**JANUARY 2024** 



## NEW WORK ON CCUS ECONOMICS AND POLICY

CCS-7, The University of Texas at Austin

**SHEILA OLMSTEAD** Dean Rusk Professor, LBJ School of Public Affairs The University of Texas at Austin





The University of Texas at Austin Lyndon B. Johnson School of Public Affairs







#### **Project Sponsor**



This work is funded by the Alfred P. Sloan Foundation, under grant #G2021-14150.



## Core project team





Sheila Olmstead UT Austin (PI)

Andrew Waxman UT Austin (co-PI)



Ben Leibowicz UT Austin (co-PI)



Chuck Mason U. Wyoming (co-PI)



Sue Hovorka UT Austin (co-PI)

### Research assistants















Alivia Cochran Connor ColombeAbdullah AlbeladiChris DeranianH-R Huber-RodriguezJoseph StemmlerBen MendozaU. WyomingUT AustinUT AustinUT AustinUT AustinUT AustinUT Austin



## **Core research projects underway**

- Effects of policy uncertainty and risk aversion on CCUS investments (Colombe, Leibowicz, Mendoza)
- Characterizing the local air pollution impacts of CCUS deployment (Waxman, Huber-Rodriguez, Olmstead)
- Policy instrument choice for carbon capture incentives (Stemmler, Waxman)
- **"Perspectives" piece on U.S. federal tax incentives for CCUS (45Q)** (Olmstead, Leibowicz, Mason, Waxman, Huber-Rodriguez, Stemmler)
- **CCUS investment decisions under uncertainty** (Cochran, Mason)



# Effects of policy uncertainty and risk aversion on CCUS investments

(Colombe, Leibowicz, Mendoza)

- 1. To what extent does **policy uncertainty** diminish CCUS infrastructure investments?
- 2. How does the effect of policy uncertainty on CCUS investments depend on the degree of investor **risk aversion**?



#### Case study: TX-LA Gulf Coast





- Policy uncertainty and risk aversion reduce total expected CO<sub>2</sub> captured, but by at most 7% in our scenarios
- A more risk-averse investor may actually capture CO<sub>2</sub> more rapidly

Winner, Best Student Paper USAEE, 2023!



# Characterizing local air pollution impacts of CCUS

(Waxman, Huber-Rodriguez, Olmstead)

- What would would be the human health effects of CCUS deployment via emissions of PM<sub>2.5</sub>, NOx, SO<sub>2</sub>, VOCs, and NH<sub>3</sub>?
- How do these impacts compare with the benefits of reduced CO<sub>2</sub>?
- Stay tuned for preliminary results Dr. Waxman presents later today!



Figure 3: Synthetic Control Method: Petra Nova



## **Policy instrument choice for carbon capture incentives** (Stemmler, Waxman)

- Current US Federal tax incentives (45Q) provide a tax credit of \$85/ton CO<sub>2</sub> (geologic storage).
- How does this incentive compare to other policies: carbon tax, R&D subsidies, clean energy standards?
  - A firm that was not profitable under a \$85/ton carbon tax will be under 45Q subsidy.
  - A firm with 2 plants: high  $CO_2$  & low  $CO_2$  may be incentivized to use high- $CO_2$  plant.
  - Implications of subsidizing based on emissions/storage, relative to other energy transition subsidies (e.g., PTC for renewable electricity).



## **Perspectives on 45Q**

(Olmstead, Leibowicz, Mason, Waxman, Huber-Rodriguez, Stemmler)

- 45Q subsidy presents economic/policy challenges.
  - Fiscal costs may be higher than expected.
  - Incentive needed in perpetuity for continued deployment.
  - Likely effects on industry composition.





## **CCUS investments under uncertainty**

(Cochran, Mason)

- **Economic model of firms'** decision to invest in CCUS, based on three factors:
  - Irreversibility: Investment in CCUS is a sunk cost.
  - **Timing:** A firm can choose when to invest in CCUS –invest now or wait.
  - **Uncertainty:** A firm does not know the future rewards of the investment.
- **Research Question:** Given uncertainty in electricity prices and policy incentives (e.g., 45Q), what is the optimal time to invest in CCUS?
- **Results:** Reducing expected future electricity price and policy uncertainty both ≻earlier investment.
  - Example: Policymakers can reduce uncertainty by extending 45Q and by maintaining the size of the credit over time.



## **Seed grant recipients**

## Market Design Implications of CO<sub>2</sub> Capture and Storage Infrastructure

University of Dayton and Carbon Solutions LLC Pls: Joseph Duggan Jr., Jonathan Ogland-Hand, Michael Ford, Richard Middleton

#### Mapping the Source Space for Carbon Capture and Utilization

University of Texas at Austin PI: Michael Baldea

#### **Robust Carbon Dioxide Utilization Markets**

University of Waterloo PI: Juan Moreno-Cruz

### The economic consequences of carbon capture, utilization & storage projects: Evidence from housing markets in the U.S. & China

University of Maryland at College Park and China University of Petroleum, Beijing Pls: Yueming (Lucy) Qiu, Yingdan Mei, Pengfei Liu

### Economically Viable Carbon Capture for Electro-Decarbonization of the US Economy

New York University

PIs: Charalmpos Avraam, Yury Dvorkin, and Alice Nuz

#### Capturing Carbon But Not Its Co-Pollutants: CCUS in the Electricity System and the Challenge of Just Decarbonization

University of Massachusetts, Amherst

PIs: Paola Furlanetto, Bridget Diana, Erin Baker, Michael Ash



TEXAS LBJ School

The University of Texas at Austin Lyndon B. Johnson School of Public Affairs



College of Business





**Project Sponsor** 



Thank you!

https://sites.utexas.edu/ccusecon