CO₂ Capture by amine scrubbing Yes! we are ready? We have been ready since 2010!! Will we make mistakes? Fewer than in 2010!!

UTCCS-7, January 23, 2024
Prof. Gary T. Rochelle
Texas Carbon Management Program
Department of Chemical Engineering
The University of Texas at Austin

Research Needs for CO₂ Capture from Flue Gas by Aqueous Absorption/Stripping Prepared for NETL/DOE By Gary T. Rochelle et al., 2001

Recommendations for systematic research

- Explore MEA, Hindered Amines, promoted tertiary amines and K₂CO₃
- Measure
 - Thermodynamics, CO₂ solubility, Amine volatility
 - Kinetics of CO₂ absorption
 - Oxidative and Thermal Degradation
 - Reactions with NO_x, Nitrosamine
 - Catalysis by and reactions with Fe^{+2/+3}
 - Corrosion

Objectives of the TxCMP

- Train graduate and undergraduate students
- Create understanding, data, and methods to facilitate deployment of CO₂ capture
- Create innovations to enhance performance and reduce cost of CO₂ capture

Strategy

- Apply ChE science to understand and quantify the performance of MEA & PZ absorption/stripping.
- Develop innovative, evolutionary improvements.

82 TxCMP Students on amine scrubbing 2000-2025

- 18 Thermodynamics & rates Dang, Cullinane, Hilliard, Nguyen, QXu, XChen, LLi, Bishnoi, Culinane, McLees, Dugas, Rafique, Zhou, HLi, Du, Yuan, Fliu, Wanderley
- 16 Modeling Freguia, Oyenekan, Cohen, Plaza, Frailie, Sachde, Walters, Madan, YJLin, VanWagener, Ding, Rezazadeh, Gao, Abreu, Martinell, Suresh Babu,
- 13 Oxidation Chi, Jones, Goff, Alawode, Sexton, Freeman, Voice, Vevelstad, Nielsen, Liu, Wu, Plantz, Obute
- 8 Emissions Fulk, Beaudry, Liu, Kang, KLi, Zhang, Akinpelumi, Drewry
- 5 NO₂/Nitrosamine Ashouripashaki, Fine, Goldman, Selinger, ClChen
- 5 Thermal Degradation Davis, Freeman, Closmann, Namjoshi, Hatchell
- 4 Contactor Characterization Wilson, Tsai, Wang, Song
- 3 Pilot plant and corrosion ECHen Fischer, CTLiu

"A Perspective on Amine Scrubbing for CO₂ Capture" Gary T. Rochelle, Science 2009

Amine scrubbingused to separate ... CO_2 from $[CH_4]$ and H_2 since 1930.

Fluor used MEA on gas boilers, fired heaters. & gas turbines.

Lummus used MEA on coal.

MHI used KS-1 on fired heaters.

[Amine Scrubbing] is...robust and ready to be...to be used for CO₂ capture from coal ...power plants.

Process & solvent improvements should reduce the energy consumption to 0.2 MWh/t CO₂.

..will be applied first on large coal-fired boilers with 12% CO₂.

.....useful with biomass boilers at 14% CO₂, cement plants at 25% CO₂, and steel at 25% CO₂.

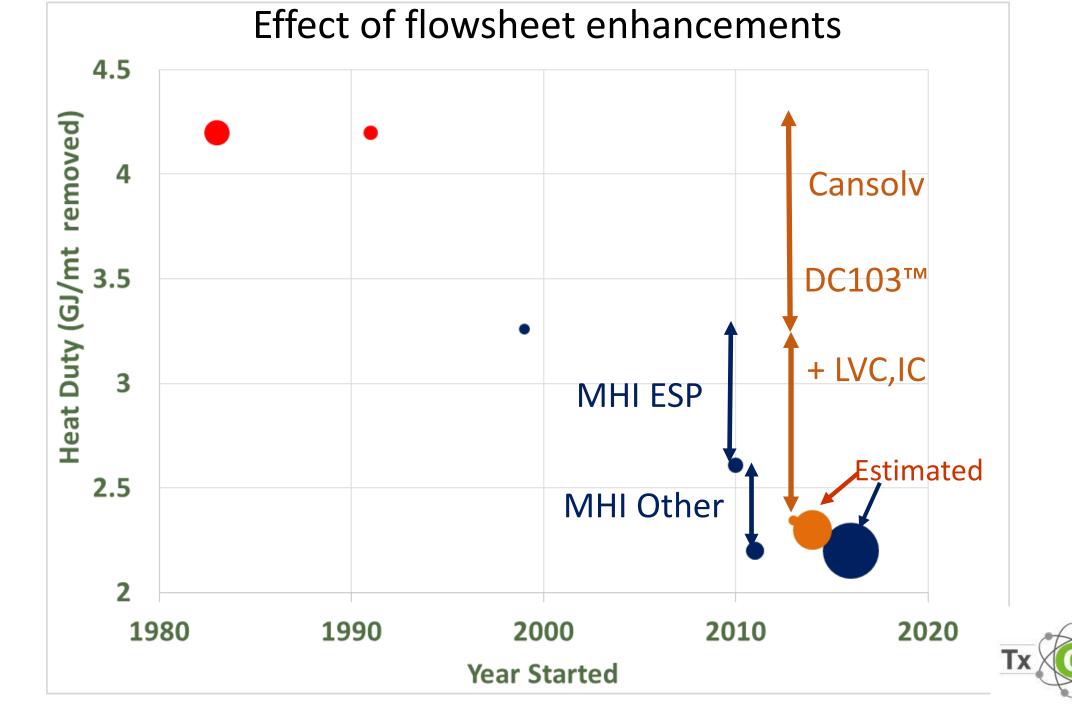
.....less useful on NGCC at 4% CO₂ or gas- or oil-fired boilers/heaters at 7% CO₂.

