

SIGNIFICANCE OF HYDRATE FORMATION DURING CO₂ STORAGE IN DEPLETED GAS STORAGE

PREPARED BY: BRUNO R B FERNANDES, PHD RESEARCH ASSOCIATE CENTER FOR SUBSURFACE ENERGY AND THE ENVIRONMENT

JANUARY 23, 2024

Problem Statement

- Gas hydrates are a crystalline solid formed of water and gas.
- Injection of high-pressure cold CO₂ into porous formations can lead to the formation of hydrates.
- This effect intensifies the Joule-Thomson cooling which causes a drop in temperature, and can
 potentially lead to hydrate conditions.
- Hydrates can lead to severe injectivity reduction and even plugging of the reservoir areas surrounding the well.

Hydrates in the pipelines/wellbore

Hydrates in the porous media

Ahmad et al. (2019)

3

Hydrate modeling and risk assessment approaches

Phase diagram approach (qualitative):

- Check reservoir conditions to determine risk of hydrates.
- Can use activity-based model to estimate phase diagram of gas mixtures and effect of inhibitors.

Flash calculation:

 Combines conventional EoS flash approach with the van der Waals and Platteeuw (1959) model.

Hydrate kinetics:

he University of Texas at Austin

and the Environment

Cockrell School of Engineering

Center for Subsurface Energy

- Use kinetic models to quantify the amount of hydrate formed or dissociated over time.
- Both equilibrium and transient models are reported in the literature.

modified from Ramachandran et al. (2014)

CMG reservoir simulator capabilities

Compositional & Unconventional Simulator

• GEM features

- Fully compositional thermal model
 - Hydrocarbon phases modeled with PR or SRK EoS
 - No mass transfer between the water phase and the HC phases
 - Water vaporization can be included with the OGW flash

STARS features

- Thermal model with Joule-Thomson (Lee-Kesler model)
 - SRK EoS without binary interaction coefficients for gas phase
 - Liquid phases are modeled as slightly compressible fluids
 - K-values used for phase equilibrium (includes water-gas equilibrium for dry-out)
 - Kinetic model based on Kim et al. (1987)

VERIFICATION OF THE THERMAL MODEL WITH TOUGH2

Comparison with TOUGH2 (Open Boundary)

- Constant injection rate (3 kg/s)
- CH₄ gas reservoir and CO₂ is injected
- Initial water saturation is 0.2
- Constant diffusion coefficients
- Include heat conduction
- Data taken from:
 - "Oldenburg, C. M., Joule-Thomson cooling due to CO₂ injection into natural gas reservoirs. Energy Conversion & Management, Vol 48, pp. 1808-1815, 2007"

Properties	Value		
Reservoir temperature	45 C		
Injection temperature	45 C		
Well radius	0.0097 m		
Reservoir radius	1130 m		
Thickness	50 m		
Porosity	0.3		
Permeability	5 mD		
Initial pressure	5 Mpa		
Injection rate	13.9527x10 ⁴ sm ³ /d (3 kg CO ₂ /s)		
Production rate	7.1468x10 ⁴ sm ³ /d (0.56 kg CH ₄ /s)		
Rock heat capacity	1000 J/(kg°C)		
Rock heat conductivity	2.51 W/(m°C)		
Heat loss type	No heat loss/gain		

Well-1

STARS and GEM vs TOUGH2 (Open Boundary)

Temperature, CO₂ Mole fraction, and Pressure profiles

• GEM and STARS show good agreement of results.

 Discrepancies with TOUGH2 could be caused by different grid size and differences in property calculation between the simulators.

HYDRATE RISK ASSESSMENT WITH GEM

Hydrate Risk Assessment with CMG GEM (Phase diagram approach)

- Constant rate CO₂ injection
- Initial fluid saturations = S_w : 0.2 and CH_4
- PR EoS is used
- Model heat conduction
- Liquid CO₂ was observed near the wellbore which reduces JT cooling
- Lower initial reservoir pressure intensifies JT cooling

Properties	Value
Reservoir temperature	45 C
Injection temperature	10, 15, 20, and 45 C
Well radius	0.0097 m
Reservoir radius	1130 m
Thickness	50 m
Porosity	0.3
Permeability	5 mD
Initial pressure	3 and 5 Mpa
Injection rate	3 kg CO ₂ /s
Production rate	0.56 kg CH ₄ /s
Rock heat capacity	1000 J/(kg°C)
Rock heat conductivity	2.51 W/(m°C)
Heat exchange	Sensitivity
Under/overburden rock heat capacity	1000 J/(kg°C)
Under/overburden rock heat conductivity	2.51 W/(m°C)

