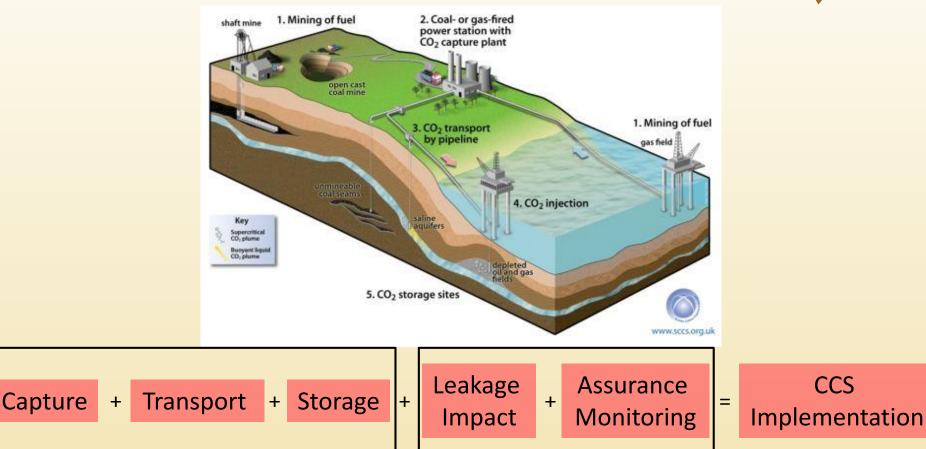
STEMM-CCS: STrategies for Environmental Monitoring of Marine Carbon Capture and Storage

- What is STEMM-CCS and who is involved?
- Objectives of STEMM-CCS
- What are we doing and what are we going to do?

STEMM-CCS – Horizon 2020

- Funded by CALL FOR COMPETITIVE LOW-CARBON ENERGY (LCE-15-2015) "Enabling decarbonisation of the fossil fuel-based power sector and energy intensive industry through CCS"
- Total Budget: €15.9 M
- Duration: March 2016 February 2020
- Coordinator: Prof. Doug Connelly National Oceanography Centre
- Industrial Partner: Shell

Partners


National Oceanography Centre, NERC, UK University of Southampton, UK **GEOMAR Helmholtz Centre for Ocean Research**, Kiel, Germany Shell, Netherlands Plymouth Marine Laboratory, UK Seascape Consultants Ltd, UK Heriot Watt University, UK **University of Tromsø**, Norway Max Planck Institute for Marine Microbiology, Germany Technical University Graz, Austria University of Bergen, Norway **Norwegian Institute for Water Research** (NIVA), Norway Uni Research, Bergen, Norway

Carbon Capture and Storage (CCS) Implementation

What is STEMM-CCS?

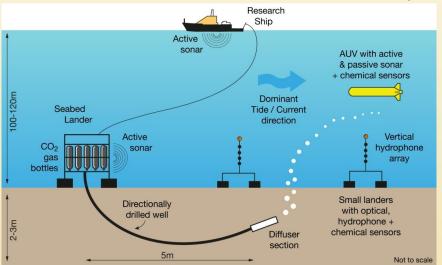
- Multi-disciplinary (academia + industry) project that will deliver new approaches, methodologies and tools to enhance our understanding of CCS in the marine environment and, therefore, ensure a safe operation of offshore CCS sites
- Ensuring the **selection** of appropriate marine storage sites
- Monitoring marine storage sites effectively

Increasing confidence in CCS as a viable mitigation strategy for addressing the increasing levels of CO₂

 STEMM-CCS combines a unique set of field experiments, combining existing technology and new sensors and techniques developed by the project, alongside laboratory work and mathematical modelling

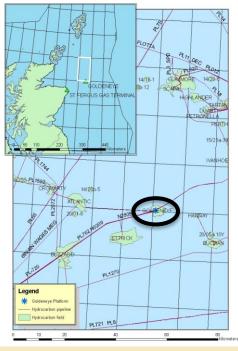
Objectives of STEMM-CCS

- 1. Develop a robust environmental baseline assessment methodology under "real life conditions".
- 2. Develop and implement **methods for constraining the natural and anthropogenic induced CO₂ permeability of the overburden** in offshore CCS sites.
- 3. Develop a suite of cost effective tools to identify, detect and quantify CO₂ leakage from a sub-seafloor CCS reservoir.
- 4. Assess the applicability of **artificial and natural tracers for detection, quantification and attribution of leakage** of sequestered CO₂ in a marine environment.
- 5. Model and assess **impacts of different reservoir leak morphologies** and provide **decision support tools for monitoring, mitigation and remediation action**.
- 6. Document best practice for selection and operation of offshore CCS sites and complete knowledge transfer to industrial and regulatory stakeholders.
- 7. Develop best practice for knowledge sharing.



Approach: Leakage detection, localisation and quantification

Aim: better understand fluid and gas flow in operational conditions, leading to efficient and economic monitoring strategies.


