WaterRF Project: References
Apps, J. A., Y. Zhang, L. Zheng, T. F. Xu, and J. T. Birkholzer (2009), Identification of thermodynamic controls defining the concentrations of hazardous elements in potable ground waters and the potential impact of increasing carbon dioxide partial pressure, Energy Procedia, DOI:10.1016/j.egypro.2009.01.250, 1917-1924.
Assayag, N., J. Matter, M. Ader, D. Goldberg, and P. Agrinier (2009), Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects, Chem. Geol., 265, 227-235.
Busenberg, E., and L. N. Plummer (1982), The kinetics of dissolution of dolomite in CO2–H2O systems at 1.5–65 C and 0–1.0 atm PCO2 . Am. J. Sci., 282, 45-78.
Carroll, S., Y. Hao, and R. Aines (2009), Geochemical detection of carbon dioxide in dilute aquifers, Geochemical Transactions, 10.
Federico, C., A. Aiuppa, R. Favara, S. Gurrieri, and M. Valenza (2004), Geochemical monitoring of groundwaters (1998-2001) at Vesuvius volcano (Italy), Journal of Volcanology and Geothermal Research, 133, 81-104.
Helgeson, H. C., W. M. Murphy, P. Aagaard (1984), Thermodynamics and kinetic constraints on reaction rates among mineral and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar, Geochim. Cosmochim. Acta, 48, 2405-2432.
Holloway, S. (2001), Storage of fossil fuel-derived carbon dioxide beneath the surface of the earth, Annual Review of Energy and the Environment, 26, 145-166.
IPCC, (2005), IPCC Special Report on Carbon Dioxide Capture and Storage, Prepared by Working Group III of the IPCC, edited by P. Metz et al., 442 pp., Cambridge Univ. Press, New York.
Keating, E. H., J. Fessenden, N. Kanjorski, D. J. Koning, and R. Pawar (2009), The impact of CO2 on shallow groundwater chemistry: Observations at a natural analog site and implications for carbon sequestration, Environ. Earth Sci. DOI 10.1007/s12665-009-0192-4.
Kharaka, Y. K., D. R. Cole, S. D. Hovorka, W. D. Gunter, K. G. Knauss, and B. M. Freifeld (2006), Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins, Geology, 34(7), 577-580.
Kharaka, Y. K., J. J. Thordsen, S. D. Hovorka, H. S. Nance, D. R. Cole, T. J. Phelps, and K. G. Knauss (2009), Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA. Applied Geochemistry, 24, 1106-1112.
Lu, J., J. W. Partin, S. D. Hovorka, and C. Wong (in press), Potential risks to fresh-water resources as a result of leakage from CO2 geological storage—a batch-reaction experiment, Environmental Earth Science.
Mississippi Oil and Gas Board, 1966, Cranfield Field, Cranfield unit, basal Tuscaloosa reservoir, Adams and Franklin Counties, 42- 58.
Nicot, J. P. (2008), Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: An example from the Texas Gulf Coast Basin. International Journal of Greenhouse Gas Control, 2, 582-593.
Palandri J. L. and Y. K. Kharaka (2004), A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, USGS, open file report 2004-1068.
Plummer, L. N., D. L. Parkhurst, and T. M. L. Wigley, 1978. The kinetics of calcite dissolution in CO2–water systems at 5–60 C and 0.0–1.0 atm CO2. Am. J. Sci. 278, 176-216.
Samper, J, T. Xu, and Changbing Yang (2009), Sequential iterative approaches for solving reactive transport in porous media with CORE2D V4, Computational Geosciences, 13, 301-316.
Scanlon, B. R., J. P. Nicot, R. C. Reedy, D. Kurtzman, A. Mukherjee, and G. Strassberg (2009), Naturally occurring arsenic contamination in a semiarid oxidizing system, Southern High Plains Aquifer, USA, Applied Geochemistry, 24, 2061-2071.
Smedley, P. L., and D. G. Kinniburgh (2002), A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17(5), 517-568.
Smedley, P. L., D. G. Kinniburgh, D. M. J. Macdonald, H. B. Nicolli, A. J. Barros, J. O. Tullio, J. M. Pearce, and M. S. Alonso (2005), Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina, Appl. Geochem., 20(5), 989-1016.
U.S. NETL/DOE Carbon Sequestration Roadmap and Technology Program Plan, 2007 [PDF]
Wang, S., and P. R. Jaffe (2004), Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics, Energy Conversion and Management, 45(18-19), 2833-2848.
Xu, T., E. Sonnenthal, N. Spycher, and K. Pruess (2004), TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, Lawrence Berkeley National Laboratory.
Yang, Changbing, and Samper, Javier (2009), A subgrid-scale stabilized finite element method for multicomponent reactive transport through porous media: Transport in Porous Media, 78, DOI 10.1007/s 1242-008-9288-7, 101-126.
Yang, C., J. Samper, and J. Molinero (2008), Inverse microbial and geochemical reactive transport models in porous media: Physics and Chemistry of the Earth, v. 33, p. 1026-1034.
Yang C. B., M. Park, C. Zhu (2007a), A method for estimating in situ reaction rates from push-pull experiments for arbitrary solute background concentrations, Environmental & Engineering Geoscience 13, 345-354.
Yang, C., J. Samper, and L. Montenegro (2007b), A coupled non-isothermal reactive transport model for long-term geochemical evolution of a HLW repository in clay: Environmental Geology, 53, DOI. 10.1007/s00254-007-0770-2, 1627-1638.
Zheng, L., J. A. Apps, Y. Zhang, T. F. Xu, and J. T. Birkholzer (in press.), On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage, Chem. Geol.