Temperature Profile and PT diagram: T_{res} = 45°C; P_{res} = 3MPa

Min temperature is about 3°C even as T_{ini} is reduced

JT cooling leads to hydrate formation

Run Simulations to train a Machine Learning tool

"Yamada et al., Development of a hydrate risk assessment tool based on machine learning for CO₂ storage in depleted gas reservoirs. Fuel, Vol 357, 2024"

- A sensitivity analysis with **18,532 scenarios** was performed with CMG-GEM.
- ML models tested: random forest, gradient boosting, neural network, deep neural network.

HYDRATE MODELING WITH STARS

Hydrate kinetic model

- Use Kozeny-Carman equation to calculate permeability changes as a function of porosity.
- Reactions to model hydrate formation and dissociation.

Methane hydrate formation: Methane hydrate dissolution: CO_2 hydrate formation: CO_2 hydrate dissolution: $5.75H_2O + CH_{4(g)} \rightarrow CH_4 - Hyd$ $CH_4 - Hyd + H_2O \rightarrow 6.75H_2O + CH_{4(g)}$ $7.7H_2O + CO_{2(g)} \rightarrow CO_2 - Hyd$ $CO_2 - Hyd + H_2O \rightarrow 8.7H_2O + CO_{2(g)}$

Bishnoi and Natarajan (1996)

Demonstration case

"Indina et al., On The Significance of Hydrate Formation/Dissociation during CO₂ Injection in Depleted Gas Reservoirs. 2024 Oman Petroleum & Energy Show (OPES), SPE-218550-MS."

> - 100000000.00 - 10000000.00 - 1000000.00 - 100000.00 - 10000.00 - 10000.00 - 1000.00 - 100.00 - 10.00 - 1.00 - 1.00 - 0.10

3414858240.00

- 100x1x1 grid with grid refinement
- Porosity changes may result in permeability change
- Model heat conduction
- Infinite reservoir is modeled

Sensitivity tests:

- Heat exchange with over and underburden formations
- Permeability reduction
- Grid geometry

	Value
Reservoir temperature	45 C
Initial water saturation	0.2
Initial hydrocarbon composition	100% CH4
Injection temperature	10 C
Well radius	0.0097 m
Porosity	0.3
Permeability	20 mD
Initial pressure	3 Mpa
Injection rate	3 kg CO ₂ /s
Rock heat capacity	1000 J/(kg°C)
Rock heat conductivity	2.51
Base/Cap rock heat capacity	1000 J/(kg°C)
Base/Cap rock heat conductivity	2.51 W/(m°C)

Perm. reduction due to hydrate formation (1 year)

The University of Texas at Austin Center for Subsurface Energy and the Environment Cockrell School of Engineering Perm reduction leads to higher pressure drawdown and more JT cooling

Impact of heat exchange for 3D case (1 year)

Multilayered Reservoir

"Indina et al., On The Significance of Hydrate Formation/Dissociation during CO₂ Injection in Depleted Gas Reservoirs. 2024 Oman Petroleum & Energy Show (OPES), SPE-218550-MS."

- 100x1x6 radial grid with refinement
- Each layer has different porosity and permeability
- Reservoir initially filled with water and methane
- Initial reservoir temperature: 135°C

Properties	Value	Sensitivity
Initial water saturation	0.2	0.15 and 0.3
Injection temperature	10 °C	-
Initial pressure	2.5 MPa	1 and 4 Mpa
Injection rate	1 MMTA	0.5 and 2 MMTA
Kv/Kh	0.1	0.5 and 1
Capillary pressure	Not considered	J-function

Results after 1 year of simulation

Summary and Conclusions

- Just like in wellbore and pipeline, hydrate formation is also a risk in porous media.
- The Joule-Thomson effect can cool CO₂ to hydrate and freezing conditions even in high-temperature reservoirs.
- The heat gain from surrounding formation, heat of hydrate formation, and water dry-out did not prevent hydrate formation.
- Permeability, injection rate, initial reservoir pressure, and injection temperature all play a critical role in the formation of hydrate.

Acknowledgement

- PI's: Mojdeh Delshad, Kamy Sepehrnoori, and Rouhi Farajzadeh
- Students: Vincent Indina, Kenta Yamada, and Atharva Kalamkar
- Financial support: Shell

