International Workshop on Offshore Geologic CO₂ Storage, May 19-20, 2022, New Orleans, LA

OFFSHORE OIL AND GAS INFRASTRCUTURE RE-USE IN THE GULF OF MEXICO

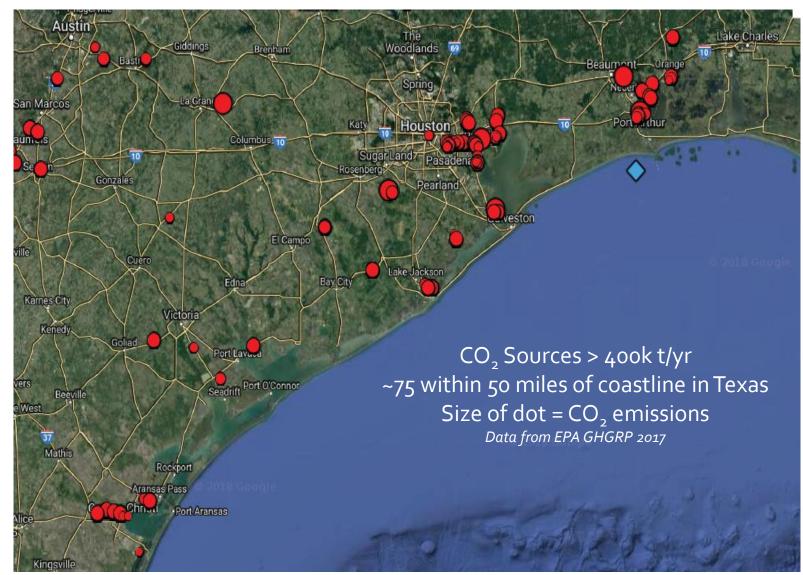
DARSHAN SACHDE, PHD KATHERINE DOMBROWSKI, P.E. JOE LUNDEEN, P.E. RAY MCKASKLE, P.E. Trimeric Corporation DARRELL DAVIS (Consultant)

Disclaimer

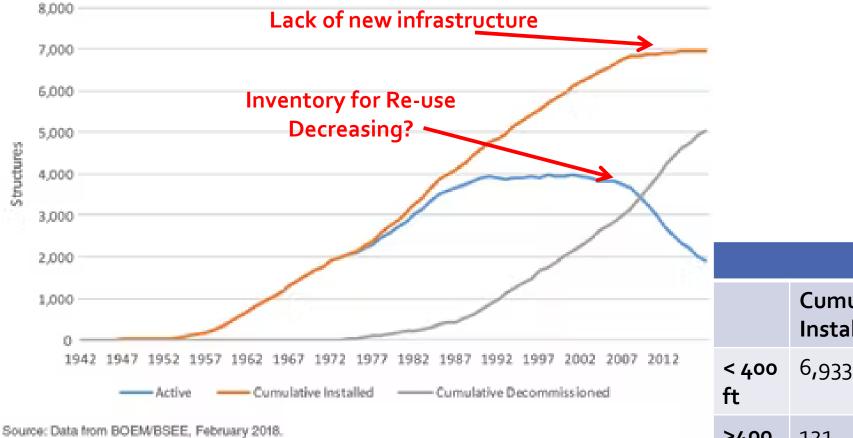
This presentation is based upon work supported by the Department of Energy and was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Background

- Evaluation of Infrastructure Reuse has been a focus of Gulf of Mexico Partnership for Offshore Carbon Storage (GoMCarb)
- GoMCarb focus = identify gaps, challenges, needs, bigger picture trends
- Momentum building in the region for real projects