 Controlled release experiment (2019): Injection of CO₂ into shallow sediments at Goldeneye – comprehensive monitoring programme based on chemical and acoustic methods for both detection and quantification.

Schematic of the shallow sub-surface release of CO_2 gas in sediments (< 5 m depth) that will be conducted at the Goldeneye field in the North Sea.

Approach: Leakage detection, localisation and quantification

Aim: better understand fluid and gas flow in operational conditions, leading to efficient and economic monitoring strategies.

- Controlled release experiment: Injection of CO₂ into shallow sediments at Goldeneye – comprehensive monitoring programme based on chemical and acoustic methods for both detection and quantification.
- **Precursors:** Chemical and isotopic characterisation of precursor fluids/gases in reservoir and overburden.
- Artificial and natural tracers: Assessing the utility of a range of tracers as an aid to detection and monitoring.
- **Modelling:** Very fine scale complex hydrodynamic biogeochemical bubble / dissolved leakage models coupled to sensor emulators. Multiple scenarios.

Establishing baselines

Geochemical Field Experiments – August 2017

Baseline Lander. Image courtesy Peter Linke

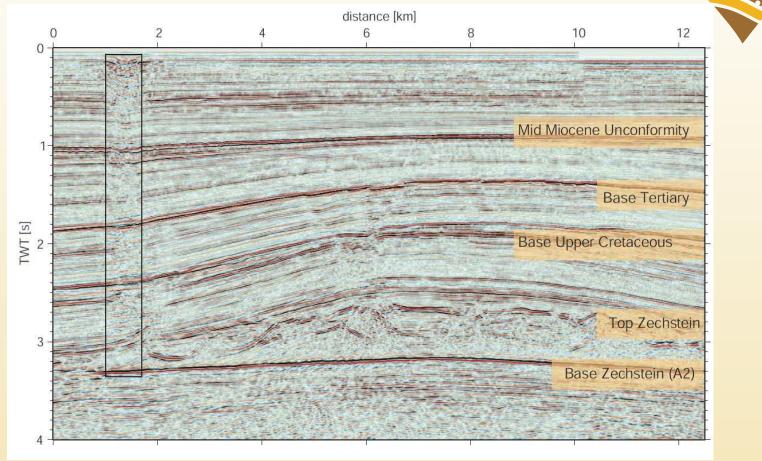
Baseline lander deployment and geochemical sampling, benthic boundary layer experiments (e.g. gradient flux techniques)

Lander equipped with:

- 1. Commercial instruments
 - Upward looking ADCP
 - Seabird CTD
 - Hydrophones
 - Deep SeapHOx
- Lab on chip sensors developed at the National Oceanographic Centre to measure nitrate, phosphate and pH

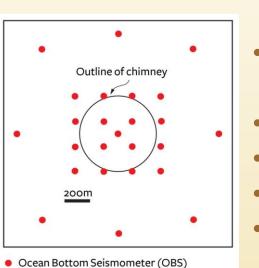
Establishing baselines

Geochemical Field Experiments – August 2018


- 3 week cruise at the Goldeneye site:
- Lander retrieving and redeployment until main experiment in 2019
- Additional baseline work:
 - Ecological and biogeochemical characterization
 - Novel eddy covariation techniques for assessment of the stoichiometry of sediment-water fluxes
 - Deployment of an additional lander over the cruise period equipped with novel multifunctional autonomous chemical sensing packages for nutrients and carbonate chemistry variables

Understanding CO₂ pathways

Seismic reflection section illustrating a chimney structure in the German sector of the North Sea (Schlesinger, 2006). The chimney (boxed) cross-cuts the top c. 3 seconds two way time (TWT) of the sedimentary overburden (c. 3 km).



Understanding CO₂ pathways

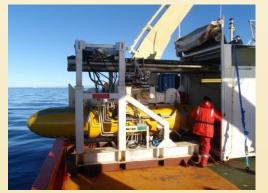
Geophysical Field experiments - 2017/2018

2017

- Tomographic imaging using OBS with a range of acoustic sources (airguns, sparker)
- Electromagnetic experiment electrical props permeability
 - 2D seismic data
 - Multi beam bathymetry data
 - Parasound sub bottom profiler date
- Anisotropy experiment (complementary project, CHIMNEY)

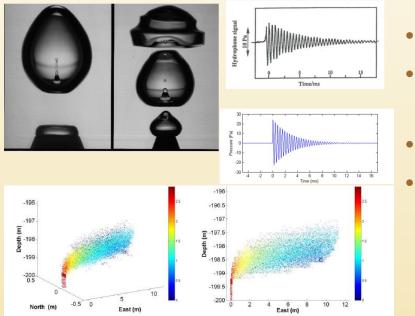
2018

• Coring with BGS rock drill to sample top of chimney



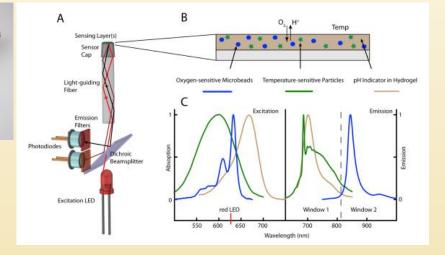
Automated systems for benthic image processing

