

 5^{th} International Workshop on Offshore Geologic CO₂ Storage, 20th May 2022

STEMM-CCS: A summary of outcomes and legacy

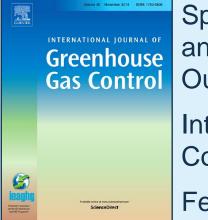
Dr Christopher Pearce

STEMM-CCS: Strategies for Environmental Monitoring of Marine Carbon Capture and Storage

EU Horizon 2020 programme: *Enabling decarbonisation* of the fossil fuel-based power sector and energy intensive industry through CCS

Total Budget €15.9M

March 2016 to February 2020 www.stemm-ccs.eu



Special Issue on Monitoring, Measurement and Verification for Offshore CCS: Outcomes of the STEMM-CCS project

International Journal of Greenhouse Gas Control

February 2022

Estimated that offshore sites represent ~66% of the potential CO₂ storage capacity in Europe

Robust strategies for leakage detection and management needed to comply with international marine legislation; EU CCS Directive (2009) monitoring requirements include:

- Comparison between actual and modelled behavior of CO₂ and formation water in the storage site
- Detecting significant irregularities
- Detecting leakage of CO₂
- Detecting significant adverse effects for the surrounding environment
- Assessing effectiveness of any corrective measures taken (in event of leakage)
- Updating the assessment of the safety and integrity of the storage complex short and long timescales

Precursor projects (ECO₂, QICS, ETI) advanced our ability to detect CO₂ at the seafloor, but many of those techniques were yet to be tested under realistic leakage conditions and enhanced models were needed to predict the pathways and impacts of CO₂ migration through the reservoir overburden

ETI MMV Project

The first controlled sub-seafloor release of CO₂ to be carried out under real life conditions

Establish accurate environmental baseline techniques

Better understanding of fluid flow pathways in the subseafloor and their implications for reservoir integrity

Develop methodologies for detecting, tracing and quantifying CO_2 leakage in the marine environment

Assess technologies that can enable cost-effective Measurement, Monitoring and Verification (MMV) of marine CCS operations

RRS James Cook and RV Poseidon at the Goldeneye Platform, May 2019

MMV technologies/techniques tested

Active acoustics

- Single beam echosounders
- Multibeam echosounders
- Sub-bottom profilers

Passive acoustics

• Hydrophones

Optical

- Seafloor imaging
- Water column imaging

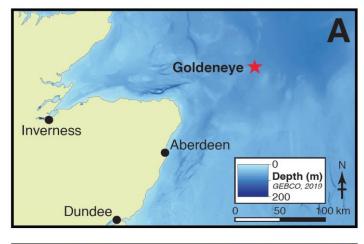
Biological

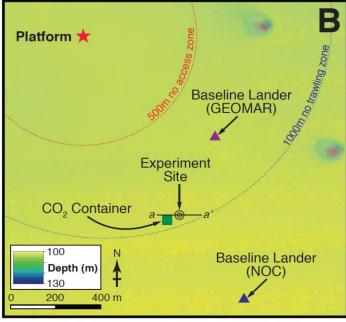
Community structure mapping

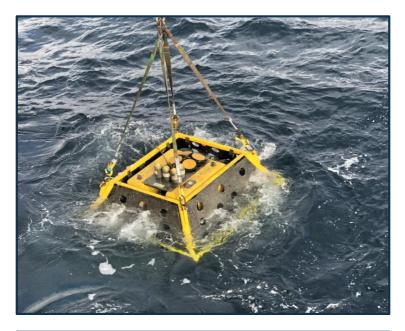
Launching AUV at the Goldeneye Platform, May 2019

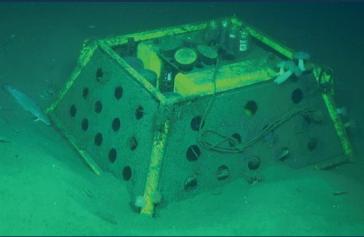
Geochemical

- pH/TA/DIC
- Salinity/Temperature/Pressure (CTD)
- O₂ and metal concentrations
- Sediment/porewater profilers
- Benthic chambers
- Gas tracers