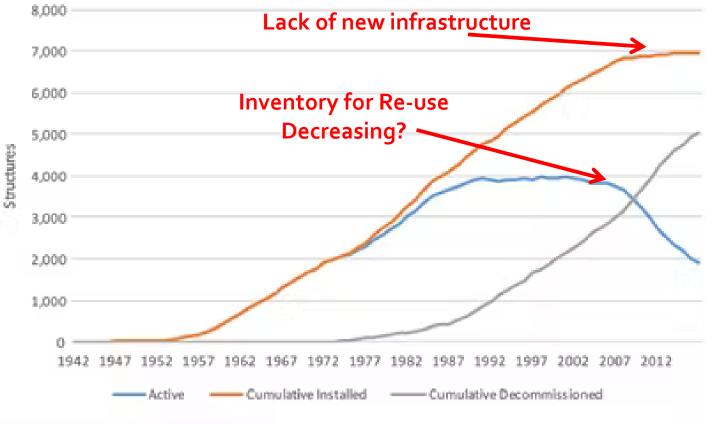


4


Motivation: Source-Sink Matching

Motivation: Existing Infrastructure

Active structures in water depth less than 400 ft, 1942-2017E.


Active Inventory Circa 2017			
	Cumulative Installed	Decommissioned	Active
< 400 ft	6,933	5,025	1,908
>400	121	24	97
Total	7,054	5,049	2,005

Source: Kaiser and Narra, LSU Center for Energy Studies; Offshore Magazine, March 2018

Motivation: Existing Infrastructure

Active structures in water depth less than 400 ft, 1942-2017E.

- What is the practical <u>scale</u> of the opportunity for re-use?
- What are <u>risks/benefits/incentives</u> for re-use?
- What are the <u>challenges</u> to assessing re-use?
- What investments & steps are required to make an assessment?
- FOCUS ON PIPELINES AND
 PLATFORMS TODAY

Source: Data from BOEM/BSEE, February 2018.

Source: Kaiser and Narra, LSU Center for Energy Studies; Offshore Magazine, March 2018

Pipelines

Pipeline Re-Use: Incentives

- Existing Pipelines: ~20k in federal waters (+ more in state waters)
- New Pipeline Costs
 - Offshore Lines: ~2 3x cost of onshore "equivalent"
 - MAJOR CAVEATS
 - Data comparing on- and offshore is almost exclusively for NG lines
 - Large range in costs highly project and route-specific
- Hidden risks/costs of new pipelines
 - Shore crossing through env. sensitive/challenging geography
 - Routing risks (right of way, new regulatory requirements vs. existing lines)

Pipeline Re-Use: Challenges

- Pressure Rating
 - ANSI Class 600 (working P = 1,480 psig @100 F)
 - ANSI Class 900 (working P = 2,220 psig @100 F)
 - <u>Actual pressure rating of an existing line?</u>
 - Reminder sCO₂ density + offshore slope = overpressure risk?
- Age
 - Pipeline broker Up to 85 years usable life
 - Older lines = higher risks (especially out of service lines)
- Condition of Line
 - Corrosion, repairs, thickness, cathodic protection
 - Existing records (or lack thereof) represent essential data

Case	Inlet Pressure (psig)	CO ₂ Flow (Mt/yr)
New Class 900	2,000	~3.2
Existing Class 600	1,400	~1.8

- 8", 5-mile pipeline
- P_{Outlet} > 1,200 psig (CO₂ always above P_{Critical})

