of Fields	CO ₂ -EOR Oil Recovery		l CO ₂ ements		O ₂ ow
	•	(#)	(MMB)	(Bcf)	(MMmt)	(MMcfd)	(MMmt/yr)
East	ern	7	480	4,760	252	330	6.3
East	Central #1						
-	Part 1	4	450	4,570	242	310	6.1
-	Part 2	5	600	5,980	316	410	7.9
-	Part 3	2	130	1,310	69	90	1.7
-	Part 4	2	130	1,280	68	90	1.7
Tota	I	13	1,310	13,140	695	900	17.4
East	Central #2						
•	Part 1	6	340	3,360	178	230	4.5
-	Part 2	3	250	2,550	135	180	3.5
Tota	I	9	590	5,910	313	410	8.0
Tota	l	29	2,380	23,810 1,260		1,640	31.7

The Eastern CO₂ pipeline system is modest in size, transporting 330 MMcfd (6.3 MMmt/yr) of CO₂.

- The East Central #1 CO₂ pipeline system, the dominant CO₂ system, would transport 900 MMcfd (17.4 MMmt/yr) of CO₂.
- The East Central #2 CO₂ pipeline system would transport 410 MMcfd (8.0 MMmt/yr) of CO₂.
- We estimate these 29 oil fields would provide 2,380 million barrels of oil and require 24 Tcf (1,260 million metric tons) of CO₂ delivered at 1,640 MMcfd (31.7 MMmt/yr) for 40 years.

"Opportunity" Oil Fields Near the Proposed Eastern and East Central GOM Shallow Water CO₂ Pipeline Systems

Twenty three smaller oil fields, located near the three proposed Eastern and East Central GOM CO_2 pipeline systems, could be added to the initial shallow water CO_2 pipeline system.

Pipeline System	No. of Fields	CO ₂ -EOR Oil Recovery*		l CO ₂ ments**	C(Require	D ₂ ements
	(#)	(MMB)	(Bcf)	(MMmt)	(MMcfd)	(MMt/yr)
Eastern	5	130	1,350	72	90	1.8
East Central #1	11	320	3,140	166	220	4.2
East Central #2	7	190	1,970	104	130	2.5
Total	23	640	6,460	342	440	8.5

These 23 oil fields* (each with between 50 and 100 million barrels of original oil reserves) provide additional "opportunities" for storing CO_2 and producing oil with CO_2 -EOR.

We estimate that these 23 oil fields could provide 640 million barrels of oil and require about 6.5 Tcf (340 million metric tons) of CO_2 delivered at 440 MMcfd (8.5 million mt/yr) for 40 years.

Advanced Resources International, Inc.

*Technically viable oil recovery is estimated at 15% of OOIP.

**Technically viable CO₂ requirements are estimated using 10 Mcf of CO₂ per barrel of recovered oil.

Final Eastern and East Central GOM Shallow Water CO₂ Pipeline System

Including both the 29 "targeted" oil fields and the 23 "opportunity" oil fields, the three pipelines would deliver about 2.1 Bcfd of CO_2 (40 million tons per year) to 52 shallow water GOM oil fields.

Pipeline System	No. of Fields	CO ₂ -EOR Oil Recovery		I CO ₂ ements		O ₂ ements
	(#)	(MMB)	(Bcf)	(MMmt)	(MMcfd)	(MMmt/yr)
Eastern	12	610	6,110	323	420	8.1
East Central #1						
 Part 1 	6	520	5,220	276	360	6.9
 Part 2 	7	650	6,530	346	450	8.7
 Part 3 	6	240	2,380	126	160	3.2
 Part 4 	5	220	2,150	114	150	2.8
Total	24	1,630	16,280	862	1,120	21.6
East Central #2						
 Part 1 	12	500	5,040	267	350	6.8
 Part 2 	4	290	2,840	150	190	3.7
Total	16	790	7,880	417	540	10.5
Total	52	3,030	30,270	1,602	2,080	40.2
	-		•	-	J/	AF2017_028.XLS

The Eastern CO_2 pipeline system remains modest in size, transporting 420 MMcfd (8.1 MMmt/yr) of CO_2 .

- The East Central #1 CO_2 pipeline system remains the dominant CO_2 system, with 1,120 MMcfd (21.6 MMmt/yr) of capacity.
- The East Central #2 CO₂ pipeline system would have 540 MMcfd (10.5 MMmt/yr) of transportation capacity.

