## Charting the Future: The Intersection of Hydrogen and CCS Technologies

#### Ning Lin (<u>ning.lin@beg.utexas.edu</u>)



## GeoH2



Conduct geoscience, reservoir engineering, & economic research to facilitate and advance the development of a hydrogen economy <u>at</u> <u>scale</u>

- Geological Storage
- Techno-economics and Value Chain Analysis
- Novel Concepts: in situ generation, native hydrogen

#### **Participating Companies and Organizations**





## H2@UT - https://sites.utexas.edu/h2/

| TEXA<br>The University of Texas at A | S               |                                                                                                                                               | Search thi                                                                                                                                | Search this website                                        |  |
|--------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| НОМЕ                                 | UT RESEARCH     | FEATURED PUBLICATIONS                                                                                                                         | IN THE NEWS                                                                                                                               | PEOPLE                                                     |  |
| Enabling a hydrog                    | en energy econd | UT has about 80 r<br>entire field of hydr<br>transmission, and<br>Providing info<br>supporting pr<br>of the hydrog<br>Educating str<br>growth | esearchers working<br>ogen production, sto<br>use<br>ormation to industry<br>rudent decisions to g<br>jen economy<br>udents who will lead | across the<br>orage,<br>and government<br>guide the growth |  |
|                                      |                 | <b>O</b>                                                                                                                                      |                                                                                                                                           | 3                                                          |  |

- Hydrogen-related research in the Permian Basin, collaborated the Center of Electromechanics (CEM)
- The HyVelocity Hub application in 2022, led by UT Energy Institute



## **1. Introduction**





#### **Hydrogen Could Be A Flexible Low Carbon Solution**

- Low carbon emissions
  - From electrolysis (hydro, solar, wind, nuclear, geothermal) without CO<sub>2</sub>
  - From fossil fuels combined with carbon captu and storage (CCS)
- Transportable
  - Pipeline gas
  - Liquified
  - Compounds (e.g. ammonia)
- Store-able
  - Large capacity (geological)
  - Indefinite storage duration
- Multiple sources
  - Electrolysis
  - Natural gas reforming
  - Coal gasification
- Multiple Uses
  - Transportation
  - Industrial
  - Power (back-up/balancing)



The University of Texas at Austin Center for Subsurface Energy and the Environment Cockrell School of Engineering





## **Production Pathways - The Color Spectrum of Hydrogen Supply**





Source: Production & cost data from DOE, Office of Fossil Energy, 2020



# Life cycle emission of natural gas based hydrogen with CCS





2. Understanding Global and U.S. Trends in Hydrogen Development





#### **Global Low Carbon Intensity Hydrogen Production Since 2000**

permission of BEG



Economic

Geology

- The potential is huge as annual production of LCI H2 could reach 38 MT in 2030 if all are realized
- 10 MT, about 23% is fossil fuel with CCS. =>

This implies ~80 MT of carbon

sequestrated, almost 30% of

commercial CO2 projects in

2023 (Global CCS Institute,

needs to be captured and

the currently announced

2023; IEA 2023)

10

### **Fossil Fuel-Based LCI Hydrogen Projects**





## **DOE Selected Regional Hydrogen Hubs**



Implication on CCS needs:

- Appalachian and Gulf Coast hydrogen hubs include significant natural gas-based hydrogen production projects
- California hub has bio-methanebased hydrogen projects as well.
- West Texas can play a role in the Gulf Coast hydrogen hub, which is one of the seven hubs supported by DOE.



#### 3. Hydrogen Production and CCS in A Case Study – Permian Basin









## Levelized cost of ATR+CCS





CCS cost (transportation and storage) could have an impact on hydrogen production cost, that offset some locational basis difference

## **Overview of 45Q vs. 45V**



Hydrogen projects need to choose between 45Q and 45V and cannot use both.



## **CCS Policy impact on Hydrogen Cost**



- The subsidies both effectively bring hydrogen cost with CCS below \$1/kg for both Permian and Houston.
- The impact of 45Q with CCS is slightly more competitive than 45V.
- 45Q can be a preferred option for tax credit for gas based hydrogen projects



## Concluding slide – Opportunities and Strategic Decisions

Key takeaways:

- About 25% of the low carbon intensity hydrogen projects globally have CCS needs, which translates up to 80 million tons of CCS
- CCS can be a differentiating factor to blue hydrogen costs, along with feedstock and electricity. This needs to be considered when designing a hydrogen network.

Low Carbon Intensity Hydrogen Potential research topics:

- Optimizing hydrogen production with integrated CCS in gas production regions like Permian or Appalachian
- Considering the CCS (transportation and storage) component in shaping the hydrogen hub

Carbon Capture and Storage