From Lubbock, TX to Thompsons, TX Gary T. Rochelle, TyCMP

Gary T. Rochelle , TxCMP GHGT-12, 2014

2G amine scrubbing on coal will be realized at Thompsons & Boundary Dam

2G systems will use less energy than Lubbock


50% less reboiler duty, 30% less W_{eq}

Better solvent

Better flowsheet

3G systems will not be much better

2G systems will manage solvent oxidation and aerosol emissions

In 2024, We have....

- Fluor et al. experience with MEA
- 2 large scale coal-fired systems
 - 110 MW Boundary Dam Cansolv (Shell)
 - 250 MW Petra Nova KS-1 (MHI)
- Many developers and more 2G solvents
 - KS-21 (MHI)
 - Aker Clean Carbon
 - Carbon Clean Solutions
 - BASF
 - Ion Engineering
 - Honeywell UOP
 - Toshiba/Lummus
 - SLB/RTI
 - Et cetera

Annual TxCMP Funding

- \$850k Texas Carbon Management Program
- \$100k CCSI² (DOE)
- \$150k Amine Oxidation (DOE)
- \$600k
 State of Texas Ovhd & faculty salary

\$1700k – Total Annual Program Funding

TxCMP 17 Industrial Sponsors

Oil Aramco BHP Chevron Exxon Total **INPEX**

Suppliers Shell/Cansolv MHI Honeywell UOP SLB/RTI Carbon Clean Solutions Axens

Utilities
EPRI
Calpine
SK
Drax

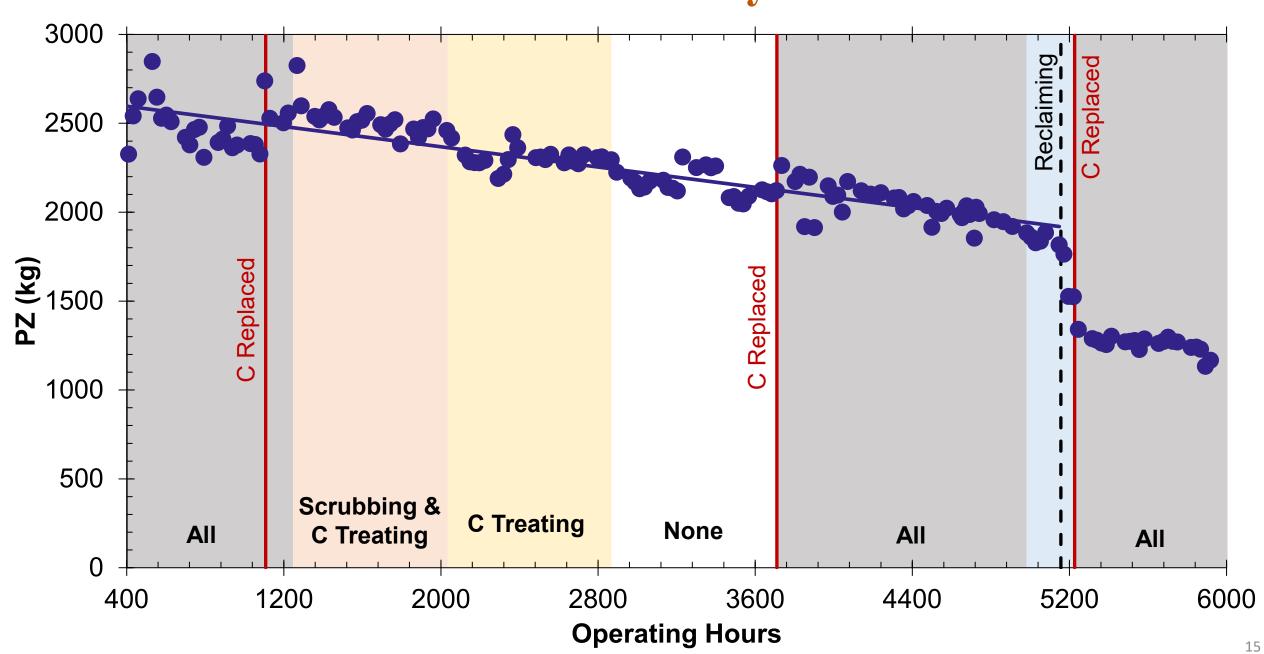
Government
DOE/NETL
LEIDOS/CCSI²

6 PHD students working on amine scrubbing

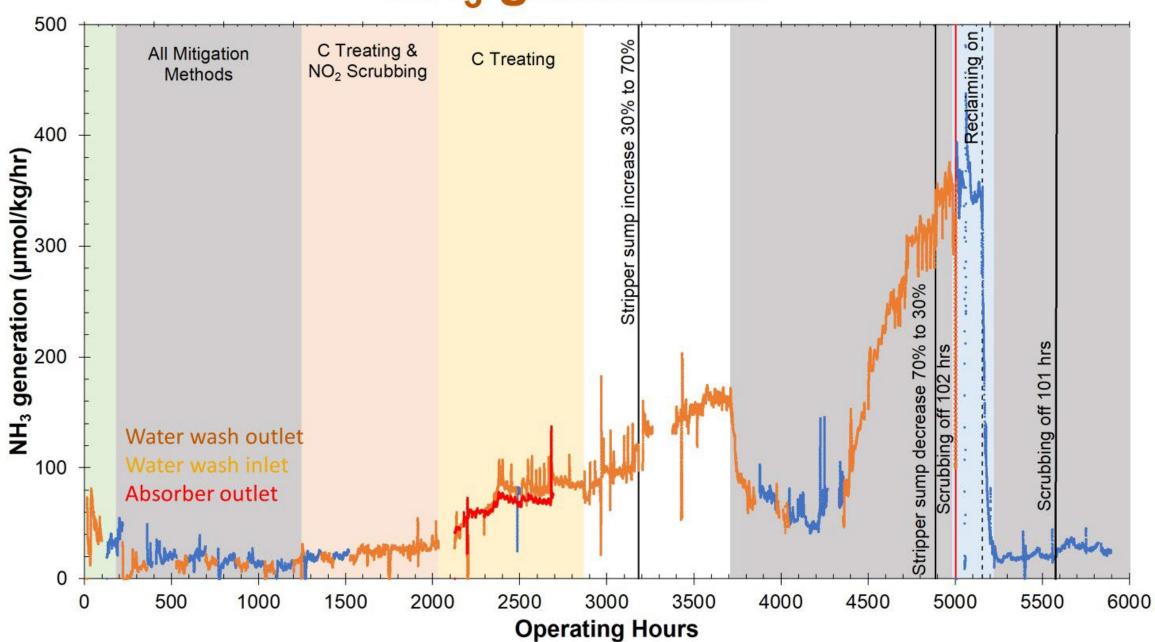
2017	2018	2019	2020	2021	2022	2023	2024	2025			
		Suresh - Stripper Modeling									
		Abreu - Absorber Modeling									
		Drewry - Water Wash Model									
		Martorell - Optimization									
Wu - oxidation											
Liu - Corrosion											
			Plantz - oxidation by Fe ⁺³								
		Chen - Oxidation by NO ₂									
		Obute - Oxidation by dissolved O2									

