

Southampton

# Tracers for monitoring marine CO<sub>2</sub> storage

Anita Flohr, Juerg M. Matter and Rachael H. James

Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton A.Flohr@Southampton.ac.uk.

## Introduction

Carbon capture and storage (CCS) is a key technology to timely, feasibly and substantially reduce  $CO_2$  emissions from industrial processes<sup>[1]</sup>. Robust strategies for leak detection and management are crucial to make CCS a safe and effective strategy for the long-term mitigation of atmospheric  $CO_2$  concentrations. STEMM-CCS is an EU-funded project, which addresses the lack of robust monitoring strategies for the offshore, sub-seabed storage of  $CO_2$ . To mimic a  $CO_2$  leak across the sediment-water interface, a controlled  $CO_2$  release experiment will be performed in the central North Sea. During this large-scale experiment, the utility of natural and artificial tracers to detect and quantify  $CO_2$  leakages at the seafloor will be tested.



Fig. 1: Geological storage options for CO<sub>2</sub>. STEMM-CCS addresses the offshore storage of CO<sub>2</sub> in depeleted oil/gas fields and saline aquifers (image © CO2CRC)<sup>[1]</sup>; Fig. 2: Location of Goldeneye platform (image © V. Huvenne); Fig. 3: Schematic of planned CO<sub>2</sub> release experiment close to the Goldeneye platform during which various techniques will be tested for their applicability to detect and quantify CO<sub>2</sub> leaks (image © K. Davis)

### The controlled sub-seabed CO<sub>2</sub> release experiment

**Why?** Mimicking a  $CO_2$  leak across the sediment-water interface to test and calibrate various techniques for detecting and quantifying  $CO_2$ . **When?** May/June 2019

Where? Goldeneye demonstration site, British sector of central North Sea, block 14/29, water depth 100-120 m

What? ~3 tons of CO<sub>2</sub> gas will be released to the shallow sediment (3m bsf) over a period of 14 days. Tracer gases will be mixed into the CO<sub>2</sub> gas stream. We will perform (a) gas bubble, (b) water column and (c) pore water sampling.

## The tracers

- The main requirements to qualify as a tracer are: chemical stability, non-toxicity, low background level, gases (Table 1).
- All the tracers have been widely used in CCS demonstration projects<sup>[2,3]</sup>, except for the gaseous PFC tracer Octafluoropropane (C<sub>3</sub>F<sub>8</sub>).

| Pulpose                                                                                                                                                                                                                                                                                                               | Tracer properties                                     | ITACEIS                                                    |                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Leakage detection                                                                                                                                                                                                                                                                                                     |                                                       |                                                            |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                       | Low or significantly<br>different background level    | $C_3F_8$ , $SF_5CF_3$ , $SF_6$ ,<br>Kr, Xe, $\delta^{13}C$ | Significantly different concentrations in gas and water samples compared to the background level indicate the influence of released $\rm CO_2$ |
| Differentiation and quantification                                                                                                                                                                                                                                                                                    |                                                       |                                                            |                                                                                                                                                |
| a) Location                                                                                                                                                                                                                                                                                                           |                                                       |                                                            |                                                                                                                                                |
| Water column & sediment                                                                                                                                                                                                                                                                                               | Non-soluble                                           | C <sub>3</sub> F <sub>8</sub>                              | $\Delta CO_2:C_3F_8$ in gas bubble samples to quantify how much $CO_2$ remained in the sediment                                                |
| b) Processes                                                                                                                                                                                                                                                                                                          |                                                       |                                                            |                                                                                                                                                |
| Physical                                                                                                                                                                                                                                                                                                              | Increasing solubility                                 | $SF_5CF_3 < SF_6 < Kr < Xe$                                | Tracks mixing, transport and arrival time of $\mbox{CO}_2$                                                                                     |
|                                                                                                                                                                                                                                                                                                                       | Inherent, transported like $\mathrm{CO}_{\mathrm{2}}$ | $\delta^{13}C_{\_CO2}$                                     | Tracks the dissolution, mixing and transport of $\text{CO}_2$                                                                                  |
| Biogeochemical                                                                                                                                                                                                                                                                                                        | Inherent, reactive like CO <sub>2</sub>               | $\delta^{13}$ C fractionation                              | Differentiation between chemical and<br>biological processes                                                                                   |
|                                                                                                                                                                                                                                                                                                                       | Reactants, products                                   | Ca <sup>2+</sup> :salinity ratio                           | CaCO <sub>3</sub> dissolution or precipitation                                                                                                 |
|                                                                                                                                                                                                                                                                                                                       | Reactants, products                                   | ΔDIC:O <sub>2</sub>                                        | Respiration                                                                                                                                    |
| Table 1: Summary of the tracers that will be tested during STEMM-CCS and their purpose. Dissolved inorganic carbon (DIC), Octafluoropropane (C <sub>3</sub> F <sub>8</sub> ), Sulfurhexafluoride (SF <sub>5</sub> ), Trifluoromethylsulfurpentafluoride (SF <sub>5</sub> CF <sub>3</sub> ), Krypton (Kr), Xenon (Xe). |                                                       |                                                            |                                                                                                                                                |

The challenges

- Reactivity of CO<sub>2</sub> vs. non-reactivity of artificial tracers
- Dissolution behaviour of artificial tracers under in situ conditions at trace gas concentrations

Southampton

PML | Plymouth Marine Laboratory

#### → Risk of false positives

#### The solution

- We plan to test the solubility and transport of the tracers at trace gas concentrations relative to the solubility and transport of CO<sub>2</sub>,  $\delta^{13}C_{CO2}$  and  $\delta^{13}C_{DIC}$  under simulated in situ conditions.
- The findings will be a helpful input for the coupled and nested models.

GEOMAR

References [1] IPCC (2005), [2] Flude et al., 2016, [3] Myers et al., 2013

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654462

Max Planck I

seascape

National Oceanography Centre Southampton