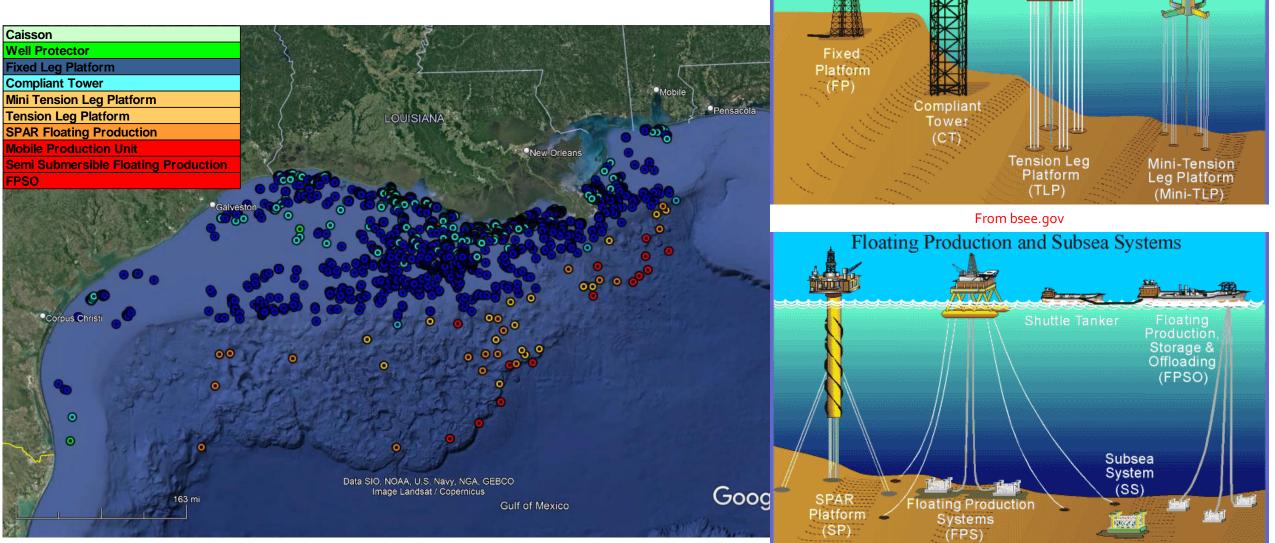
Pipeline Screening Results – <u>Federal Water Lines</u>

FEDERAL WATERS	Number of Segments			
	Inactive* Line Screening (Near-Term Opportunity)	Active Line Screening (Lower-Risk Opportunity)		
Total	20,274			
Service Status (Inactive/Active)	11,195	5,568		
8" or larger	2,335	1,676		
MAOP > 1000 psig	1,927	1,451		
> 2 miles long	951	755		
Water Depth < 100'	520	327		
In Service 1980 or later	355	Not Applied		
Key Segments**	11	47		
Median Diameter	16''	20''		
# of Lines MAOP > 1,440 psig 0 10				
*Inactive = Abandoned in place, Pr	oposed abandonment, Out of serv	ice		
**Key Segments = Come onshore/r	near-shore (TX, LA)			

Pipeline Re-Use: Discussion

- <u>Scale</u> of pipeline re-use opportunity limited by size and pressure rating
 - Re-use vs. new is not binary
 - Incremental Capacity: Pair existing with new (reduce total investment)
 - "Phased" Investment: Start-up with existing, build-out new (flexibility)
- What does business model look like for re-use of pipelines?
 - Outright sale of pipelines
 - "Pipeline as a service": Operators sell "access" to pipelines, potentially provide 0&M Support
 - Reduces risks for the project developer (likely increases lifetime cost vs. purchase)
- If CO₂ is transported at lower P, how does offshore compression (incl. access to power) impact economics?

Platforms


Platform Re-Use Overview

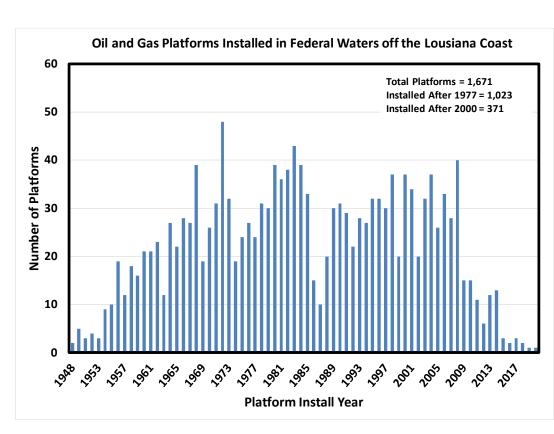
- Repurposing platforms for CO₂ storage = offset cost of decommissioning idled platforms ("win-win")
- High-Level platform re-use criteria
 - Location/proximity to preferred injection site
 - Age/general condition of platform
 - Space on platform
 - Regulatory/legal considerations
 - How does liability/decommissioning responsibility transfer?

