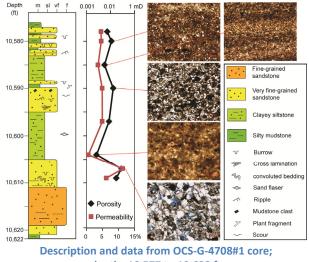
Reliable Capacity Estimation: Confining Systems

Project Description


Sealing capacity is an important component of overall capacity estimation. Mudrock units in two Lower Miocene cores were evaluated as to mineralogy, petrography, pore distribution, and fabric alignment. A potential top seal unit, *Amphistegina* B, was regionally correlated, and net isopach values were determined. In addition, fault seal was determined to be a critical component of ultimate CO₂ sequestration capacity.

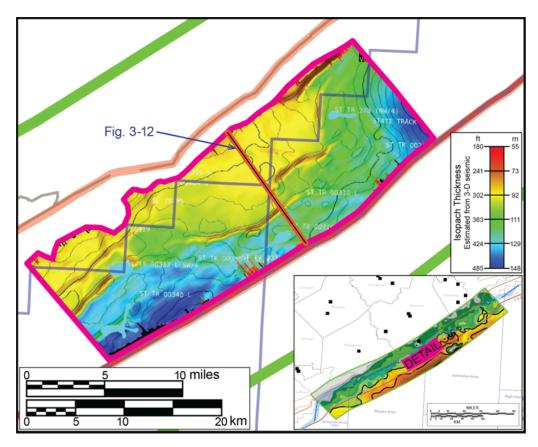
Accomplishments

- Small-scale sealing properties of Lower Miocene mudstone were analyzed using various methods. Sealing capacity was estimated and compared among different lithologies.
- Analyzed core samples show desirable trapping ability for CO₂ storage. Identified controlling factors of sealing capacity.

Impacts

- Tested a series core-based method for evaluation of mudstone sealing capacity.
- Identified a number of sealing capacity control factors.
- Established relationships between petrography/ mineralogy and capillary entry pressure.
- Mapped a confining unit; the distribution and thickness of the Lower Miocene Amphistegina B unit suggests that it can provide a regional seal for geosequestration.

depths 10,577 to 10,622 ft


- Mapped the Amphistegina B unit using conventional 3D seismic data and wireline well logs. The unit has thickness on the order of hundreds of feet in the Texas State Waters area.
- A workflow was established to calibrate membrane fault-seal capacity.

- Fault-seal analysis in the Texas coastal Miocene section concurs with published global fault-seal databases, and stratigraphically equivalent top-seal capacity can be expected to be an order of magnitude higher than fault-seal capacity.
- Determined that treating faults as no-flow boundaries (fill-to-spill modeling) is not accurate and fault rock properties must be used in modeling long-term CO₂ sequestration capacity.

Reliable Capacity Estimation: Confining Systems

Methods

- Small-scale methods included X-ray diffraction, thin-section light microscopy, scanning electron microscopy on ion-milled surfaces, high-resolution X-ray texture goniometry, and mercury intrusion capillary pressure test.
- The static shale gouge ratio (SGR) calculated column height workflow is put forth as an empirical methodology to estimate risk in fault-bound traps and predict realistic, pre-injection CO₂ capacities.

Amphistegina B unit isochron map; upper Texas coast State Waters and adjacent areas.

Selected Citation

Lu, J., Carr, D. L., Treviño, R. H., Rhatigan, J. L. T., and Fifariz, R., in preparation, Evaluation of Lower Miocene confining units for CO₂ storage, Chapter 3, *in* CO₂ Geological Sequestration Atlas of Miocene Strata, State Waters of the Upper Texas Coast, Northern Gulf of Mexico.

Contact

Dr. Jiemin Lu jiemin.lu@beg.utexas.edu, (512) 475-9525 www.gulfcoastcarbon.org