Eastern and East Central GOM Shallow Water CO₂ Pipeline Investment Costs

Our estimate of installing the three CO₂ pipelines in the shallow waters of the Eastern and East Central Gulf of Mexico is about \$1.7 billion.

Pipeline System	CO ₂ Requ	uirements	Pipeline Requirements	Capital Costs*
	(MMcfd)	(MMmt/yr)	(in-mi)	(\$MM)
Eastern	420	8.1	2,478	\$600
East Central #1	1,120	21.6	2,512	\$600
East Central #2	540	10.5	2,074	\$500
Total	2,080 40.2		7,064	\$1,700

Opportunities for lowering these costs would involve further optimizing the CO₂ pipeline systems and selectively using existing, empty offshore natural gas pipelines, where possible.

*We assume \$240,000 per inch-mile for shallow water.

Summary of Findings

The prefeasibility study of the Eastern and East Central Gulf of Mexico shallow water CO₂ pipeline system provides the following findings:

- Time Urgency for the CO₂ Pipeline System. The majority of the large shallow water Eastern and East Central Gulf of Mexico oil fields are close to abandonment. Once these fields are abandoned and their platforms removed, the feasibility of conducting CO₂-EOR and storing CO₂ in the offshore becomes much more challenging and costly.
- 2. The Eastern and East Central GOM Shallow Water CO_2 Pipeline System. The three CO_2 pipelines defined by the study would facilitate the implementation of CO_2 -EOR and CO_2 storage in 52 large GOM shallow water oil fields. This would involve:
 - Technically feasible oil recovery of over 3 billion barrels,
 - CO₂ demand and storage of over 30 Tcf (1,600 million metric tons),
 - CO₂ delivery (and storage) of 2.1 Bcf per day, equal to 40 million metric tons per year, over a 40 year time period, and
 - Capital costs of \$1.7 billion dollars for an all new CO₂ pipeline system.

Time Urgency of the CO₂ Pipeline System for Shallow Water Central GOM Oil Fields

The large shallow water Gulf of Mexico oil fields, located in less than 1,000' of water depth, are rapidly depleting their original reserves and thus approaching abandonment.

Potential Abandonment (Year)	No. of Fields (#)	Original Reserves (MM bbl)	Remaining Reserves* (MM bbl)	Reserve Depletion (%)					
2025	40	6,491	131	98%					
2030	12	1,684	82	95%					
Total	52	8,175	213	97%					
*As of end of 2014.				JAF2017_028.XLS	•				

Status of	Large	Shallow	Water	Oil Fields	
-----------	-------	---------	-------	-------------------	--

- Of the 52 large shallow water
 Central GOM oil fields, 40 fields
 are approaching abandonment by 2025.
- These 40 large oil fields that originally held 6.5 billion barrels of reserves have produced 98% of their original reserves.
- Another 12 oil fields will approach abandonment by 2030.

Summary of Findings (Cont'd)

- 3. Utilization of Existing Empty Offshore Pipelines. Given the location of the abandoned natural gas pipelines in the Eastern and East Central GOM, there does not appear to be any obvious candidates that could deliver CO₂ to shallow water oil fields, as illustrated for the Eastern CO₂ Pipeline System. A more in-depth analysis might show promise.
- 4. Pipeline Delivery Costs for CO₂. Using a capital cost of \$1.7 billion, a 14% capital charge, and an O&M charge of 5% of capital, the annual costs (including the capital charge) for the CO₂ pipeline system would be about \$320 million.

With annual delivery of 40 million metric tons, the CO_2 transportation costs for the GOM Shallow Water CO_2 Pipeline System would be about \$8 per metric ton. Assuming 0.5 metric tons of CO_2 per barrel of recovered oil, the CO_2 transportation cost would be about \$4 per barrel of oil.

Summary of Findings (Cont'd)

5. GOM Shallow Water CO₂ Pipeline Benefits. With potential oil recovery of 3 billion barrels, an oil price of \$80 per barrel (EIA AEO 2017 projected oil price (WTI) for Year 2025, in real 2016 dollars), and a shallow water GOM royalty rate of 16.7%, the Federal Government would receive about \$40 billion dollars of royalty revenues from the oil produced using the GOM Shallow Water CO₂ Pipeline System (assuming all of the technically recoverable oil would be developed).