Bottom Supported and Vertically Moored Structures

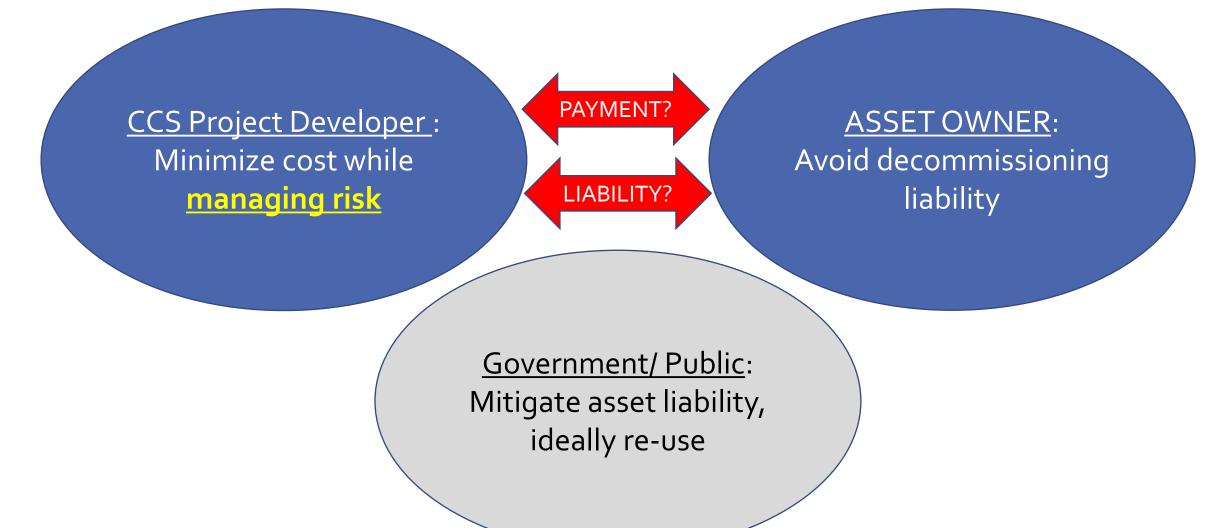
Overview of Platforms in GoM

Overview of Platforms in GoM

Caisson Well Protector Fixed Leg Platform Compliant Tower Mini Tension Leg Platform	Structure Type	%of Total (~1,850)	Average Depth (ft)	Average Age (years)	Re-Use for Drilling
Tension Leg Platform	Caisson	24.6%	41	39	No
SPAR Floating Production Mobile Production Unit	Well Protector	0.7%	53	84	No
Mobile Production Unit Semi Submersible Floating Production	Fixed Leg Platform	71.9%	131	41	Yes
FPSO	Compliant Tower	0.2%	1,467	28	Yes
Galveston	Mobile Production Unit	0.1%	2,200	13	No
	Mini Tension Leg Platform	0.2%	3,024	20	Yes
	Tension Leg Platform	0.8%	3,378	19	Yes
	SPAR Floating Production	1.0%	4,380	17	Yes
Corpus Christr	Semi Submersible Floating Production	0.6%	5,695	22	Yes
00 00 00 00 00 00 00	FPSO	0.1%	8,930	9	No
Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus Gulf of Mexic	Google Earth			Min	
Guir or Mexic	and the form				15
	· · · · · · · · · · · · · · · · · · ·				Ľ,


Overview of Platforms in GoM

Caisson Well Protector Fixed Leg Platform Compliant Tower Mini Tension Leg Platform	Structure Type	%of Total (~1,850)	Average Depth (ft)	Average Age (years)	Re-Use for Drilling
Tension Leg Platform	Caisson	24.6%	41	39	No
SPAR Floating Production Mobile Production Unit	Well Protector	0.7%	53	84	No
Mobile Production Unit Semi Submersible Floating Production	Fixed Leg Platform	71.9%	131	41	Yes
FPSO	Compliant Tower	0.2%	1,467	28	Yes
Galveston	Mobile Production Unit	0.1%	2,200	13	No
	Mini Tension Leg Platform	0.2%	3,024	20	Yes
	Tension Leg Platform	0.8%	3,378	19	Yes
	SPAR Floating Production	1.0%	4,380	17	Yes
Corpus Christr	Semi Submersible Floating Production	0.6%	5,695	22	Yes
	FPSO	0.1%	8,930	9	No
				Min	
Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus Gulf of Mexico	Google Earth				