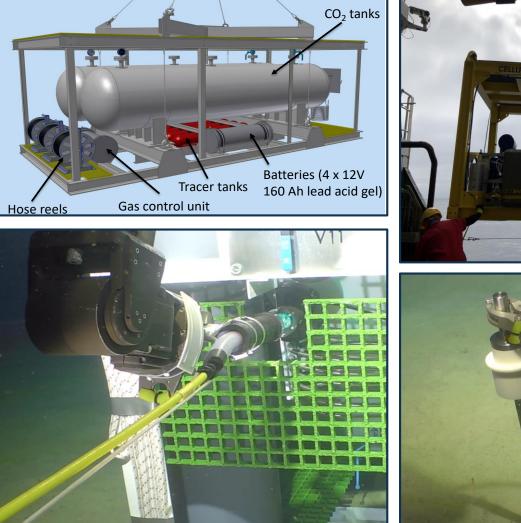

Computational


- C-Seep
- ROC Models
- MEIA





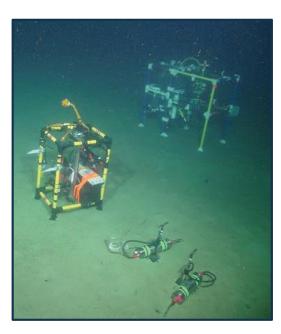
Baseline monitoring and site characterisation