Celtic Sea Cruise DY008 [2014]. *Altitude 2.2m*


Autosub 6000

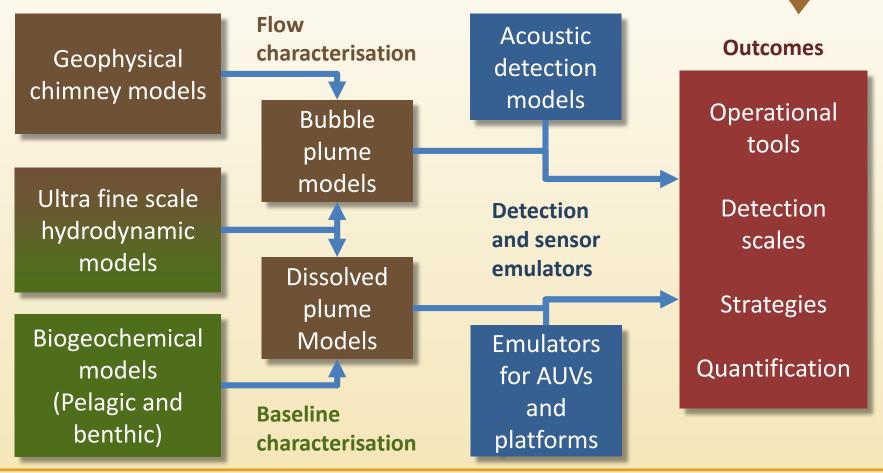
- BIIGLE and iSIS image annotation (machine recognition) tools
- Online experts annotate training images
- Machine learning
- 'End to end' workflow:
 - image collection
 - storage
 - pre-processing
 - training images to feed machine learning
 - improved algorithms skill
 - bulk automatic annotation
 - indicator analytics provided with graphics
- Photography only indicators
- Additional inputs: acoustic imagery, water chemistry or seabed sampling

- Automated systems for benthic image processing
- New acoustic techniques for quantification of leakage


- ETI project models
- Near seabed gas release = bubbles (red = 2 mm)
- Passive and active sonar footprint
- STEMM-CCS will use distributed arrays for low power active and passive bubble tracking and measurement

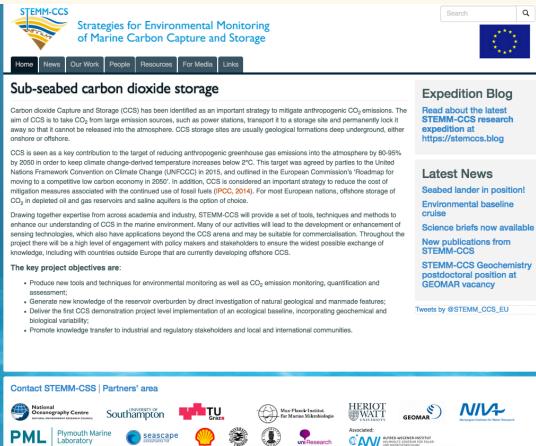
- Automated systems for benthic image processing
- New acoustic techniques for quantification of leakage
- Newly developed high precision pH and O₂ optodes on landers and AUV's

- UT Graz
- Principle: fluorescence
- Objectives
 - Accuracy of pH: ±0.001 pH units
 - Accuracy of O_2 : better than 3μ mol/L



- Automated systems for benthic image processing
- New acoustic techniques for quantification of leakage
- Newly developed high precision pH and O₂ optodes on landers and AUV's
- **Training programs** for industry and science communities
- Model integration and interactions

Innovation Model integration and interactions


Outreach and dissemination

- Website www.stemm-ccs.eu
- Project brochure
 - available for download on website in 'Resources'
- Glossary of terminology
 - available on website under 'Links'
- Science Policy Panel Meetings
 - For invited stakeholders. First one held in Feb 2017, next Oct/Nov 2018
- Science briefs
 - first set available for download on website in 'Resources'. More to be added.
- Training workshops
 - first course 'CCS: From source to storage' took place in March 2018
- Research highlights publication
 - will be published in final month of project

Outreach and dissemination

Website www.stemm-ccs.eu

Planning baseline for Smeaheia

Objective

To plan for baseline gathering for the Smeaheia area, supporting risk and impact assessments, and enabling cost-effective monitoring programs.

Sub-objectives:

- 1. Assure that the geophysical characterisation of the Smeaheia site support the marine tasks required.
- 2. Initiate baseline gathering by collecting long time series of the chemistry and current conditions in the area.
- 3. Lay a detail plan on how to gather the baseline based on lessons learned in previous project, such as ECO2 and STEMM-CCS.
- 4. Overall assessment of the impact of the baseline strategies on the cost of the baseline itself and cost reduction for further implementation of monitoring programs