2. Eastern and East Central GOM Deepwater CO₂ Pipeline System

19 | JAF2017_049.PPT | May 31, 2017 | www.adv-res.com

Pipeline Systems for Delivering CO₂ to Deepwater Eastern and East Central GOM Oil Fields

The 63 large deepwater Eastern and East Central GOM oil fields, concentrated in Green Canyon and Mississippi Canyon, offer considerable potential for CO_2 storage and technically viable oil recovery using CO_2 -EOR.

- These 63 large deepwater oil fields contain 8.6 billion barrels of original oil reserves, with about half of these original reserves already produced.
- We plotted the location of these 63 large deepwater oil fields and 26 Production Complexes (central platforms). We then estimated their oil recovery potential and CO₂ requirements for CO₂-EOR.
- We established seven major CO₂ Hubs served by three Deepwater CO₂ Pipeline Systems to link these 63 large oil fields with CO₂ supplies delivered from onshore Louisiana, Mississippi and Alabama.

International, Inc.

Appomattox CO₂ Hub and Production Complexes

The Appomattox CO_2 Hub and Production Complex is linked to the Appomattox (MC391) and Vicksburg (DC353) oil fields located in about 7,300 feet of water depth. Vicksburg was discovered by Shell in 2013 with Appomattox discovered, also by Shell, in 2016. Both fields are projected to be placed on production in 2020.

Subsequently, Shell announced the Appomattox deepwater platform would also provide tieback opportunities for the nearby Gettysburg, Ryberg and other prospects.

Shell has proposed building a 24-inch pipeline, called the Mattox Pipeline, to transport crude oil from the Appomattox host platform to a shallow water offshore structure and from there to the onshore using existing infrastructure.

Appomattox CO₂ Hub

The Appomattox deepwater semisubmersible production platform will be located in 7,200 feet of water, 80 miles south of Mobile, Alabama. It will contain six drill centers, 15 producing sub-sea wells and five water injection wells.

The production platform is scheduled to be placed on-stream in 2020.

Source: OGJ On-Line, 07/01/2015

Eastern Deepwater GOM CO₂ Pipeline System

The Eastern Deepwater Gulf of Mexico CO_2 Pipeline System links three deepwater CO_2 Hubs: (1) <u>King/Horn Mt. CO_2 Hub</u> (King/Horn Mt., Petronius, Pompano and Ram-Powell Production Complexes); (2) <u>Thunder Horse CO_2 Hub</u> (Thunder Horse, Blind Faith and NaKita Production Complexes); and (3) <u>Appomattox CO_2 Hub</u> (Appomattox Production Complex).

The 23 oil fields linked to the King/Horn Mt., Thunder Horse, and Appomattox CO_2 Hubs offer the technical potential for: (1) 1,280 million barrels of CO_2 -EOR based oil recovery; (2) 12,790 Bcf (677 MMmt) of CO_2 use and storage; and (3) CO_2 requirements of 880 MMcfd (17 MMmt/yr) of CO_2 for 40 years.

CO ₂ Hubs	No. of Fields	CO2-EOR OilTotal CO2RecoveryDemand/Storage		-	Flow ements	
	(#)	(MMB)	(Bcf)	(MMmt)	(MMcfd)	(MMmt/yr)
King/Horn Mt.	9	280	2,770	147	190	3.7
Thunder Horse	12	600	6,040	319	420	8.1
Appomattox	2	400	3,980	211	270	5.2
Total	23	1,280	12,790	677	880	17.0

Eastern GOM Deepwater CO₂ Pipeline System

JAF2017_029.XLS

The schematic for the Eastern Deepwater GOM CO₂ Pipeline System follows.

Establishing CO2 Utilization, Storage and Pipeline Systems for Oil Fields in Shallow and Deep Waters of the Gulf of Mexico

Advanced Resources International, Inc.

East Central #1 Deepwater GOM CO₂ Pipeline System

The East Central #1 Deepwater Gulf of Mexico CO_2 Pipeline System is linked to the Mars-Ursa CO_2 Hub and to three major Production Complexes: Cognac, Tubular Bells, and Mars-Ursa.

The 10 oil fields linked to the Mars-Ursa CO_2 Hub offer the technical potential for: (1) 1,030 million barrels of CO_2 -EOR based oil recovery; (2) 10,270 Bcf (543 MMmt) of CO_2 use and storage; and (3) CO_2 requirements of 700 MMcfd (13.5 MMmt/yr) for 40 years.

