2nd International Workshop on Offshore CO₂ Geologic Storage 19-20 June 2017

Leak detection

Keisuke Uchimoto (RITE)

ACKNOWLEDGEMENT

This work is part of an R&D project "Research and Development of Safety Technology for Geological CO₂ Storage", commissioned to the Geological Carbon Dioxide Storage Technology Research Association by the Ministry of Economy, Trade and Industry (METI) of Japan.

Research Institute of Innovative Technology for the Earth

CONTENTS

- Detection of CO₂ bubbles with side-scan sonar (SSS)
- Detection of high pCO₂ (partial pressure of CO₂) in seawater

- due to leakage of CO2 or natural variability?

https://woodshole.er.usgs.gov/operations/sfmapping/sonar.htm

Bubble release experiment

- What is the minimum leakage rate which is detectable with SSS?
- What differences are there in SSS images depending on the distance between SSS and bubbles?

Release rate

Air bubbles

- 750 ml/min O
- 250 ml/min O
- 100 ml/min O
 CO₂ bubbles
- 2500 ml/min····· 0
- 1500 ml/min
- 500 ml/min …… ×
- 250 ml/min ····· ×

Detecting CO₂ bubbles is more difficult than air

The right end of the bubble signal represents the position of bubbles at the depth of SSS ↓ rough identification of the leakage point

about 32m

Note: Bubbles do not always rise straight in the water column.

CO2 bubbles (1500ml/min)

air bubbles (250ml/min)

9

High pCO_2 detection

What is the problem?

Anomalously high value of pCO₂

- due to CO₂ leakage
- due to natural variability

A constant value of pCO₂ is unsuitable for the threshold where natural variability of pCO₂ is large.

A threshold using not only pCO₂ but also dissolved oxygen (DO)

Example: Eastern part of Osaka Bay in Japan

O₂ and pH: observed near the bottom 4 times a year from 2002 to 2010 **pCO**₂: calculated using CO2SYS from pH and alkalinity estimated from salinity.

High pCO_2 detection

Natural variability in the Eastern part of Osaka Bay is very large

Range of pCO_2 between 2002 and 2010 in Osaka Bay

Using relationship between pCO₂ and O₂

Summary

Two methods for detecting leakage in the sea

- **Detection of CO₂ bubbles** with side-scan sonar
 - SSS can detect CO₂ bubbles released at 1500 ml/min
 - SSS images provide us a clue to identifying the leakage point
- Detection of anomalously High pCO₂ using the relationship between pCO₂ and DO (dissolved O₂)
 - false-positive/negative problem are improved

Challenges to be tackled

CO2 bubble detection with SSS

To clarify

- dependency on the speed of the observation boat
 the faster, the better for the monitoring
- dependency on the initial size of bubbles
 - Smaller bubbles are easier to dissolve in seawater

<u>High pCO₂ detection using the pCO₂-DO relation</u> To clarify

• how many data is necessary to make a reliable threshold?