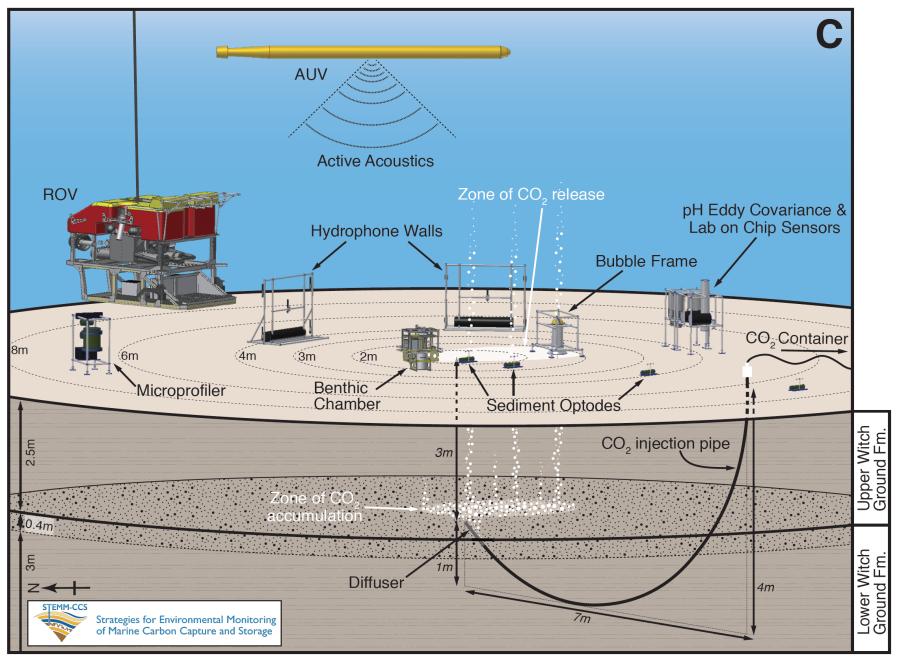


National Oceanography Centre

Connelly et al. (In Review) Renewable and Sustainable Energy Reviews

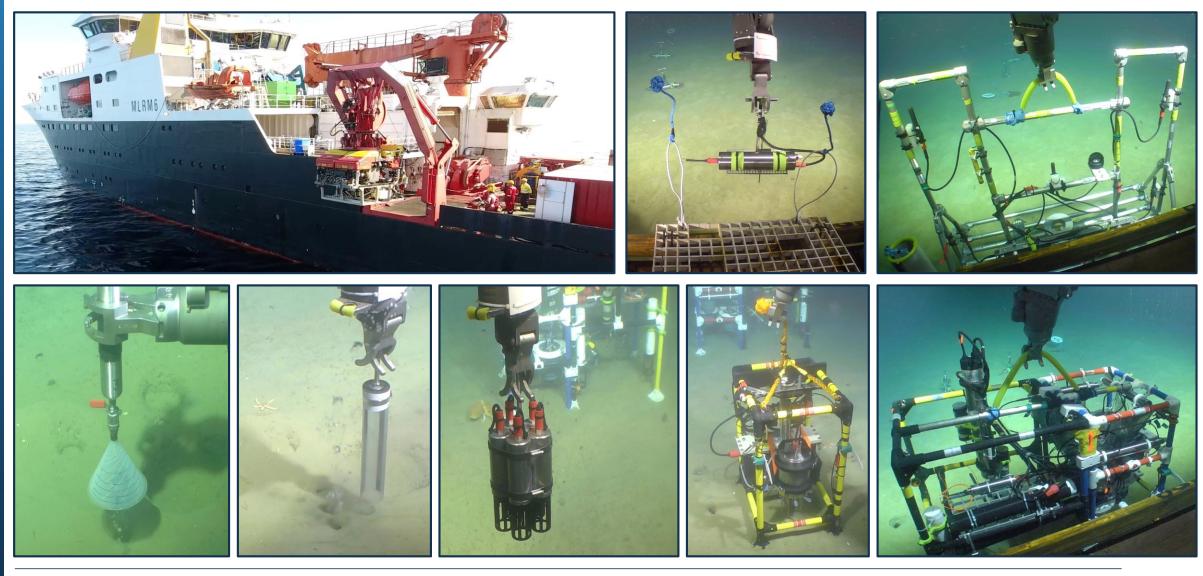
Engineering solutions for controlled CO₂ release


National Oceanography Centre


STEMM-CCS

STEMM-CCS Controlled CO₂ release experiment, April-May 2019

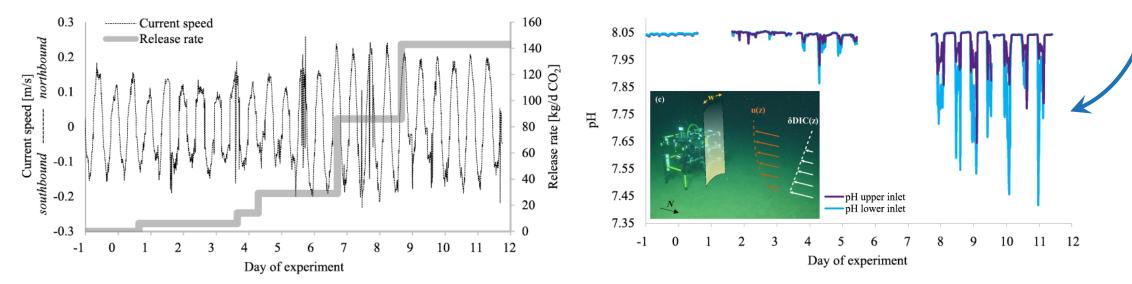
Schematic of site and deployed equipment



National Oceanography Centre

Connelly et al. (In Review) Renewable and Sustainable Energy Reviews

MMV technologies/approaches in-situ


National Oceanography Centre

STEMM-CCS Controlled CO₂ release experiment, April-May 2019

Comparison of pH sensor capabilities

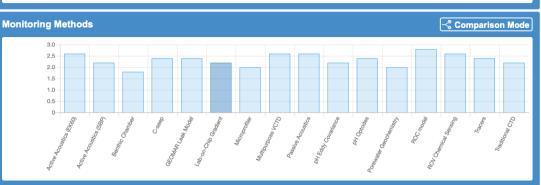
Sensor Type	Precision	Accuracy	Range	Measurement Period	Deployment Duration	Lander	AUV	
Lab on Chip	0.003	0.005	7.5-8.5	10 minutes	6 months	Yes	Yes	
Microsensors	0.010	0.010	0-12	5 seconds	1-3 days	Yes		
Eddy Covariance	0.002		6.5-9.0	0.2 seconds	3 days	Yes		
Optodes	0.010	0.050	7.0-9.0	10 seconds	2 months	Yes		
SeaFET	0.004	0.050	6.5-9.0	1 second	1 year	Yes	Yes	

Schaap et al. (2021) International Journal of Greenhouse Gas Control v110, 103427 Lichtschlag et al. (2021) International Journal of Greenhouse Gas Control v112, 103510