Deepwater CO₂ Hub	No. of Fields	CO₂-EOR Oil Recovery	Total CO ₂ Requirements		Periodic CO ₂ Requirements	
	(#)	(MMB)	(Bcf)	(MMmt)	(MMcfd)	(MMmt/yr)
Mars-Ursa	10	1,030	10,270	543	700	13.5

East Central #1 Deepwater CO₂ Pipeline System

The schematic for the East Central #1 Deepwater GOM CO_2 Pipeline System follows.

East Central #2 Deepwater GOM CO₂ Pipeline System

The East Central #2 Deepwater Gulf of Mexico CO_2 Pipeline System encompasses three major CO_2 Hubs: (1) <u>Bullwinkle CO_2 Hub</u> (Bullwinkle, Brutus, Boxer and Genesis Production Complexes), (2) <u>Atlantis CO_2 Hub</u> (Atlantis, Shenzi, K2, Stampede and Mad Dog Production Complexes), and (3) <u>Jack/St. Malo CO_2 Hub</u> (Jack St. Malo, Heidelberg, Holstein, Tahiti, Shenandoah and Stones Production Complexes).

The 30 oil fields linked to the Bullwinkle, Atlantis, and Jack/St. Malo CO_2 Hubs offer the technical potential for : (1) 1,990 million barrels of CO_2 -EOR based oil recovery; (2) 19,910 Bcf (1,053 MMmt) of CO_2 use and storage, and (3) CO_2 requirements of 1,360 MMcfd (26.3 MMmt/yr) of CO_2 for 40 years.

CO ₂ Hub	No. of Fields	CO ₂ -EOR Oil Recovery	Total Require	-		lic CO ₂ rements
	(#)	(MMB)	(Bcf)	(MMmt)	(MMcfd)	(MMmt/yr)
Bullwinkle	10	270	2,730	144	190	3.7
Atlantis	12	770	7,660	405	520	10
Jack / St. Malo	8	950	9,520	504	650	12.6
Total	30	1,990	19,910	1,053	1,360	26.3

JAF2017_029.XLS

The schematic for the East Central #2 Deepwater GOM CO₂ Pipeline System follows.

Eastern and East Central GOM Deepwater CO₂ Pipeline Systems

We estimate technically feasible oil recovery of 4.3 billion barrels, an ultimate CO_2 demand of 43 Tcf (2,300 million metric tons), and CO_2 flows of 2.9 Bcfd (57 MMmt/yr) for the Deepwater GOM CO_2 Pipeline System.

Pipeline	CO ₂ Hub	CO ₂ EOR*	CO ₂ [Demand**	CO2	Flow
System		(MMbbls)	(Bcf)	(MMmt)	(MMcfd)	(MMmt/y)
Eastern						
	King/Horn Mt.	280	2,770	147	190	3.7
	Thunder Horse	600	6,040	319	420	8.1
	Appomattox	400	3,980	211	270	5.2
Eastern Su	Eastern Sub-Total		12,790	677	880	17.0
East Centr	al #1					
	Mars-Ursa	1,030	10,270	543	700	13.5
East Centr	al #2					
	Bullwinkle	270	2,730	144	190	3.7
	Atlantis	770	7,650	405	520	10.0
	Jack/St. Malo	950	9,520	504	650	12.6
East Centr	al #2 Sub-Total	1,990	19,900	1,053	1,360	26.3
	Total	4,300	42,960	2,273	2,940	56.8

*Technically viable oil recovery is estimated at 15% of OOIP.

5/24/2017

**Technically viable CO₂ requirements are estimated using 10 Mcf of CO₂ per barrel of oil recovery.

Eastern and East Central GOM Deepwater CO₂ Pipeline Investment Costs

Our overall estimate of installing the three CO_2 pipeline systems in the deep waters of the Gulf of Mexico is about \$4.1 billion.

Pipeline System	CO₂ Req	uirements	Pipeline Requirements	Capital Costs*
- ,	(MMcfd)	(MMmt/yr)	(inch-miles)	(\$MM)
Eastern	880	17.0	4,862	\$1,310
East Central #1	700	13.5	3,048	\$820
East Central #2	1,360 26.3		7,166	\$1,980
Total	2,940	56.8	15,076	\$4,110

Opportunities for lowering these costs would involve further optimizing the CO_2 pipeline system.

JAF2017_029.XLS

*We assume capital costs of \$240,000 per inch-mile for shallow water and \$300,000 per inch-mile for deepwater.