TxCMP Available Resources for Solvent Characterization

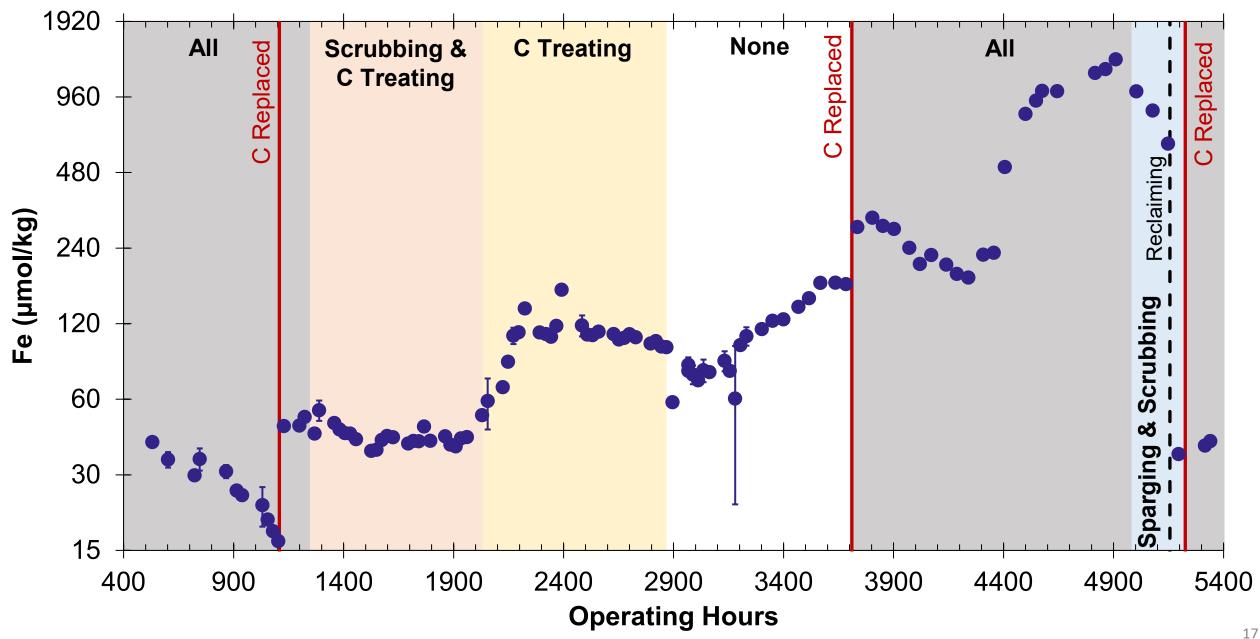
- Fred Closmann Research supervisor
 - 2007-11 UT PhD, 2011, Oxid. & thermal degradation of MDEA/PZ
 - 2011-19 Phillips solvent development, FCC
 - 2020 UT PZ pilot plant operations, analysis, & reporting
 - 2020 UT Analytical supervisor
- Bench-scale solvent characterization with 23 yrs experience
 - Oxidative Degradation
 - Thermal Degradation
 - Amine volatility and CO₂ solubility at absorber conditions
 - Wetted Wall column rate and solubility measurements


Pilot Test of PZAS at NCCC: Targeting oxidation (12/22-10/23)

180 h	1067 h	786 h	835 h	841 h	1272 h	173 h	67 h	698 h
	Carbon	Treating		n				
	NO ₂ Sc	rubbing		igatio				
N ₂ Sp	arging			No Mitigation				
		-					Reclaiming	


TxCMP Results: PZAS testing at NCCC

- Wisthaler, T 2:14; Misztal, T 2:45
 - Emissions include unexpected possibly problematic components, usually at low levels.
- Closmann, T 3:30, W 11:38
 - Overall Summary
 - Uncontrolled oxidation occurs with accumulated products.
 - Nitrogen sparging reduces oxidation early in campaign.
- Carter, W 10:30
 - Aminoacids are significant class of degradation products.
- Chen W 1:30
 - 2.5 ppm NO₂ results in significant oxidation.
 - NO₂ can be managed by sulfite scrubbing.
- Plantz, W 1:50
 - Carbon treating suppresses oxidation.
 - 2 corrosion events associated with increasing oxidation.
 - Reclaiming is effective at restoring solvent & suppressing oxidation.
- Drewry, W, 4:30
 - Water wash & acid wash effectively manage emissions.


PZ Inventory

NH₃ generation

Carbon Treating and Reclaiming Decreases Fe Solubility

Bench-Scale Results

- Chen W 9:14 Screening of amines for oxidation w & w/o NO₂
- Obute W 10:50 Measuring oxidation as oxygen consumption

Process Modeling to Guide the Future

- Abreu Th 9:14 Crossflow contacting to reduce absorber height
- Martinell Th 10:30 Equation-based modeling to Optimize design

19 Additional Presentations from UT & International Collaborators

- UT Waxman, Mizstal, Baldea, Brennecke, Freeman, Mullins
- University of Oslo 1
- NTNU − 2
- RWE 1
- TNO − 1
- Tsinghua University -1
- Nagoya University 2
- Politecnico di Milano -1
- National Tsing Hua 1
- Univ of Kentucky 2
- Aramco 1
- EPRI-1
- PNNL − 1
- NETL 2

Future meetings on amine scrubbing

June 5, 2023 – TxCMP sponsors review, Austin

August, 2023 – DOE Contractors review, Pittsburg

October 20-24, 2024 – GHGT-17 - Calgary
Oct. 25 – TxCMP/NTNU/KY/etc. collaboration
Highly Recommended
TxCMP submitted 11 abstracts

Continuing Achievements of the TxCMP

- Training graduate and undergraduate students
- Creating understanding, data, and methods to facilitate deployment of CO₂ capture
 - Especially amine oxidation and air emissions
- Creating innovations to enhance performance and reduce cost of CO₂ capture

Pilot Plant and Lab Tours

- At 4:45 or 5:10, find Maeve in the Commons
- For later tours find sign at reception
- Hard hats and safety glasses provided
- Closed toes shoes & long pants required