Suitability analysis

http://stemm-ccs.eu/monitoring-tool/

	and onment	Task		Survey		ev		Cost		şe			
ų			Attribution	E	platform						phas	erage	
Approach	Technique and targeted environment	Detection			Vessel	AUV	ROV	Time	CAPEX	OPEX	CO2 leakage phase	Spatial coverage	TRL
Approaches for leakage detection tested during the STEMM-CCS experiment													
Active acoustics from ship: single beam echosounder (e.g. EK60/80)	Sensors in water column	+			~			near instantaneous	high	low	bubbles only	high	commercially available
Active acoustics from ship: multibeam echosounders and sonars	Sensors in water column	+			~			near instantaneous	high	low	bubbles only	high	commercially available
Active acoustics, sub- bottom profiler	Sensors in water column	+			~	~		near instantaneous	high	low	bubbles only	high	commercially available
imaging from AUV													
Multipurpose video-CTD, including mounted sensors	Sensors in water column	+	(+)	+	~			near instantaneous	medium	low	dissolved and bubbles	high	near market
Microprofiler	Sensors in water column and sediment	+			~		~	days-weeks	high	medium	dissolved and bubbles	low	commercially available
Passive or active acoustics on seabed lander	Sensors in water column	+		+	~		~	days-weeks	high	medium	bubbles only	medium	commercially available



Strategies for Environmental Monitoring of Marine Carbon Capture and Storage

Leakage Detection

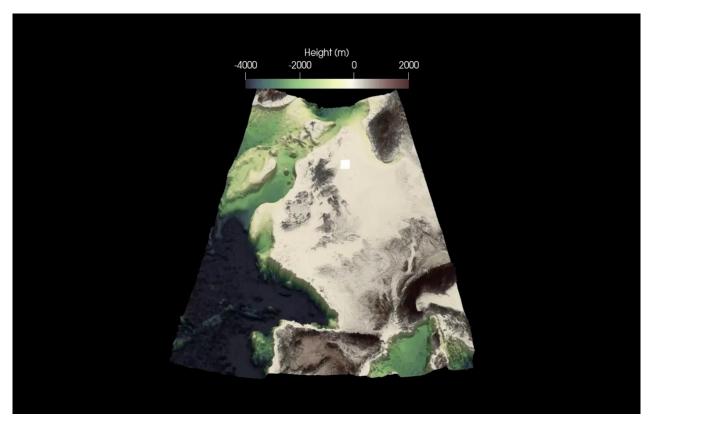
In line with the CCS Directive, any CCS storage complex monitoring strategy needs to assess whether any migration or leakage or CO₂ is occurring within the surrounding area. Such strategies need to accommodate the fact that CO₂ leakage may occur from a single point source or as more diffuse discharge over a larger area, and similarly that the leaking CO₂ may be present in form of CO₂ gas bubbles or dissolved into the interstitial waters of the sediments and overlying water column. Given these complexities, a number of different methods and techniques for detecting CO₂ leakage under varying scenarios were tested through the STEMM-CCS project, with their relative performance and individual merits summarised below.


• User Guide

Lab-on-Chip Gradient

Lab-on-chip sensors perform in-situ chemical analysis of the seawater. A lab-on-chip sensor for dissolved inorganic carbon (DIC), or a combination of pH and total alkalinity sensor, can quantify the excess DIC in the water which is a results of dissolved CO₂ bubbles. By measuring at two heights above the seafloor and combining the data with current measurements, a total mass flow rate of DIC can be established. The instrument must be located downstream of the source. Some training is required to operate the instruments, and interpret the data.

Method Scoring: Lab-on-Chip Gradient									
Time needed to obtain final results (in months)	3+	2	√ 0-1						
Cost of measurement	High	√ Medium	Low						
CO ₂ leakage rate and nature of leakage	High (Bubbles)	✓ Low to High (Bubbles)	Low (Bubbles and Dissolved)						
Spatial extent (coverage) of measurement	Low	√ Medium	High						
Technical readiness level of the method	In development	√ Near market	Commercially available						


\$


National Oceanography Centre

Lichtschlag et al. (2021) International Journal of Greenhouse Gas Control v112, 103510

Model simulations of hypothetical leaks, coupled with machine-learning techniques can identify optimal deployment of both fixed and mobile sensors

National Oceanography Centre

Blackford et al. (2021) International Journal of Greenhouse Gas Control v109, 103388

Implementation of project outcomes

Technology assessment for remote seabed environmental monitoring, informing development of the monitoring plan

Supporting the development and application of marine sensors for offshore MMV of the storage complex

GREEN

SAND

Making Sense of Changing Seas