Summary of Findings

Our prefeasibility study of the Eastern and East Central Gulf of Mexico CO₂ Pipeline System provides the following findings:

- Time Urgency for the CO₂ Pipeline System. Eighteen large deepwater oil fields are close to abandonment having produced 93% of their original reserves. Once these fields are abandoned and their platforms removed, the feasibility of conducting CO₂-EOR and storing CO₂ in these oil fields become much more challenging and costly.
- 2. The Eastern and East Central GOM Deepwater CO_2 Pipeline System. The three GOM deepwater CO_2 pipelines would facilitate the implementation of CO_2 -EOR and CO_2 storage in 63 large GOM oil fields.
 - Technically feasible oil recovery of 4.3 billion barrels,
 - CO₂ demand and storage of nearly 43 Tcf (2,270 million metric tons),
 - CO₂ delivery (and storage) of 2.9 Bcf per day, equal to 57 million metric tons per year, over a 40 year time period, and
 - Capital costs of \$4.1 billion dollars for an all new CO₂ pipeline system.

Eastern and East Central Gulf of Mexico Deepwater Oil Field Areas Nearing Abandonment

Production Complex		Original Reserves			2014 Annual Production			Cumulative Production through 2014			Reserves		
Name	#	Oil	Gas	BOE	Oil	Gas	BOE	Oil	Gas	BOE	Oil	Gas	BOE
	Fields	(MMbbl)	(Bcf)	(MMbbl)	(MMbbl)	(Bcf)	(MMbbl)	(MMbbl)	(Bcf)	(MMbbl)	(MMbbl)	(Bcf)	(MMbbl)
PETRONIUS	2	160	198	195	3.7	8.9	5.3	150.7	177.6	182.3	9	21	13
BOXER	1	102	172	132	0.6	0.9	0.8	100.4	168.5	130.4	2	3	2
RAM POWELL	1	99	897	259	1.5	5.7	2.6	95.0	881.2	251.8	4	16	7
MAD DOG	2	166	102	184	10.4	3.3	11.1	135.5	40.6	142.8	30	61	41
GENESIS	1	146	213	184	4.1	4.7	4.9	133.4	195.8	168.2	13	17	16
BRUTUS	2	122	193	156	2.7	2.5	3.2	111.5	154.8	139.1	10	39	17
COGNAC	2	182	837	331	0.4	2.2	0.8	180.1	803.1	323.0	2	34	8
BULLWINKLE	7	393	691	515	3.4	5.7	4.3	370.4	633.3	483.0	22	58	32
EASTERN & EAST CENTRAL	18	1,369	3,302	1,957	27	34	33	1,277	3,055	1,821	92	248	136

5/23/2017

Summary of Findings (Cont'd)

Pipeline Delivery Costs for CO₂. Using a capital cost of \$4.1 billion, a 14% capital charge, and an O&M charge of 5% of capital, the annual costs (including the capital charge) for the GOM deepwater CO₂ pipeline system would be about \$780 million.

With annual delivery of nearly 57 million metric tons, the CO_2 transportation costs for the GOM Deepwater CO_2 Pipeline System would be about \$14 per metric ton. Assuming 0.5 metric tons of CO_2 per barrel of recovered oil, the CO_2 transportation cost would be about \$7 per barrel of oil.

4. GOM Deepwater CO₂ Pipeline Benefits. With potential oil recovery of 4.3 billion barrels, an oil price of \$80 per barrel (EIA AEO 2017 projected oil price (WTI) for Year 2025, in real 2016 dollars), and a deepwater royalty rate of 18.75%, the Federal Government would receive about \$64 billion dollars of royalty revenues from the oil produced using the GOM Deepwater CO₂ Pipeline System (assuming all of the technically recoverable oil would be developed).

3. Next Steps

As part of our existing Scope of Work, we plan to address two additional topics.

- CO₂ utilization/storage, oil recovery and CO₂ pipeline systems for eastern Louisiana, Mississippi and Alabama state waters.
- The potential and capacity of storing CO₂ in the depleted gas fields of the Eastern and East Central GOM, including state, shallow Federal, and deep Federal waters.

A critical topic, although not within our Scope of Work, would be addressing the question - - How much of the CO_2 demand and potential for oil recovery in the GOM offshore would be economically viable to pursue?

Office Locations **Washington, DC** 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420

Houston, TX 11931 Wickchester Ln., Suite 200 Houston, TX 77043-4574 Phone: (281) 558-9200

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

