

5th International Offshore CCS Workshop

*Liverpool Bay CCS: Technical aspects of CO*₂ *storing in depleted hydrocarbon fields*

19th – 20th May 2022

Guglielmo Luigi D. Facchi – Eni SpA

Liverpool Bay CCS – Storage Sites Overview

	Hamilton Main	Hamilton North	Lennox
Fluid Type	Wet Gas	Wet Gas	Light Oil (+ gas cap)
Top Reservoir Depth (ft TVDss)	2270	2590	2450
Porosity (%)	10-23	10-23	10-23
Average Permeability (mD)	600	500	2000
Thickness (ft)*	450	500	900
Initial Condition [P,T]	97 bar, 31.6°C	106 bar, 29.2°C	112 bar, 34.4°C
Start-up	1997	1996	1996
Well type	2 Deviated 2 High Angle (+ 2 Explo)	3 Deviated (+1 Explo)	2 Deviated, 4 Horizontal 8 Multi Drain Horizontal (+ 4 Explo)
RF % (@ YE 2021)	95.2	93.4	89.4

CCS Subsurface Studies Workflow

CCS Subsurface Studies Workflow

- Rates/pressures from 3D dynamic model fed to CCS Subsurface Special Studies
- Evaluation of 'storage complex' behaviour to evaluate additional constraints on rates/pressures
- Thermal effects evaluated within each specialistic study
- Continuous iteration until no more constraints emerge from special studies outcomes

Flow Assurance

- Flow Assurance studies objectives:
 - Define process units and equipment to guarantee the transport within the system design constraints (min BHT = 4 °C; max $P_{flowline}$)
 - CO₂ behaviour across the system (from gathering point up to the storage units)
- Technical aspects
 - Parallel storage unit filling
 - Linking 3D dynamic model with flow assurance simulations
 - Low-P/Low-T reservoirs

Main outcomes

- Paired Flow Assurance 3D Reservoir model
- Surface equipment design to honour project injection rates
- BHT safely above the limit for all the wells involved

Cap Rock Integrity

P_{Res} [bar]

Thermally Induced Fracture

- Cold fluid injection into a warmer formation induces an alteration of the stress state
- Methodology standardisation w/ full integration of multiple data sources
- Technical challenges
 - Low-P, Low-T formations
 - Compositional 2D radial thermo-hydro-mechanical model: identification of a suitable numerical code

Main Outcomes

- Near-wellbore stress and temperature distributions
 - Effective stresses positive for the whole duration in each storage complex
 - Limited cooled front extension during injection operation
- No risk of tensile failure occurrence

Geochemistry (1)

- Geochemical studies objectives:
 - Trapping mechanism identification
 - CO₂ triggered minerals dissolution/precipitation
 - CO₂ induced near wellbore dry-out effects (salts precipitation) due to H₂O vaporization (stripping)

Technical aspects

- Mineralogy and chemistry: formation data retrieval and experimental analysis
- Main physical phenomena determination
- Numerical code identification to couple fluid-dynamics and geochemistry

Image Source: IPCC. (2005). Carbon Dioxide Capture and Storage.

Geochemistry (2)

CO₂- triggered caprock-brine interactions: Kinetic Models Batch Model - Caprock Mineral precipitation/dissolution Batch Model - Caprock Porosity Negligible **Porosity Increase** 2100 220 Years Albite - Calcite - Dawson 2100 2900 - K-Feldspar - LBA Ankerite - LBA Mica Vears — Quartz

Main Outcomes

- Negligible CO₂ mineral trapping
- Limited reactivity of caprock lithology
- No threats to well injectivity recognized

Fault Stability Analysis (1)

Scope

To calculate the effective stress alteration on faults and to assess the rate partition avoiding any potential slippage occurrence

tO

Main Outcomes

- 40+ faults analyzed across three storage units
- ST at the injection end (ST₂) always lower than initial fault ST (ST₀)
- No critical faults emerge from the fault stability analysis, so the risk of induced seismicity is negligible

Fault Seal Analysis

Fault Seal Analysis study purpose

- Validate initial contact depths
- Determine maximum CO₂ column height via deterministic and probabilistic approach
- Quantify maximum sustainable pressure at fault level

Technical aspects

- Methodology derived from exploration trap evaluation
- Low-P and Low-T formation: CO₂ IFT properties

Main Outcomes

 Deterministic and probabilistic determination of CO₂ column height evaluation

- For Liverpool Bay CCS project, the **storage complex** and **FFD plan** are **de-risked** by an **extensive and robust subsurface database** and by a developed suite of **3D modelling** and **CCUS special studies** (geology, reservoir engineering, geomechanics, geochemical etc.)
- **To date studies confirm** the **suitability** of **Hamilton Main**, **Hamilton North** and **Lennox** to **securely store at least 109 MT** of carbon dioxide (base case); **no criticalities** are **recognized**.
- Some **activities** are **ongoing/planned** aiming **to fully de-risk** both **CO₂ conformance** and **containment risks**; study results will be included in the developed models
 - Bathymetric and 3D high resolution seismic (for overburden characterization)
 - Sedimentological study on Mercia Mudstone Group
 - Laboratory experimental studies

