The Northern Lights: How we built a robust monitoring and response plan

Phase 1 monitoring plan Presented at the IEAGHG International Workshop on Offshore Geologic CO₂ Storage – Aberdeen 2023

Authors: Catalina Acuna (Northern Lights JV), Anne-Kari Furre (Equinor ASA), Ingveig Torsnes (Northern Lights JV), Jørgen Jacobsen (Northern Lights JV), Marion Recordon (Equinor ASA), Nicholas D. Thomson (Northern Lights JV)

An offshore CO₂ storage project becoming reality

Northern Lights storage complex & storage site: Aurora

-	Seabed Rogaland Gp secondary s		tary seal complex	Draupne Fm secondary seal complex
	Nordland Group	Shetland Gp second	ary seal complex	Heather C
	Hordaland Group	Cromer Knoll Gp sec	condary seal complex	Sognefjord
	Heather B	Heather A	Cook storage unit	Amundsen
	Fensfjord	Brent	Burton	Statfjord
	Krossfjord	Drake primary seal unit	Johansen storage unit	Troll Vest gas province

Aurora in a nutshell

- \rightarrow 100 km offshore, 2 700 mdeep
- \rightarrow Semi-open (saline) aquifer
- → Primary "storage units": Cook & Johansen Fms.- Shallow marine Jurassic sands, pre-rift.
- \rightarrow Secondary "storage unit": Statfjord Fm- Fluvial Triassic sands
- \rightarrow Primary seal: Thick package of deepwater, organic rich, shales
- → Secondary seal: Base of Cretaceous Unconformity (BCU) (Troll field seal)

Aurora storage (Phase 1):

- \rightarrow Storage Capacity: 37.5 Mt CO₂ (injection capacity)
- \rightarrow Injection rates: 1.5 Mt/y
- \rightarrow 25 years

Northern Lights: Why do we monitor? Risk Mitigation

- Safe injection, no leakages
- Detecting migration of CO₂
- Detecting irregularities
- Compare actual and modelled behavior
- See the effect of corrective measures
- Prepare for hand-over criteria

Monitoring mitigates NL Risk profile

- CO₂ out of the storage complex is defined as "leakage"
- The storage complex is bounded by the NL license border
- Troll Field lies North of the NL license
- Troll Field EoFL = 2054: No significant amounts of CO₂ injected can cross license boundary before 2054

→Risks have been identified and studied through the work program both pre, and post, FID/PDO

- \rightarrow Containment risks
- → Storage capacity
- \rightarrow Operational risks
- → Remaining risks must be handled through a <u>robust monitoring program</u> and response plan
 - \rightarrow Operational procedures, constraints
 - \rightarrow In-well monitoring
 - \rightarrow Seismic monitoring program

Northern Lights: Why do we monitor?

Norway's regulatory framework

Building the seismic monitoring plan: Before FID* & PDO** submission to authorities

Pre-injection scenario testing

→Forward seismic simulations based on a selection of dynamic modelling scenarios outlining the variety of potential migration cases

→Carefully selected scenarios used for:

- Estimates of detectability (CO₂ layer thickness) and undetected volumes
- Incorporating expected noise level
 in repeated seismic data
- Seismic baseline survey planning (extent, acquisition parameters)

(**) Plan for Development & Operations

Building the seismic monitoring plan:

Before FID* & PDO** submission to authorities – CRA = Key input

Containment Risk Assessment (CRA): based on Bowtie diagrams that summarize the barriers

- ightarrow Along the pathways
- $\rightarrow\,$ In place to prevent leakage of CO2
- $\rightarrow\,$ In place to reduce or mitigate an event from leading to any unwanted consequence

Building the seismic monitoring plan:

Towards start-up of operations & NEA* Injection Permit application

- → Updated seismic modelling based on updated dynamic modelling
 - Modeling focus on plume speed
- → New model used to update seismic repeat survey planning (timing, extent)
 - This planning was the cornerstone of the monitoring plan submitted in the injection permit application to the Norwegian Environmental Agency

\rightarrow The 4D seismic baseline was acquired and processed

• This activity gave us important insight into the timing for seismic activities, which in turn helped building a robust seismic repeat planning

Monitoring Plan during injection - Primary monitoring: Seismic

Monitoring Plan during injection -**Primary monitoring: In-well**

Instrumentation

- Wellhead pressure, temperature + Venturi flow meter
- Two down hole pressure/temperature gauges
 - Tubing + annular

Planned monitoring

- Injection pressure Continuous
- Reservoir pressure Planned/regular fall-off testing
 - More frequent in early injection phase, reduced as experience gained •
 - Also planned step-rate testing upon start-up, monitor injection performance parameters
 - Consistent procedures for all planned testing for better trend quantification •

Triggered monitoring

- In case of non-conformance or non-containment a secondary monitoring may be "triggered". Example: decreased injection pressure indicative of fracture development, responses can include:
 - Reduce injection
 - Perform: Fall off test and/or PLT, and/or step-rate test
 - Seismic monitoring, i.e. additional seismic survey (2D hi-res or 3D)

Upper Completion

Monitoring Plan during injection - Secondary monitoring & Modus Operandi

Northern Lights Final (base case) monitoring plan

As described in the Injection Permit application to NEA^*

Key messages & Summary

- Northern Lights is a leading CO₂ transport and storage company, its experience can be an example for others to follow
- A robust monitoring plan for Phase 1 is a core element of the CO₂ storage regulations in Norway and Europe
- The monitoring plan consists of in-well continuous monitoring and active & passive seismic monitoring. It spans throughout all the project stages: before, during and after injection operations, up until handover to authorities
- The plan for seismic monitoring consists of four 3D-seismic repeat surveys during operations and one seismic survey after operations and before handover
- The plan for in-well monitoring consists of continuous monitoring and regular falloff/step-rate testing every 6 months minimum
- This plan is not static, it's flexible and willbe updated accordingly based on observations

Shipping and temporary onshore storage

The business

norlights.com