

Re-using offshore infrastructure – some things to consider

Steve Murphy Finance Director Steve.Murphy@pale-blu.com

www.pale-blu.com

May 3rd 2018

o Introduction

o Infrastructure

o Case study

o Insights

Introduction The reuse opportunity

Infrastructure Characteristics

- Condition
- Remaining life
- Exploitation history
- Location
- Timing

Project Specification

- Storage capacity
- Throughput
- Operating envelope
- Longevity
- Timing

Infrastructure

CO₂ transportation and storage business "limits"

Offshore CO2 Storage Workshop - May 2018

Infrastructure

CO₂ transport & storage – a functional spec

- o Reservoir
 - Sufficient pore space & pressure margin to meet needs of project
 - CO₂ containment
- Jacket & Topsides
 - Minimal facilities receive CO₂ & distribute it to wells
 - Different operational hazards CO₂ is denser than air
- Pipelines
 - > 120 140 bar rating throughout life
 - Metallurgy
- o Wells
 - Bottom-hole location as an injection point
 - Casing design, materials and CO₂
- Subsea Infrastructure
 - Suitability of subsea valves
 - Capability of umbilical

Infrastructure Platforms

- o Aims
 - Safe operations
 - Reduce development and operations cost
- o Implications
 - Minimal facilities receive CO₂ & distribute it to wells
 - Different operational hazards
 - Brown-field modifications project
- o Considerations
 - Structural integrity
 - Life extension requirements
 - Equipment replacement & removal
 - Suitability of wells & well bay area

Infrastructure **Pipelines**

- o Aims
 - Maximise throughout by transporting in dense phase
 - Minimise offshore facilities by transporting above required injection pressure
- Implications
 - > 120 140 bar rating throughout life
 - 0 10°C
- o Considerations
 - Corrosion, particulates
 - Hydrates
 - Free-spans
 - Remaining design life
 - Throughput capacity

Pale Blue Dot.

7

Infrastructure Wells

- o Aims
 - Inject at desired rate for appropriate period
 - Not be a significant potential leakage pathway
- Implications
 - Long life required
 - Xmas tree, completion tubing and equipment unsuitable
- Considerations
 - Bottom-hole location as an injection point
 - Casing design & constraints on tubing size
 - Casing materials and CO₂
 - Integrity of cement bonds to CO₂

8

Infrastructure Subsea

- o Aims
 - Power, control and monitor operations
- o Implications
 - Long life required
 - Xmas trees unsuitable
- Considerations
 - Design life
 - Suitability of subsea valves
 - Capability of umbilical

Photo courtesy Aker Solutions

Acorn Case Study Infrastructure re-use options

Acorn Case Study

Facility screening – location & required capability

o Platform

- Located at eastern edge of storage area

 Implications for pressure management of store
- Modifications (£61m ex wells)
 - Life extension minor structural work
 - \circ Capability CO₂ filters, pipework, methanol
- Overall considered more costly
- Decommissioning cost
- o Subsea
 - Location flexible
 - Minimal facilities required protection, control, manifold
 - No filters required
 - Lower decommissioning cost
 - No liabilities inherited from previous hydrocarbon activity

Acorn Case study Pipeline screening of integrity & throughput

Atlantic pipeline has a thicker wall than Goldeneye, but slightly smaller diameter. This means that Atlantic operating pressure is higher and has slightly greater throughput capacity than Goldeneye due to its higher pressure rating

Trenched and buried apart from 2.5km near shore section at 50m manifold approach

Acorn Case study Reservoir screening of access & capacity

Key Findings

- Re-purposing oil & gas infrastructure is suitable for some CO₂ operations
 - Involves cost and risk
- Understanding functional requirements of CO₂ transportation & storage project is key
 - Safety, longevity, location

Pipelines are more likely to be re-used than platforms

Contact Information

Register for ACT Acorn Webinar on 20th June 2018

Acorn 2025: a pathway to decarbonisation, will explore the options being developed for building out from the initial stages of Acorn, in a future where hydrogen use and CO_2 utilisation gain momentum.

<u>Steve.Murphy@pale-blu.com</u> @SteveatPaleBlu <u>www.pale-blu.com</u>

Pale Blue Dot.

Offshore CO2 Storage Workshop - May 2018

Reference **CO**₂ Phase Management

Reference ACT Acorn Programme

- St Fergus CO₂ hub design
- Twin storage site selection
- o Expansion scenarios
- Full chain business case
- Novel geomech & shallow seismic supporting integrity assessment
- Storage development plan
- Lifecycle assessment including "Just Transition"

Reference Infrastructure