Platforms

- Texas State Waters:
 - 95% of platforms (of 89 total) = <u>inactive</u>
 - <u>Minimal</u> detailed data (no age, water depth, inspect. records)
- Federal Waters:
 - 1,800+ platforms offshore TX (8%) & LA (92%)
 - High-level data (inspection reports in some cases)
- Age:
 - SME: Beyond 30 years, structural integrity risk rises
 - Important Standards/Best Practices
 - API RP 2A 9th Ed (1977): "100-year return period conditions"
 - MMS From 1988 on, enhanced inspection requirements
- <u>Critical information</u> such as structural integrity, topsides space, etc. <u>requires contact with</u> <u>operators</u>

Platforms – Are Incentives Aligned?

Conclusions

Summary

- <u>Pipelines</u>:
 - Scale of pipeline re-use opportunity limited by size and pressure rating
 - Re-use vs. new is not binary
 - Incremental Capacity: Pair existing with new (reduce total investment)
 - <u>"Phased" Investment:</u> Start-up with existing, build-out new (flexibility)
 - Existing right-of-way, existing routes have inherent value
 - Are there different business models to de-risk pipeline re-use?
- Platforms:
 - Limited stock of "newer" platforms (mostly in deeper waters)
 - Fixed platforms are most common, span large range of water depth needs more investigation
 - Platform re-use unlikely to drive a project (vs. reservoir, pipeline, wells)
 - Are incentives aligned for re-use?
- Decommissioning "best practices" not always followed. Urgency to identify assets before abandonment.

Thank You

Acknowledgements:

Darrell Davis (Consultant) led efforts for pipeline and platform screening

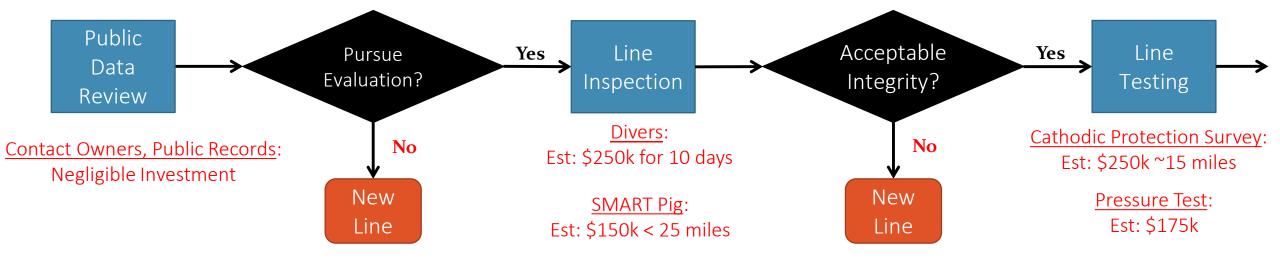
davisdw58@hotmail.com

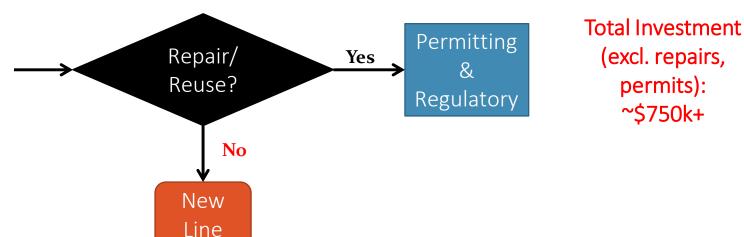
UT BEG for data analysis support

Trimeric Corporation

www.trimeric.com

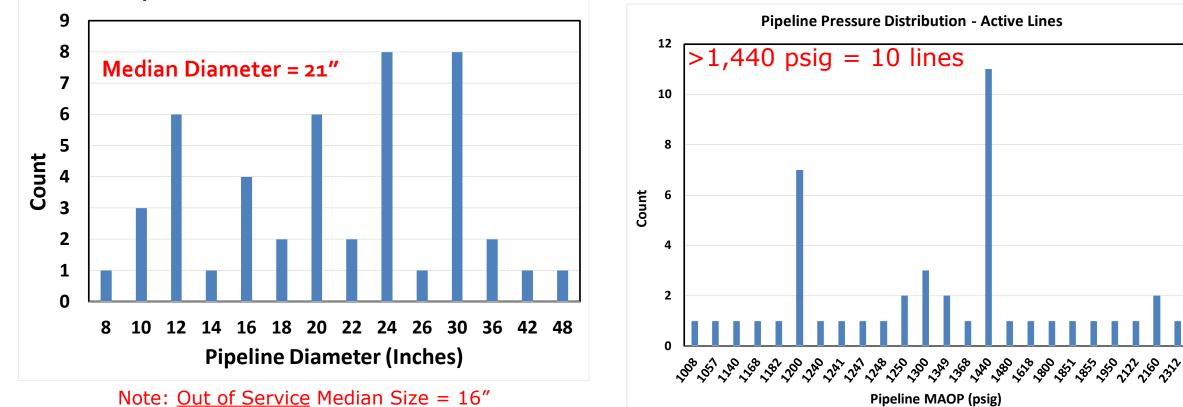
Darshan Sachde


darshan.sachde@trimeric.com



Backup Slides

Pipeline Re-use Workflow



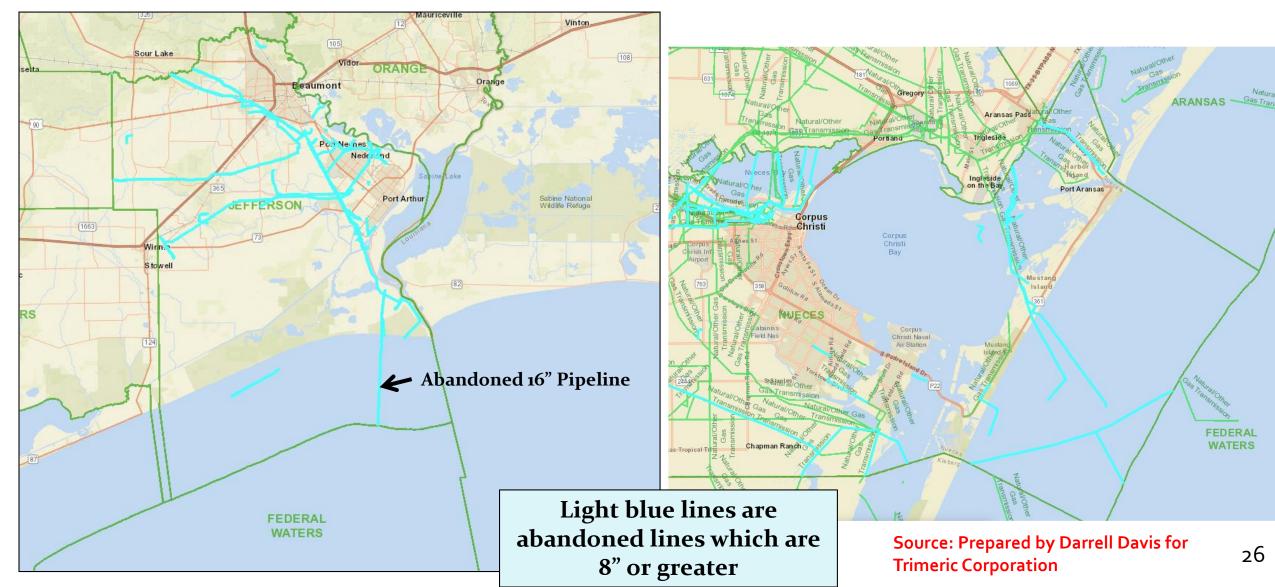
Pipeline Screening Results – <u>Federal Active Lines</u>

