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Conduct geoscience, reservoir engineering, & economic research to\a=

facilitate and advance the development of a hydrogen economy at

scale

* Geological Storage

* Techno-economics and Value Chain Analysis

* Novel Concepts: in situ generation, native hydrogen
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H2@UT - https://sites.utexas.edu/h2/

The University of Texas at Austin

HOME UT RESEARCH FEATURED PUBLICATIONS IN THENEWS PEOPLE

UT has about 80 researchers working across the
entire field of hydrogen production, storage,
transmission, and use

Providing information to industry and government
supporting prudent decisions to guide the growth
of the hydrogen economy

, & ‘ -_ o Educating students who will lead future hydrogen
Enabling a hydrogen enligy e€onomy. growth
- . : a o

- Hydrogen-related research in the Permian Basin, collaborated the Center of Electromechanics

(CEM)
- The HyVelocity Hub application in 2022, led by UT Energy Institute


https://sites.utexas.edu/h2/
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Hydrogen Could Be A Flexible Low Carbon Solution

* Low carbon emissions
From electrolysis (hydro, solar, wind, nuclear,
Geological Storage

geothermal) without CO,
From fossil fuels combined with carbon captu

and storage (CCS)

* Transportable
* Pipeline gas

Transportation

Power
Generation

o

Co, Upgrading

Qil /
Biomass

Hydrogen

* Liquified
* Compounds (e.g. ammonia) . s
enewabples
» Store-able ,
. . } Ammonia/
* Large capacity (geological) Fertilizer
* Indefinite storage duration '
Nuclea H0 Hydrogen
Generation
Metals
Production

Electric Grid
Infrastructure

* Multiple sources 6

* Electrolysis
* Natural gas reforming

* Coal gasification

e Multiple Uses
* Transportation
* Industrial
* Power (back-up/balancing)
The University of Texas at Austin
Center for Subsurface Energy
and the Environment
Cockrell School of Engineering

Chemical/Industrial
Processes

Heat/Distributed

Power

Gas
Source: DOE, Office of Fossil Energy, 2020
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Production Pathways - The Color
Spectrum of Hydrogen Supply

Higher H, Production Cost Lower H, Production Cost
$5.60 - 13.00/kg H, $1.35 - 2.30/kg H,
Renewable*  Nuclear* “Grid” Natural Gas  Fossil Fuels/ Natural Gas Coal
(electrolysis) (electrolysis) (electrolysis)  (pyrolysis) Natural Gas (steam reforming (coal gasification
(w/ CCS) w/0 CCS) w/o CCS)

/ (

Y., 2 -
Low CO CO, emissions
emissions emission factor carbon p) p)

Biomass Gasification ~ $1.90/kg
Nuclear thermolysis ~$2.40/kg

=\ BUREAU OF Source: Production & cost data from DOE, Office of Fossil Energy, 2020
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https://www.energy.gov/sites/prod/files/2020/07/f76/USDOE_FE_Hydrogen_Strategy July2020.pdf



https://www.energy.gov/sites/prod/files/2020/07/f76/USDOE_FE_Hydrogen_Strategy_July2020.pdf
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Life cycle emission of natural gas based
hydrogen with CCS

Emission of the electric grid

Carbon Carbon transport
C02 capture and storage
Electricity coz
l C.Oz

6 CO,

/’

>
Natural gas Hydrogen Hydrogen
extraction and production transport
transport (SMR or ATR)

QAe9880

* the extraction and transportation of natural gas
(upstream emissions) the construction and decommissioning of facilities for

hydrogen production and carbon capture

the hydrogen production process
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2. Understanding
Global and U.S.
Trends in
Hydrogen
Development
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Global Low Carbon Intensity Hydrogen
Production Since 2000

Commimioniogysar & . +'* The potential is huge as annual
—e . production of LCI H2 could

Unknown projects™

o/

| o . g reach 38 MT in 2030 if all are
osdected Co &' realized

Technology .

Electrolysis

Fossil fuels with
CCUs

¥ : . “a -+ 10 MT, about 23% is fossil fuel
e — ; with CCS. =>

Other

Status

Concept

Demons tration
projects

Feasibility study

- * This implies ~80 MT of carbon
needs to be captured and
proetcapasity (2 iy sequestrated, almost 30% of
8 . , the currently announced
O oo — commercial CO2 projects in

o w0 et 2023 (Global CCS Institute,

IEA, 2023 2023; IEA 2023)

FID/Under
construction
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Kt/year

Fossil Fuel-Based LCI Hydrogen Projects

Fossil Fuel with CCUS Projects

14,000

90%:NG w CCUS

12,000
10,000
8,000
6,000
4,000
2,000
| I

Concept Feasibility study FID/Construction Operational

H Biomass w CCUS m Coal w CCUS m NG w CCUS = Qil w CCUS

Kt/year

Proposed Capacity by Project

350
Avg: 120 k tons per year
300 330 tons per day
Max: 313 k tons per year
About 860 ton day
250
200
150
100
50

0 —

M Biomass w CCUS M Coal w CCUS
[ Oil w CCus

B NG w CCUS
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Top 10 Countries with Fossil Fuel-based LCI
hydrogen projects

