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Outline

• Storage Capacity Constraints

• Offshore Examples from Mature Hydrocarbon Basins

1) Plume Migration

2) Pressure Footprint

• Managed Pressure

3) CO2 Replaces Waterflood towards end of Field Life

4) Brine Production
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Storage Capacity

Constrained by ability to manage

1. Migration
CO2 must remain within storage complex boundaries
(for X thousand years)

2. Pressure
Seals must not fail 

» Caprock

» Faults

» Wells
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Offshore Example from Mature 

Hydrocarbon Basins:  1) Plume Migration

• Captain Aquifer has 
various active and 
abandoned O&G fields

• Calculate propagation 
of plume if CO2
invades a depleted gas 
field, and compare with 
situation if no gas 
initially present
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Ghanbari et al. (2020) “Impact of CO2 Mixing with Trapped Hydrocarbons on CO2 

Storage Capacity and Security: A Case Study from the Captain Aquifer (North Sea)”
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Time for Plume to Reach

Storage Complex Boundary
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Final Plume Location
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Plume Gas Densities
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Why does CO2-CH4 Mix Migrate Faster?

Methane (compared to CO2)

• less dense

– mixture more buoyant

• less viscous

– mixture more mobile

• does not dissolve in brine

– CO2 subject to dissolution, so migration retarded 
by residual and dissolution trapping

– CH4 is not soluble in brine, so migration only
retarded by residual trapping
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Offshore Example from Mature 

Hydrocarbon Basins:  2) Pressure Footprint
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Pressure Footprint

• Natural gas production creates increased 

storage capacity

–May be limited by aquifer recharge (time)

• Pressure footprint propagates much faster 

and further than CO2 footprint

• Regulators may need to consider pressure 

footprint as well as extent of CO2 migration
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Offshore Example from Mature Hydrocarbon 

Basins:  3) CO2 Replacing Waterflood

53 Mt

CO2

5% oil 

increase



21

Offshore Example from Mature Hydrocarbon 

Basins:  4) Brine Production

• Up to 4x increase 

in storage capacity 

possible 

• May be used to 

reduce pressure 

after end of CO2

injection, improving 

storage security

www.sccs.org.uk/progress-to-co2-storage-scotland

Time (years)

Well pressure (bar)

Production after 

cessation of 

CO2 injection
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Brine Production for Pressure Management

• Optimise well 

locations to

–Maximise pressure 

“support”

–Minimise risk of 

CO2 breakthrough

• Used in Gorgon

www.chevronaustralia.com/ourbusinesses/gorgon
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Brine Production – Cost Benefit Analysis

Benefit

Benefit

Benefit

Maximum CO2 storage capacity (Mt)

Brine production

No Yes
% increase in 

capacity

Forties 5 400 450 13%

Bunter_zone4 200 200 0%

Tay 150 450 200%

Firth of Forth 100 300 200%

Bunter Closure 36 50 200 300% Benefit

Case study
Total cost saving

(undiscounted)

Reduction in levelised

cost of Transport &

Storage (T&S)

1
Increasing storage capacity of an 

attractive storage unit
~£1 billion ~£5/tCO2

2
Increasing injection rate to accommodate 

new emitters     
~£0.5 billion ~£2/tCO2

3
Increasing storage duration after 10 years 

of injection without brine production
~£1 billion ~£6/tCO2

4
Improving performance of an aquifer, 

which does not perform as expected
~£0.1 billion ~£1/tCO2

• Analogous to brine injection in O&G recovery

• Not always beneficial, but useful tool

• Has challenges



Challenges with Brine Production

• Cost of wells

• Sand production

• Mineral scaling

• Corrosion

• Water treatment and disposal
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Thank You

Eric Mackay

E.J.Mackay@hw.ac.uk
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Offshore Example from Mature 

Hydrocarbon Basins:  CO2 EOR in Pre-Salt
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CO2 EOR:  Optimise CO2 Storage and 

Maximise Economic Recovery
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