Pipeline Size Distribution - Active Lines

Note: Out of Service Lines >1,440 psig = 0

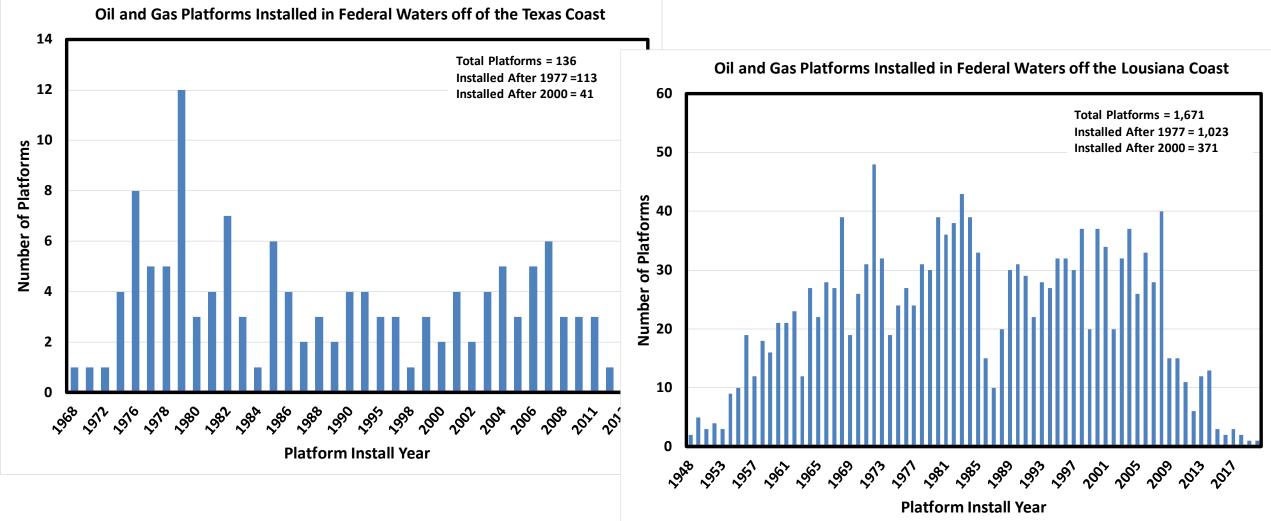
Pipeline Screening Results – <u>Federal Out of Service</u>

- Limited stock of large pipelines
 - ~23% <u>></u> 8 inches
 - 41% of this subset are 8" lines
- Class 600 pipelines are most common
 - 61% of all pipelines at least 1440 psig
- Nearly half of pipelines meeting size and pressure screen are <u>active</u>
 - Recent (last 10 years) common practice: fill abandoned lines w/ <u>uninhibited</u> seawater.
- Less than half (46%) of lines meet the age criteria (< 40 years)


FEDERAL WATERS	Number of Segments
Total	20,274
8" or larger	4,614
Max Operating Pressure > 1000 psig	3,875
Not in Service	1,927
> 2 miles long	951
Water Depth < 100'	520
In Service 1980 or later	355
Key Segments*	11

*Key Segments = Come onshore & terminate near state waters offshore

25



Pipeline Opportunity: Texas State Waters

Platforms – Federal Waters

Platforms – CO₂ Topsides Requirements

- <u>General Equipment</u>: Valving, instrumentation, filters, pig receivers, piping manifold, heaters
- Drill new CO₂ injection wells
 - Weight of a drilling rig or need a separate jack-up rig for drilling
 - Need open slots for injections wells or re-use existing wells
- Booster compression/pumping (in some cases)
 - Additional topsides weight, space, power requirements
- Materials compatibility:
 - Supercritical CO₂ is a solvent, P, T considerations
- Do cost-savings of re-purposing vs. new-build hold up after modifications?
- More detailed engineering studies will be needed to:
 - Assess the integrity and useful life of specific platforms
 - Assess modifications to the topsides for $\rm CO_2$ injection
 - Understand the cost of a new platform