* Include projects with feasibility,
| FID./construction and Operation
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& SR &

& & ¥ N

H Biomass w CCUS m Coal w CCUS mNG w CCUS = Oil w CCUS
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DOE Selected Regional Hydrogen Hubs

Implication on CCS needs:

i vormier: LD
Hntos”, - Appalachian and Gulf Coast
ithpipdin ) (A hydrogen hubs include
& Mmachz) ; significant natural gas-based
‘\H“;Zfi;?.?ﬁ‘sg' hyd.roge.n production. projects
hrmca i arcz) Sl « California hub has bio-methane-
Sk , e : based hydrogen projects as
i well.

* West Texas can play a role in
the Gulf Coast hydrogen hub,
which is one of the seven hubs
supported by DOE.

@ Not Selected
Selected Regional Clean H2 Hubs
@ Guif Coast Hydrogen Hub

@ All other US Hydrogen Hubs
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3. Hydrogen
Production and CCS
in A Case Study -
Permian Basin
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Scale: 1:3,500,000 Gas / Oil Activities
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Levelized cost of ATR+CCS

ATR CCS levelized cost on $/kg H2 Cost of CCS on $/kg H2 of ATR CCS with 95% capture rate
1) electricity price ($/kWH) . di) Distance to BeS site ()
2) Natural gas price ($/ mmbtu) 070 ) Hydrogen production capacity (kg/day)
2.00 '
A
1.90 | Cost contribution ($/kg H2) *112 = Cost contribution ($/ton CO2
0.60 i sequestrated):
1.80 |
Gulf-coast Houston |
170 | === e 0.50 $0-36/kg
Feedstock advantage of ; i
1.60 Permian is about $0.17- ! 040 | —8—150
150 |4 0.20/kg difference : g i —o—100
1 1 o0 H
Permi | = ! =200
1.40 ; > .
: : % 0.30 v 300
1.30 1 I
| | =400
1.20 ! : 0.20 —8—500
1.10 E i
| | 0.10
1.00 L i
0 1 2 3 4 5 6
$/MMBtu Natural gas price
200,000 400,000 600,000 800,000 1,000,000
—e—0.03 —e—0.05 —e—0.07 —e—0.09 Hydrogen production capacity (kg/day)
CCS cost (transportation and storage) could have an impact on hydrogen
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Overview of 45Q vs. 45V

2008: the Energy Life Cycle Emissions (kg PTC Value
Improvement and Extension 2021: New Legislation C02e/kgH2) (2022%/kgH2)
Act.
75 million metric tons of CO2 cap $85/ton for CO2 captured and 4 - 2-5 060
: stored in saline geologic formations,
(z:act)l2east 500,000 metric tons of $65,/ton for EOR. 2-5 - 1-5 075
$20/ton CO2 sequestered in secure
geologir::al storag(leJ and $1(I)/ton fl:>r 1'5 - 0'45 1.00
CO02 for enhanced oil recovery
(EOR) 0-45 - 0 3.00
Inflation adjusted and 12 year
duration Morg biqlogic §equestratiop methods
and firstIncluslon of DA (Direct Alr The Inflation Reduction Act of 2022 (IRA)
| d li i t . .
$50/ton by 2026, for permanently Clean Hydrogen Production Tax Credit (PTC), as a 10
geological storage, and $35/ton by .
2026 for EOR. year tax credit.
removed the 75 million metric tons
cap Agnostic of production method, PTC credits depending
Ez';’é‘:tr\;\ft"i& Blpartisan on life cycle emissions (kg CO2e/kgH2)

Hydrogen projects need to choose between 45Q and 45V and
cannot use both.
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CCS Policy impact on Hydrogen Cost

Levelized cost of Hydrogen (ATR+CCS 95%)

0 0.5 1

Tax Credit on $/kg H2

—e—Without PTC

1.5

* The subsidies both effectively
bring hydrogen cost with CCS
below $1/kg for both Permian
and Houston.

* The impact of 45Q with CCS is

slightly more competitive than
45V.

* 45(Q can be a preferred option
for tax credit for gas based
hydrogen projects
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Concluding slide -

Opportunities and Strategic Decisions

Key takeaways:
 About 25% of the low carbon intensity hydrogen projects globally have CCS needs, which translates up

to 80 million tons of CCS
* CCS can be a differentiating factor to blue hydrogen costs, along with feedstock and electricity. This

needs to be considered when designhing a hydrogen network.

Potential research topics:
* Optimizing hydrogen production with integrated CCS
Low Carbon in gas production regions like Permian or Carbon Capture
Intensity Appalachian and Storage
Hydrogen « Considering the CCS (transportation and storage)
component in shaping the hydrogen hub
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